Deep Learning with Dipper Throated Optimization Algorithm for Energy Consumption Forecasting in Smart Households

One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for planning and operating energy generation. For the utility to save money on energy generation, it must be able to forecast electrical demands a...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) Vol. 15; no. 23; p. 9125
Main Authors: Abdelhamid, Abdelaziz, El-Kenawy, El-Sayed, Alrowais, Fadwa, Ibrahim, Abdelhameed, Khodadadi, Nima, Lim, Wei, Alruwais, Nuha, Khafaga, Doaa
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.12.2022
Subjects:
ISSN:1996-1073, 1996-1073
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for planning and operating energy generation. For the utility to save money on energy generation, it must be able to forecast electrical demands and schedule generation resources to meet the demand. In this paper, we propose an optimized deep network model for predicting future consumption of energy in smart households based on the Dipper Throated Optimization (DTO) algorithm and Long Short-Term Memory (LSTM). The proposed deep network consists of three parts, the first part contains a single layer of bidirectional LSTM, the second part contains a set of stacked unidirectional LSTM, and the third part contains a single layer of fully connected neurons. The design of the proposed deep network targets represents the temporal dependencies of energy consumption for boosting prediction accuracy. The parameters of the proposed deep network are optimized using the DTO algorithm. The proposed model is validated using the publicly available UCI household energy dataset. In comparison to the other competing machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Sequence-to-Sequence (Seq2Seq), and standard LSTM, the performance of the proposed model shows promising effectiveness and superiority when evaluated using eight evaluation criteria including Root Mean Square Error (RMSE) and R2. Experimental results show that the proposed optimized deep model achieved an RMSE of (0.0047) and R2 of (0.998), which outperform those values achieved by the other models. In addition, a sensitivity analysis is performed to study the stability and significance of the proposed approach. The recorded results confirm the effectiveness, superiority, and stability of the proposed approach in predicting the future consumption of energy in smart households.
AbstractList One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for planning and operating energy generation. For the utility to save money on energy generation, it must be able to forecast electrical demands and schedule generation resources to meet the demand. In this paper, we propose an optimized deep network model for predicting future consumption of energy in smart households based on the Dipper Throated Optimization (DTO) algorithm and Long Short-Term Memory (LSTM). The proposed deep network consists of three parts, the first part contains a single layer of bidirectional LSTM, the second part contains a set of stacked unidirectional LSTM, and the third part contains a single layer of fully connected neurons. The design of the proposed deep network targets represents the temporal dependencies of energy consumption for boosting prediction accuracy. The parameters of the proposed deep network are optimized using the DTO algorithm. The proposed model is validated using the publicly available UCI household energy dataset. In comparison to the other competing machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Sequence-to-Sequence (Seq2Seq), and standard LSTM, the performance of the proposed model shows promising effectiveness and superiority when evaluated using eight evaluation criteria including Root Mean Square Error (RMSE) and R[sup.2] . Experimental results show that the proposed optimized deep model achieved an RMSE of (0.0047) and R[sup.2] of (0.998), which outperform those values achieved by the other models. In addition, a sensitivity analysis is performed to study the stability and significance of the proposed approach. The recorded results confirm the effectiveness, superiority, and stability of the proposed approach in predicting the future consumption of energy in smart households.
One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for planning and operating energy generation. For the utility to save money on energy generation, it must be able to forecast electrical demands and schedule generation resources to meet the demand. In this paper, we propose an optimized deep network model for predicting future consumption of energy in smart households based on the Dipper Throated Optimization (DTO) algorithm and Long Short-Term Memory (LSTM). The proposed deep network consists of three parts, the first part contains a single layer of bidirectional LSTM, the second part contains a set of stacked unidirectional LSTM, and the third part contains a single layer of fully connected neurons. The design of the proposed deep network targets represents the temporal dependencies of energy consumption for boosting prediction accuracy. The parameters of the proposed deep network are optimized using the DTO algorithm. The proposed model is validated using the publicly available UCI household energy dataset. In comparison to the other competing machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Sequence-to-Sequence (Seq2Seq), and standard LSTM, the performance of the proposed model shows promising effectiveness and superiority when evaluated using eight evaluation criteria including Root Mean Square Error (RMSE) and R2. Experimental results show that the proposed optimized deep model achieved an RMSE of (0.0047) and R2 of (0.998), which outperform those values achieved by the other models. In addition, a sensitivity analysis is performed to study the stability and significance of the proposed approach. The recorded results confirm the effectiveness, superiority, and stability of the proposed approach in predicting the future consumption of energy in smart households.
Audience Academic
Author Ibrahim, Abdelhameed
Abdelhamid, Abdelaziz
Alrowais, Fadwa
Lim, Wei
El-Kenawy, El-Sayed
Khodadadi, Nima
Alruwais, Nuha
Khafaga, Doaa
Author_xml – sequence: 1
  givenname: Abdelaziz
  orcidid: 0000-0001-7080-1979
  surname: Abdelhamid
  fullname: Abdelhamid, Abdelaziz
– sequence: 2
  givenname: El-Sayed
  orcidid: 0000-0002-9221-7658
  surname: El-Kenawy
  fullname: El-Kenawy, El-Sayed
– sequence: 3
  givenname: Fadwa
  orcidid: 0000-0002-8447-198X
  surname: Alrowais
  fullname: Alrowais, Fadwa
– sequence: 4
  givenname: Abdelhameed
  orcidid: 0000-0002-8352-6731
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
– sequence: 5
  givenname: Nima
  orcidid: 0000-0002-8348-6530
  surname: Khodadadi
  fullname: Khodadadi, Nima
– sequence: 6
  givenname: Wei
  orcidid: 0000-0003-1673-8088
  surname: Lim
  fullname: Lim, Wei
– sequence: 7
  givenname: Nuha
  surname: Alruwais
  fullname: Alruwais, Nuha
– sequence: 8
  givenname: Doaa
  orcidid: 0000-0002-9843-6392
  surname: Khafaga
  fullname: Khafaga, Doaa
BookMark eNptkV1rFDEYhQepYK298RcEvBO25nNmcrlsW1tY6IX1OiSZN7NZZpIxySL115vdVRQxuUh4Oc_hJOdtcxFigKZ5T_ANYxJ_gkAEZZJQ8aq5JFK2K4I7dvHX_U1znfMe18UYYYxdNsstwIK2oFPwYUTffdmhW78skNDzLkVdYEBPS_Gz_6GLjwGtpzGmqpqRiwndBUjjC9rEkA_zchLcxwRW53K08wF9mXUq6CEeMuziNOR3zWunpwzXv86r5uv93fPmYbV9-vy4WW9XlmNcVrS1llhJMWkHbhgQp8Gxvu8EYCy4ke3QGdNxwwVmxFEG9IgIITFxbjDsqnk8-w5R79WSfM3xoqL26jSIaVQ1mLcTKMFwT3sOhjnCjbXGgulM1w7SOkwxVK8PZ68lxW8HyEXt4yGFGl_RjveCUSm7qro5q0ZdTX1wsSRt6x5g9rZW5XydrzsuWky5JBXAZ8CmmHMCp6wvp1-uoJ8UwerYq_rTa0U-_oP8ftl_xD8Bu8ilXw
CitedBy_id crossref_primary_10_1016_j_jenvman_2024_120091
crossref_primary_10_3390_forecast6030042
crossref_primary_10_3390_en17174277
crossref_primary_10_1016_j_rser_2024_115161
crossref_primary_10_1186_s42162_025_00483_y
crossref_primary_10_1002_oca_3311
crossref_primary_10_1038_s41598_023_32465_z
crossref_primary_10_1177_01445987241267822
crossref_primary_10_3390_buildings13061551
Cites_doi 10.1109/ICAEES.2016.7888097
10.1007/s00180-020-00999-9
10.1109/ICASSP.2017.7952599
10.1080/23080477.2020.1799135
10.1109/ACCESS.2022.3196660
10.1109/ACCESS.2022.3166901
10.1016/j.enbuild.2017.01.083
10.1109/KPEC47870.2020.9167560
10.1109/SGRE46976.2019.9020965
10.1016/j.rser.2020.110591
10.1109/ACCESS.2019.2902510
10.1109/ACCESS.2020.3009537
10.1109/BigData.2015.7363836
10.1109/ACCESS.2020.2994119
10.1109/ISDA.2007.101
10.1016/j.ecolmodel.2010.04.021
10.1109/ICEDSA.2016.7818486
10.1109/ACCESS.2020.3029828
10.17744/mehc.25.2.xhyreggxdcd0q4ny
10.1109/TPWRS.2019.2963109
10.1109/ACCESS.2021.3061370
10.1109/ACCESS.2020.3031958
10.1109/ACCESS.2022.3190508
10.1109/78.650093
10.1109/ICIoT48696.2020.9089651
10.1109/TPWRS.2018.2799903
10.1109/TPWRS.2017.2688178
10.1016/j.neucom.2011.03.034
10.3390/math10162912
10.1016/j.advengsoft.2016.01.008
10.1109/TPWRS.2010.2052638
10.1109/ACCESS.2022.3172954
10.1109/ACCESS.2020.3028281
10.1109/TSG.2018.2807845
10.1109/ACCESS.2020.3021064
10.1109/TPWRS.2019.2946701
10.1088/1742-6596/1449/1/012032
10.1016/j.enbuild.2016.12.052
10.1109/ACCESS.2020.3041779
10.3390/app10113829
10.1109/TIA.2020.3025742
10.3390/math10173144
10.1109/JIOT.2019.2897988
10.1109/ACCESS.2020.3034101
10.1109/ACCESS.2021.3111408
10.1109/ACCESS.2020.3036885
10.1109/ACCESS.2020.3041178
10.1016/j.scs.2020.102091
10.1109/KI48306.2020.9039797
10.1109/BigData47090.2019.9006183
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15239125
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_5308284eb3f14bccbceb7b76d9cf020e
A745602491
10_3390_en15239125
GeographicLocations Saudi Arabia
GeographicLocations_xml – name: Saudi Arabia
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c400t-26cc1c92016d4b3e1faef38875e0054b96d7bb74b45031f23e226cc55901ffdb3
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000897999500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:46:32 EDT 2025
Sat Sep 06 14:30:19 EDT 2025
Tue Nov 04 18:21:29 EST 2025
Tue Nov 18 22:16:29 EST 2025
Sat Nov 29 07:19:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-26cc1c92016d4b3e1faef38875e0054b96d7bb74b45031f23e226cc55901ffdb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8447-198X
0000-0002-8348-6530
0000-0002-9221-7658
0000-0002-8352-6731
0000-0002-9843-6392
0000-0003-1673-8088
0000-0001-7080-1979
OpenAccessLink https://doaj.org/article/5308284eb3f14bccbceb7b76d9cf020e
PQID 2748532997
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_5308284eb3f14bccbceb7b76d9cf020e
proquest_journals_2748532997
gale_infotracacademiconefile_A745602491
crossref_citationtrail_10_3390_en15239125
crossref_primary_10_3390_en15239125
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Rafiei (ref_21) 2018; 9
Kong (ref_13) 2018; 33
Syed (ref_19) 2021; 9
Mirjalili (ref_18) 2022; 10
Abdelhamid (ref_32) 2022; 10
(ref_7) 2018; 33
Ahmed (ref_8) 2017; 138
Homod (ref_4) 2020; 56
Schuster (ref_31) 1997; 45
ref_15
Somu (ref_37) 2021; 137
Khond (ref_47) 2020; 8
Shao (ref_12) 2020; 8
Chen (ref_28) 2020; 8
Xu (ref_9) 2019; 7
Eid (ref_51) 2020; 16
Candanedo (ref_33) 2017; 140
Klein (ref_41) 2003; 25
ref_24
ref_23
ref_22
Kabir (ref_50) 2011; 74
ref_20
Alhussein (ref_17) 2020; 8
Confalonieri (ref_53) 2010; 221
Mirjalili (ref_52) 2016; 95
Khafaga (ref_35) 2022; 10
Vishwanath (ref_1) 2019; 6
Zhang (ref_27) 2020; 56
ref_36
Kong (ref_14) 2020; 8
ref_34
Abdelhameed (ref_44) 2021; 69
Han (ref_5) 2020; 1449
Syed (ref_2) 2021; 9
Wang (ref_16) 2011; 26
ref_39
Tan (ref_10) 2020; 8
Khan (ref_26) 2020; 8
Tan (ref_29) 2020; 35
ref_45
Sajjad (ref_25) 2020; 8
Marcot (ref_48) 2021; 36
ref_43
ref_42
Cao (ref_30) 2020; 35
ref_40
Alhussan (ref_38) 2022; 10
ref_3
ref_49
Ibrahim (ref_46) 2021; 9
Park (ref_11) 2020; 8
ref_6
References_xml – ident: ref_3
  doi: 10.1109/ICAEES.2016.7888097
– volume: 36
  start-page: 2009
  year: 2021
  ident: ref_48
  article-title: What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-020-00999-9
– ident: ref_39
  doi: 10.1109/ICASSP.2017.7952599
– volume: 8
  start-page: 117
  year: 2020
  ident: ref_47
  article-title: Effect of Data Normalization on Accuracy and Error of Fault Classification for an Electrical Distribution System
  publication-title: Smart Sci.
  doi: 10.1080/23080477.2020.1799135
– volume: 10
  start-page: 84188
  year: 2022
  ident: ref_38
  article-title: Pothole and Plain Road Classification Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3196660
– volume: 10
  start-page: 40536
  year: 2022
  ident: ref_18
  article-title: Novel Meta-Heuristic Algorithm for Feature Selection, Unconstrained Functions and Engineering Problems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3166901
– volume: 140
  start-page: 81
  year: 2017
  ident: ref_33
  article-title: Data driven prediction models of energy use of appliances in a low-energy house
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.01.083
– ident: ref_23
  doi: 10.1109/KPEC47870.2020.9167560
– ident: ref_36
  doi: 10.1109/SGRE46976.2019.9020965
– volume: 137
  start-page: 110591
  year: 2021
  ident: ref_37
  article-title: A deep learning framework for building energy consumption forecast
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110591
– volume: 7
  start-page: 36540
  year: 2019
  ident: ref_9
  article-title: Energy Time Series Forecasting Based on Empirical Mode Decomposition and FRBF-AR Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902510
– volume: 8
  start-page: 143759
  year: 2020
  ident: ref_25
  article-title: A Novel CNN-GRU-Based Hybrid Approach for Short-Term Residential Load Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009537
– ident: ref_6
  doi: 10.1109/BigData.2015.7363836
– volume: 8
  start-page: 123673
  year: 2020
  ident: ref_28
  article-title: Air-Conditioning Load Forecasting for Prosumer Based on Meta Ensemble Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2994119
– ident: ref_49
  doi: 10.1109/ISDA.2007.101
– volume: 221
  start-page: 1897
  year: 2010
  ident: ref_53
  article-title: Comparison of sensitivity analysis techniques: A case study with the rice model WARM
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2010.04.021
– ident: ref_45
  doi: 10.1109/ICEDSA.2016.7818486
– volume: 8
  start-page: 185373
  year: 2020
  ident: ref_14
  article-title: Multimodal Feature Extraction and Fusion Deep Neural Networks for Short-Term Load Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3029828
– volume: 25
  start-page: 89
  year: 2003
  ident: ref_41
  article-title: Understanding Dropouts
  publication-title: J. Ment. Health Couns.
  doi: 10.17744/mehc.25.2.xhyreggxdcd0q4ny
– volume: 35
  start-page: 2937
  year: 2020
  ident: ref_29
  article-title: Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2963109
– volume: 9
  start-page: 33498
  year: 2021
  ident: ref_2
  article-title: Household-Level Energy Forecasting in Smart Buildings Using a Novel Hybrid Deep Learning Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061370
– volume: 8
  start-page: 188352
  year: 2020
  ident: ref_12
  article-title: Domain Fusion CNN-LSTM for Short-Term Power Consumption Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031958
– volume: 10
  start-page: 74449
  year: 2022
  ident: ref_35
  article-title: Solving Optimization Problems of Metamaterial and Double T-Shape Antennas Using Advanced Meta-Heuristics Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3190508
– volume: 45
  start-page: 2673
  year: 1997
  ident: ref_31
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– ident: ref_34
  doi: 10.1109/ICIoT48696.2020.9089651
– volume: 33
  start-page: 5446
  year: 2018
  ident: ref_7
  article-title: Forecasting Demand Flexibility of Aggregated Residential Load Using Smart Meter Data
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2799903
– volume: 33
  start-page: 1087
  year: 2018
  ident: ref_13
  article-title: Short-Term Residential Load Forecasting Based on Resident Behaviour Learning
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2688178
– volume: 74
  start-page: 2914
  year: 2011
  ident: ref_50
  article-title: A new local search based hybrid genetic algorithm for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.034
– ident: ref_40
  doi: 10.3390/math10162912
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_52
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 26
  start-page: 500
  year: 2011
  ident: ref_16
  article-title: Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2010.2052638
– volume: 10
  start-page: 49265
  year: 2022
  ident: ref_32
  article-title: Robust Speech Emotion Recognition Using CNN+LSTM Based on Stochastic Fractal Search Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3172954
– volume: 8
  start-page: 180544
  year: 2020
  ident: ref_17
  article-title: Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028281
– volume: 9
  start-page: 6961
  year: 2018
  ident: ref_21
  article-title: Probabilistic Load Forecasting Using an Improved Wavelet Neural Network Trained by Generalized Extreme Learning Machine
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2807845
– volume: 16
  start-page: 831
  year: 2020
  ident: ref_51
  article-title: Hybrid Gray Wolf And Particle Swarm Optimization For Feature Selection
  publication-title: Int. J. Innov. Comput. Inf. Control IJICIC
– ident: ref_22
  doi: 10.1109/ACCESS.2020.3021064
– volume: 35
  start-page: 1881
  year: 2020
  ident: ref_30
  article-title: Hybrid Ensemble Deep Learning for Deterministic and Probabilistic Low-Voltage Load Forecasting
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2946701
– volume: 1449
  start-page: 012032
  year: 2020
  ident: ref_5
  article-title: A spatial load forecasting method based on DBSCAN clustering and NAR neural network
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1449/1/012032
– volume: 138
  start-page: 215
  year: 2017
  ident: ref_8
  article-title: Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.12.052
– volume: 8
  start-page: 227719
  year: 2020
  ident: ref_10
  article-title: Short-Term Load Forecasting Based on Integration of SVR and Stacking
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041779
– ident: ref_20
  doi: 10.3390/app10113829
– volume: 56
  start-page: 7185
  year: 2020
  ident: ref_27
  article-title: Data-Driven Day-Ahead PV Estimation Using Autoencoder-LSTM and Persistence Model
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2020.3025742
– ident: ref_42
  doi: 10.3390/math10173144
– volume: 6
  start-page: 7337
  year: 2019
  ident: ref_1
  article-title: An IoT-Based Data Driven Precooling Solution for Electricity Cost Savings in Commercial Buildings
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2897988
– volume: 8
  start-page: 196274
  year: 2020
  ident: ref_26
  article-title: Genetic Algorithm Based Optimized Feature Engineering and Hybrid Machine Learning for Effective Energy Consumption Prediction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034101
– volume: 69
  start-page: 3749
  year: 2021
  ident: ref_44
  article-title: Dynamic Voting Classifier for Risk Identification in Supply Chain 4.0
  publication-title: Comput. Mater. Contin.
– volume: 9
  start-page: 125787
  year: 2021
  ident: ref_46
  article-title: Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3111408
– ident: ref_43
– volume: 8
  start-page: 206039
  year: 2020
  ident: ref_11
  article-title: Missing-Insensitive Short-Term Load Forecasting Leveraging Autoencoder and LSTM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036885
– volume: 9
  start-page: 59564
  year: 2021
  ident: ref_19
  article-title: Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3041178
– volume: 56
  start-page: 102091
  year: 2020
  ident: ref_4
  article-title: A novel hybrid modelling structure fabricated by using Takagi-Sugeno fuzzy to forecast HVAC systems energy demand in real-time for Basra city
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102091
– ident: ref_24
  doi: 10.1109/KI48306.2020.9039797
– ident: ref_15
  doi: 10.1109/BigData47090.2019.9006183
SSID ssj0000331333
Score 2.393966
Snippet One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9125
SubjectTerms Algorithms
Alternative energy sources
Architecture
Artificial intelligence
Deep learning
dipper throated optimization
Energy consumption
Energy efficiency
Energy industry
Energy management
Energy resources
Forecasting
Forecasting techniques
Households
Load
long short-term memory
Machine learning
Mathematical optimization
meta-heuristic optimization
Neural networks
Optimization techniques
Renewable resources
smart household
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdg4wGQ-BggCgNZAgnxEC2Jk7p5Qt3WaU9lgiHtzbLPl67SmoSk4-_nLnW7Pmx72WtiK47u_LsP-34nxFeXWBuDd5GNNUYZ2Zio8LmLlNU2VqPUaQ19swk9nY4uLoqzkHDrwrXKNSb2QO1r4Bz5AUVPZFkIPPWP5m_EXaP4dDW00HgsdpmpjPR893AyPfu1ybLESlEQpla8pIri-wOsyGKpIuHe2FuWqCfsvwuWe1tz8vKhq3wlXgQvU45XavFaPMJqTzwfbx0a7IlnW1SEb0RzjNjIwLY6k5yelcfzpsFWnl-2NXmkXv4keFmEuk05vprRh5eXC0lur5z0JYTyqC_o7FFIctNPsB1fq5bzSv5ekJLK0_q6Qz7x6t6KPyeT86PTKHRjiID2-TJKhwAJFOQwDH3mFCalxVIRRuXIfp8rhl47pzOX5QQUZaow5Sk5F7eWpXfqndip6grfC2lBuRhGmHlF4U-MBbhUJz5F1AmmGgfi-1oyBgJVOXfMuDIUsrAUzY0UB-LLZmyzIui4ddQhC3gzgkm1-wd1OzNhj5qcqXtGGTpVJpkDcIBOOz30BZTkVdOyvrF6GN76tBywoYKBfopJtMxYkzfKFIzJQOyv1cMETOjMjW58uP_1R_E05SKL_tLMvthZttf4STyBf8t5134OKv4fu1YIWQ
  priority: 102
  providerName: ProQuest
Title Deep Learning with Dipper Throated Optimization Algorithm for Energy Consumption Forecasting in Smart Households
URI https://www.proquest.com/docview/2748532997
https://doaj.org/article/5308284eb3f14bccbceb7b76d9cf020e
Volume 15
WOSCitedRecordID wos000897999500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VtIdyQH2KAEUrFaniYGF77Wx8DBBED6QRUImeVvsYQyTiWHbg2N_embWhObTqpRcfrLG0np3XZ-98A3BgE2Ni521kYoVRRjkmKnxuI2mUieUotUq5MGxCTaejm5titjbqi8-EdfTAneKOcuZTGWWE-coks85Zh1ZZNfSFK6nUQY6-sSrWwFSIwVIS-JIdH6kkXH-EFWUqWSQ8E3stAwWi_r-F45Bjzt7AVl8cinG3qLfwAqt3sLlGGfge6lPEWvSsqLeCP6OK03ldYyOu75olVY5efKMwsOj7K8X4_nbZkNRCUHkqJqHVT5yExssQLQQP53Sm5ePPYl6JqwXpRJwvH1rkP1PtB_h-Nrk-OY_6qQmRI39cRenQucQVlNiHPrMSk9JgKSmW5Mj1mS2GXlmrMpvl5NBlKjHlR3JuQi1Lb-VH2KiWFW6DME7a2I0w85JgSoyFs6lKfIqoEkwVDuDwSZPa9ZTiPNniXhO0YK3r31ofwOdn2boj0vij1DFvyLMEk1-HG2QSujcJ_S-TGMAX3k7NLkrLcabvNKCXYrIrPVZUNTJVYjKAvacd173vtppwOtUwlKbVzv9YzS68TrllIhyB2YONVfOAn-CVe1zN22YfXh5PprPL_WC-dL34OaF7s68Xsx-_ACZQ-WQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFIkPiY8CIlBgJUCIg1V7187GB4RC0ypR2xCJIJWT8a7HaaTGNnYK4k_xG5lxnDQH4NYDV3ttrddv38zs7rwBeGW8OHZtYpzY1ej4ZGOcMAmMo2Idu6orjda2LjahR6Pu6Wk43oJfq1wYPla54sSaqJPc8hr5HkVPZFmIPPX74pvDVaN4d3VVQmMJiyP8-YNCturdsE__97WUhweT_YHTVBVwLOF14ciOtZ4NyfB1Et8o9NIYU0VzLUD2X0zYSbQx2jd-QIBPpULJjwScpJmmiVH03muw7TPYW7A9Hp6Mv6xXdVylKOhTSx1UpUJ3DzOykCr0uBb3huWrCwT8zQzUtu3w7v82KvfgTuNFi94S9vdhC7MduN3b2BTZgVsbUosPoOgjFqJRk50KXn4W_VlRYCkmZ2VOHnciPhJ9zpu8VNE7n9KHLs7mgtx6cVCnSIr9OmG1ZlnBRU1tXPGxcTHLxKc5TUIxyC8q5B296iF8vpIReAStLM_wMYjYKuPaLvqJovDOxdAaqb1EImoPpcY2vF0hIbKNFDtXBDmPKCRj1ESXqGnDy3XbYilA8sdWHxhQ6xYsGl5fyMtp1HBQFLA0UddHo1LPN9Yai0Yb3UlCm1LUQN16w3CMmNqoOzZuMjToo1gkLOpp8rZZYtJrw-4KjlHDeVV0icUn_779Am4MJifH0fFwdPQUbkpOKKkPCO1Ca1Fe4DO4br8vZlX5vJleAr5eNXZ_A_RYZOM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCFA4lGoGiiwEiDEwYq9a2fjA0KhadSoECJRpHIy3vU4jdTYJk5B_DV-HTOOneYA3Hrgaq-t9fqb1-7MNwAvjBfHrk2ME7saHZ9sjBMmgXFUrGNX9aTR2lbNJvR43Ds9DSdb8KupheG0ykYnVoo6yS3vkXcoeiLLQspTd9I6LWIyGL4tvjncQYpPWpt2GiuIHOPPHxS-lW9GA_rXL6UcHp4cHDl1hwHHEnaXjuxa69mQjGA38Y1CL40xVSR3AbIvY8Juoo3RvvEDAn8qFUp-JOCCzTRNjKL3XoNtcsl92YLtyejD5Mt6h8dVigJAteJEVSp0O5iRtVShx325N6xg1SzgbyahsnPDu__zCt2DO7V3LforcbgPW5jtwO3-xmHJDtzaoGB8AMUAsRA1y-xU8La0GMyKAhfi5GyRkyeeiI-kVud1varon0_pQ5dnc0HuvjisSifFQVXIWmlfwc1ObVxyOrmYZeLTnIRTHOUXJfJJX_kQPl_JCuxCK8sz3AMRW2Vc20M_URT2uRhaI7WXSETtodTYhtcNKiJbU7Rzp5DziEI1RlB0iaA2PF-PLVbEJH8c9Y7BtR7BZOLVhXwxjWrdFAVMWdTz0ajU8421xqLRRneT0KYUTdC0XjE0I1Z5NB0b15Ub9FFMHhb1NXnhTD3ptWG_gWZU68IyusTlo3_ffgY3CLDR-9H4-DHclFxnUuUN7UNrubjAJ3Ddfl_OysXTWtIEfL1q6P4GptZtow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+with+Dipper+Throated+Optimization+Algorithm+for+Energy+Consumption+Forecasting+in+Smart+Households&rft.jtitle=Energies+%28Basel%29&rft.au=Abdelaziz+A.+Abdelhamid&rft.au=El-Sayed+M.+El-Kenawy&rft.au=Fadwa+Alrowais&rft.au=Abdelhameed+Ibrahim&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=23&rft.spage=9125&rft_id=info:doi/10.3390%2Fen15239125&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5308284eb3f14bccbceb7b76d9cf020e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon