Deep Learning with Dipper Throated Optimization Algorithm for Energy Consumption Forecasting in Smart Households
One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for planning and operating energy generation. For the utility to save money on energy generation, it must be able to forecast electrical demands a...
Saved in:
| Published in: | Energies (Basel) Vol. 15; no. 23; p. 9125 |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.12.2022
|
| Subjects: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for planning and operating energy generation. For the utility to save money on energy generation, it must be able to forecast electrical demands and schedule generation resources to meet the demand. In this paper, we propose an optimized deep network model for predicting future consumption of energy in smart households based on the Dipper Throated Optimization (DTO) algorithm and Long Short-Term Memory (LSTM). The proposed deep network consists of three parts, the first part contains a single layer of bidirectional LSTM, the second part contains a set of stacked unidirectional LSTM, and the third part contains a single layer of fully connected neurons. The design of the proposed deep network targets represents the temporal dependencies of energy consumption for boosting prediction accuracy. The parameters of the proposed deep network are optimized using the DTO algorithm. The proposed model is validated using the publicly available UCI household energy dataset. In comparison to the other competing machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Sequence-to-Sequence (Seq2Seq), and standard LSTM, the performance of the proposed model shows promising effectiveness and superiority when evaluated using eight evaluation criteria including Root Mean Square Error (RMSE) and R2. Experimental results show that the proposed optimized deep model achieved an RMSE of (0.0047) and R2 of (0.998), which outperform those values achieved by the other models. In addition, a sensitivity analysis is performed to study the stability and significance of the proposed approach. The recorded results confirm the effectiveness, superiority, and stability of the proposed approach in predicting the future consumption of energy in smart households. |
|---|---|
| AbstractList | One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for planning and operating energy generation. For the utility to save money on energy generation, it must be able to forecast electrical demands and schedule generation resources to meet the demand. In this paper, we propose an optimized deep network model for predicting future consumption of energy in smart households based on the Dipper Throated Optimization (DTO) algorithm and Long Short-Term Memory (LSTM). The proposed deep network consists of three parts, the first part contains a single layer of bidirectional LSTM, the second part contains a set of stacked unidirectional LSTM, and the third part contains a single layer of fully connected neurons. The design of the proposed deep network targets represents the temporal dependencies of energy consumption for boosting prediction accuracy. The parameters of the proposed deep network are optimized using the DTO algorithm. The proposed model is validated using the publicly available UCI household energy dataset. In comparison to the other competing machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Sequence-to-Sequence (Seq2Seq), and standard LSTM, the performance of the proposed model shows promising effectiveness and superiority when evaluated using eight evaluation criteria including Root Mean Square Error (RMSE) and R[sup.2] . Experimental results show that the proposed optimized deep model achieved an RMSE of (0.0047) and R[sup.2] of (0.998), which outperform those values achieved by the other models. In addition, a sensitivity analysis is performed to study the stability and significance of the proposed approach. The recorded results confirm the effectiveness, superiority, and stability of the proposed approach in predicting the future consumption of energy in smart households. One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for planning and operating energy generation. For the utility to save money on energy generation, it must be able to forecast electrical demands and schedule generation resources to meet the demand. In this paper, we propose an optimized deep network model for predicting future consumption of energy in smart households based on the Dipper Throated Optimization (DTO) algorithm and Long Short-Term Memory (LSTM). The proposed deep network consists of three parts, the first part contains a single layer of bidirectional LSTM, the second part contains a set of stacked unidirectional LSTM, and the third part contains a single layer of fully connected neurons. The design of the proposed deep network targets represents the temporal dependencies of energy consumption for boosting prediction accuracy. The parameters of the proposed deep network are optimized using the DTO algorithm. The proposed model is validated using the publicly available UCI household energy dataset. In comparison to the other competing machine learning models, such as Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Sequence-to-Sequence (Seq2Seq), and standard LSTM, the performance of the proposed model shows promising effectiveness and superiority when evaluated using eight evaluation criteria including Root Mean Square Error (RMSE) and R2. Experimental results show that the proposed optimized deep model achieved an RMSE of (0.0047) and R2 of (0.998), which outperform those values achieved by the other models. In addition, a sensitivity analysis is performed to study the stability and significance of the proposed approach. The recorded results confirm the effectiveness, superiority, and stability of the proposed approach in predicting the future consumption of energy in smart households. |
| Audience | Academic |
| Author | Ibrahim, Abdelhameed Abdelhamid, Abdelaziz Alrowais, Fadwa Lim, Wei El-Kenawy, El-Sayed Khodadadi, Nima Alruwais, Nuha Khafaga, Doaa |
| Author_xml | – sequence: 1 givenname: Abdelaziz orcidid: 0000-0001-7080-1979 surname: Abdelhamid fullname: Abdelhamid, Abdelaziz – sequence: 2 givenname: El-Sayed orcidid: 0000-0002-9221-7658 surname: El-Kenawy fullname: El-Kenawy, El-Sayed – sequence: 3 givenname: Fadwa orcidid: 0000-0002-8447-198X surname: Alrowais fullname: Alrowais, Fadwa – sequence: 4 givenname: Abdelhameed orcidid: 0000-0002-8352-6731 surname: Ibrahim fullname: Ibrahim, Abdelhameed – sequence: 5 givenname: Nima orcidid: 0000-0002-8348-6530 surname: Khodadadi fullname: Khodadadi, Nima – sequence: 6 givenname: Wei orcidid: 0000-0003-1673-8088 surname: Lim fullname: Lim, Wei – sequence: 7 givenname: Nuha surname: Alruwais fullname: Alruwais, Nuha – sequence: 8 givenname: Doaa orcidid: 0000-0002-9843-6392 surname: Khafaga fullname: Khafaga, Doaa |
| BookMark | eNptkV1rFDEYhQepYK298RcEvBO25nNmcrlsW1tY6IX1OiSZN7NZZpIxySL115vdVRQxuUh4Oc_hJOdtcxFigKZ5T_ANYxJ_gkAEZZJQ8aq5JFK2K4I7dvHX_U1znfMe18UYYYxdNsstwIK2oFPwYUTffdmhW78skNDzLkVdYEBPS_Gz_6GLjwGtpzGmqpqRiwndBUjjC9rEkA_zchLcxwRW53K08wF9mXUq6CEeMuziNOR3zWunpwzXv86r5uv93fPmYbV9-vy4WW9XlmNcVrS1llhJMWkHbhgQp8Gxvu8EYCy4ke3QGdNxwwVmxFEG9IgIITFxbjDsqnk8-w5R79WSfM3xoqL26jSIaVQ1mLcTKMFwT3sOhjnCjbXGgulM1w7SOkwxVK8PZ68lxW8HyEXt4yGFGl_RjveCUSm7qro5q0ZdTX1wsSRt6x5g9rZW5XydrzsuWky5JBXAZ8CmmHMCp6wvp1-uoJ8UwerYq_rTa0U-_oP8ftl_xD8Bu8ilXw |
| CitedBy_id | crossref_primary_10_1016_j_jenvman_2024_120091 crossref_primary_10_3390_forecast6030042 crossref_primary_10_3390_en17174277 crossref_primary_10_1016_j_rser_2024_115161 crossref_primary_10_1186_s42162_025_00483_y crossref_primary_10_1002_oca_3311 crossref_primary_10_1038_s41598_023_32465_z crossref_primary_10_1177_01445987241267822 crossref_primary_10_3390_buildings13061551 |
| Cites_doi | 10.1109/ICAEES.2016.7888097 10.1007/s00180-020-00999-9 10.1109/ICASSP.2017.7952599 10.1080/23080477.2020.1799135 10.1109/ACCESS.2022.3196660 10.1109/ACCESS.2022.3166901 10.1016/j.enbuild.2017.01.083 10.1109/KPEC47870.2020.9167560 10.1109/SGRE46976.2019.9020965 10.1016/j.rser.2020.110591 10.1109/ACCESS.2019.2902510 10.1109/ACCESS.2020.3009537 10.1109/BigData.2015.7363836 10.1109/ACCESS.2020.2994119 10.1109/ISDA.2007.101 10.1016/j.ecolmodel.2010.04.021 10.1109/ICEDSA.2016.7818486 10.1109/ACCESS.2020.3029828 10.17744/mehc.25.2.xhyreggxdcd0q4ny 10.1109/TPWRS.2019.2963109 10.1109/ACCESS.2021.3061370 10.1109/ACCESS.2020.3031958 10.1109/ACCESS.2022.3190508 10.1109/78.650093 10.1109/ICIoT48696.2020.9089651 10.1109/TPWRS.2018.2799903 10.1109/TPWRS.2017.2688178 10.1016/j.neucom.2011.03.034 10.3390/math10162912 10.1016/j.advengsoft.2016.01.008 10.1109/TPWRS.2010.2052638 10.1109/ACCESS.2022.3172954 10.1109/ACCESS.2020.3028281 10.1109/TSG.2018.2807845 10.1109/ACCESS.2020.3021064 10.1109/TPWRS.2019.2946701 10.1088/1742-6596/1449/1/012032 10.1016/j.enbuild.2016.12.052 10.1109/ACCESS.2020.3041779 10.3390/app10113829 10.1109/TIA.2020.3025742 10.3390/math10173144 10.1109/JIOT.2019.2897988 10.1109/ACCESS.2020.3034101 10.1109/ACCESS.2021.3111408 10.1109/ACCESS.2020.3036885 10.1109/ACCESS.2020.3041178 10.1016/j.scs.2020.102091 10.1109/KI48306.2020.9039797 10.1109/BigData47090.2019.9006183 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en15239125 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Architecture |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_5308284eb3f14bccbceb7b76d9cf020e A745602491 10_3390_en15239125 |
| GeographicLocations | Saudi Arabia |
| GeographicLocations_xml | – name: Saudi Arabia |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c400t-26cc1c92016d4b3e1faef38875e0054b96d7bb74b45031f23e226cc55901ffdb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000897999500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:46:32 EDT 2025 Sat Sep 06 14:30:19 EDT 2025 Tue Nov 04 18:21:29 EST 2025 Tue Nov 18 22:16:29 EST 2025 Sat Nov 29 07:19:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-26cc1c92016d4b3e1faef38875e0054b96d7bb74b45031f23e226cc55901ffdb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8447-198X 0000-0002-8348-6530 0000-0002-9221-7658 0000-0002-8352-6731 0000-0002-9843-6392 0000-0003-1673-8088 0000-0001-7080-1979 |
| OpenAccessLink | https://doaj.org/article/5308284eb3f14bccbceb7b76d9cf020e |
| PQID | 2748532997 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5308284eb3f14bccbceb7b76d9cf020e proquest_journals_2748532997 gale_infotracacademiconefile_A745602491 crossref_citationtrail_10_3390_en15239125 crossref_primary_10_3390_en15239125 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Rafiei (ref_21) 2018; 9 Kong (ref_13) 2018; 33 Syed (ref_19) 2021; 9 Mirjalili (ref_18) 2022; 10 Abdelhamid (ref_32) 2022; 10 (ref_7) 2018; 33 Ahmed (ref_8) 2017; 138 Homod (ref_4) 2020; 56 Schuster (ref_31) 1997; 45 ref_15 Somu (ref_37) 2021; 137 Khond (ref_47) 2020; 8 Shao (ref_12) 2020; 8 Chen (ref_28) 2020; 8 Xu (ref_9) 2019; 7 Eid (ref_51) 2020; 16 Candanedo (ref_33) 2017; 140 Klein (ref_41) 2003; 25 ref_24 ref_23 ref_22 Kabir (ref_50) 2011; 74 ref_20 Alhussein (ref_17) 2020; 8 Confalonieri (ref_53) 2010; 221 Mirjalili (ref_52) 2016; 95 Khafaga (ref_35) 2022; 10 Vishwanath (ref_1) 2019; 6 Zhang (ref_27) 2020; 56 ref_36 Kong (ref_14) 2020; 8 ref_34 Abdelhameed (ref_44) 2021; 69 Han (ref_5) 2020; 1449 Syed (ref_2) 2021; 9 Wang (ref_16) 2011; 26 ref_39 Tan (ref_10) 2020; 8 Khan (ref_26) 2020; 8 Tan (ref_29) 2020; 35 ref_45 Sajjad (ref_25) 2020; 8 Marcot (ref_48) 2021; 36 ref_43 ref_42 Cao (ref_30) 2020; 35 ref_40 Alhussan (ref_38) 2022; 10 ref_3 ref_49 Ibrahim (ref_46) 2021; 9 Park (ref_11) 2020; 8 ref_6 |
| References_xml | – ident: ref_3 doi: 10.1109/ICAEES.2016.7888097 – volume: 36 start-page: 2009 year: 2021 ident: ref_48 article-title: What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis? publication-title: Comput. Stat. doi: 10.1007/s00180-020-00999-9 – ident: ref_39 doi: 10.1109/ICASSP.2017.7952599 – volume: 8 start-page: 117 year: 2020 ident: ref_47 article-title: Effect of Data Normalization on Accuracy and Error of Fault Classification for an Electrical Distribution System publication-title: Smart Sci. doi: 10.1080/23080477.2020.1799135 – volume: 10 start-page: 84188 year: 2022 ident: ref_38 article-title: Pothole and Plain Road Classification Using Adaptive Mutation Dipper Throated Optimization and Transfer Learning for Self Driving Cars publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3196660 – volume: 10 start-page: 40536 year: 2022 ident: ref_18 article-title: Novel Meta-Heuristic Algorithm for Feature Selection, Unconstrained Functions and Engineering Problems publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3166901 – volume: 140 start-page: 81 year: 2017 ident: ref_33 article-title: Data driven prediction models of energy use of appliances in a low-energy house publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.01.083 – ident: ref_23 doi: 10.1109/KPEC47870.2020.9167560 – ident: ref_36 doi: 10.1109/SGRE46976.2019.9020965 – volume: 137 start-page: 110591 year: 2021 ident: ref_37 article-title: A deep learning framework for building energy consumption forecast publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110591 – volume: 7 start-page: 36540 year: 2019 ident: ref_9 article-title: Energy Time Series Forecasting Based on Empirical Mode Decomposition and FRBF-AR Model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902510 – volume: 8 start-page: 143759 year: 2020 ident: ref_25 article-title: A Novel CNN-GRU-Based Hybrid Approach for Short-Term Residential Load Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009537 – ident: ref_6 doi: 10.1109/BigData.2015.7363836 – volume: 8 start-page: 123673 year: 2020 ident: ref_28 article-title: Air-Conditioning Load Forecasting for Prosumer Based on Meta Ensemble Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994119 – ident: ref_49 doi: 10.1109/ISDA.2007.101 – volume: 221 start-page: 1897 year: 2010 ident: ref_53 article-title: Comparison of sensitivity analysis techniques: A case study with the rice model WARM publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2010.04.021 – ident: ref_45 doi: 10.1109/ICEDSA.2016.7818486 – volume: 8 start-page: 185373 year: 2020 ident: ref_14 article-title: Multimodal Feature Extraction and Fusion Deep Neural Networks for Short-Term Load Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3029828 – volume: 25 start-page: 89 year: 2003 ident: ref_41 article-title: Understanding Dropouts publication-title: J. Ment. Health Couns. doi: 10.17744/mehc.25.2.xhyreggxdcd0q4ny – volume: 35 start-page: 2937 year: 2020 ident: ref_29 article-title: Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2963109 – volume: 9 start-page: 33498 year: 2021 ident: ref_2 article-title: Household-Level Energy Forecasting in Smart Buildings Using a Novel Hybrid Deep Learning Model publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061370 – volume: 8 start-page: 188352 year: 2020 ident: ref_12 article-title: Domain Fusion CNN-LSTM for Short-Term Power Consumption Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031958 – volume: 10 start-page: 74449 year: 2022 ident: ref_35 article-title: Solving Optimization Problems of Metamaterial and Double T-Shape Antennas Using Advanced Meta-Heuristics Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3190508 – volume: 45 start-page: 2673 year: 1997 ident: ref_31 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – ident: ref_34 doi: 10.1109/ICIoT48696.2020.9089651 – volume: 33 start-page: 5446 year: 2018 ident: ref_7 article-title: Forecasting Demand Flexibility of Aggregated Residential Load Using Smart Meter Data publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2018.2799903 – volume: 33 start-page: 1087 year: 2018 ident: ref_13 article-title: Short-Term Residential Load Forecasting Based on Resident Behaviour Learning publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2017.2688178 – volume: 74 start-page: 2914 year: 2011 ident: ref_50 article-title: A new local search based hybrid genetic algorithm for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.03.034 – ident: ref_40 doi: 10.3390/math10162912 – volume: 95 start-page: 51 year: 2016 ident: ref_52 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 26 start-page: 500 year: 2011 ident: ref_16 article-title: Secondary Forecasting Based on Deviation Analysis for Short-Term Load Forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2010.2052638 – volume: 10 start-page: 49265 year: 2022 ident: ref_32 article-title: Robust Speech Emotion Recognition Using CNN+LSTM Based on Stochastic Fractal Search Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3172954 – volume: 8 start-page: 180544 year: 2020 ident: ref_17 article-title: Hybrid CNN-LSTM Model for Short-Term Individual Household Load Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028281 – volume: 9 start-page: 6961 year: 2018 ident: ref_21 article-title: Probabilistic Load Forecasting Using an Improved Wavelet Neural Network Trained by Generalized Extreme Learning Machine publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2018.2807845 – volume: 16 start-page: 831 year: 2020 ident: ref_51 article-title: Hybrid Gray Wolf And Particle Swarm Optimization For Feature Selection publication-title: Int. J. Innov. Comput. Inf. Control IJICIC – ident: ref_22 doi: 10.1109/ACCESS.2020.3021064 – volume: 35 start-page: 1881 year: 2020 ident: ref_30 article-title: Hybrid Ensemble Deep Learning for Deterministic and Probabilistic Low-Voltage Load Forecasting publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2946701 – volume: 1449 start-page: 012032 year: 2020 ident: ref_5 article-title: A spatial load forecasting method based on DBSCAN clustering and NAR neural network publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1449/1/012032 – volume: 138 start-page: 215 year: 2017 ident: ref_8 article-title: Real time optimal schedule controller for home energy management system using new binary backtracking search algorithm publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.12.052 – volume: 8 start-page: 227719 year: 2020 ident: ref_10 article-title: Short-Term Load Forecasting Based on Integration of SVR and Stacking publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041779 – ident: ref_20 doi: 10.3390/app10113829 – volume: 56 start-page: 7185 year: 2020 ident: ref_27 article-title: Data-Driven Day-Ahead PV Estimation Using Autoencoder-LSTM and Persistence Model publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2020.3025742 – ident: ref_42 doi: 10.3390/math10173144 – volume: 6 start-page: 7337 year: 2019 ident: ref_1 article-title: An IoT-Based Data Driven Precooling Solution for Electricity Cost Savings in Commercial Buildings publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2897988 – volume: 8 start-page: 196274 year: 2020 ident: ref_26 article-title: Genetic Algorithm Based Optimized Feature Engineering and Hybrid Machine Learning for Effective Energy Consumption Prediction publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034101 – volume: 69 start-page: 3749 year: 2021 ident: ref_44 article-title: Dynamic Voting Classifier for Risk Identification in Supply Chain 4.0 publication-title: Comput. Mater. Contin. – volume: 9 start-page: 125787 year: 2021 ident: ref_46 article-title: Wind Speed Ensemble Forecasting Based on Deep Learning Using Adaptive Dynamic Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3111408 – ident: ref_43 – volume: 8 start-page: 206039 year: 2020 ident: ref_11 article-title: Missing-Insensitive Short-Term Load Forecasting Leveraging Autoencoder and LSTM publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3036885 – volume: 9 start-page: 59564 year: 2021 ident: ref_19 article-title: Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3041178 – volume: 56 start-page: 102091 year: 2020 ident: ref_4 article-title: A novel hybrid modelling structure fabricated by using Takagi-Sugeno fuzzy to forecast HVAC systems energy demand in real-time for Basra city publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102091 – ident: ref_24 doi: 10.1109/KI48306.2020.9039797 – ident: ref_15 doi: 10.1109/BigData47090.2019.9006183 |
| SSID | ssj0000331333 |
| Score | 2.393966 |
| Snippet | One of the relevant factors in smart energy management is the ability to predict the consumption of energy in smart households and use the resulting data for... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 9125 |
| SubjectTerms | Algorithms Alternative energy sources Architecture Artificial intelligence Deep learning dipper throated optimization Energy consumption Energy efficiency Energy industry Energy management Energy resources Forecasting Forecasting techniques Households Load long short-term memory Machine learning Mathematical optimization meta-heuristic optimization Neural networks Optimization techniques Renewable resources smart household Time series |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdg4wGQ-BggCgNZAgnxEC2Jk7p5Qt3WaU9lgiHtzbLPl67SmoSk4-_nLnW7Pmx72WtiK47u_LsP-34nxFeXWBuDd5GNNUYZ2Zio8LmLlNU2VqPUaQ19swk9nY4uLoqzkHDrwrXKNSb2QO1r4Bz5AUVPZFkIPPWP5m_EXaP4dDW00HgsdpmpjPR893AyPfu1ybLESlEQpla8pIri-wOsyGKpIuHe2FuWqCfsvwuWe1tz8vKhq3wlXgQvU45XavFaPMJqTzwfbx0a7IlnW1SEb0RzjNjIwLY6k5yelcfzpsFWnl-2NXmkXv4keFmEuk05vprRh5eXC0lur5z0JYTyqC_o7FFIctNPsB1fq5bzSv5ekJLK0_q6Qz7x6t6KPyeT86PTKHRjiID2-TJKhwAJFOQwDH3mFCalxVIRRuXIfp8rhl47pzOX5QQUZaow5Sk5F7eWpXfqndip6grfC2lBuRhGmHlF4U-MBbhUJz5F1AmmGgfi-1oyBgJVOXfMuDIUsrAUzY0UB-LLZmyzIui4ddQhC3gzgkm1-wd1OzNhj5qcqXtGGTpVJpkDcIBOOz30BZTkVdOyvrF6GN76tBywoYKBfopJtMxYkzfKFIzJQOyv1cMETOjMjW58uP_1R_E05SKL_tLMvthZttf4STyBf8t5134OKv4fu1YIWQ priority: 102 providerName: ProQuest |
| Title | Deep Learning with Dipper Throated Optimization Algorithm for Energy Consumption Forecasting in Smart Households |
| URI | https://www.proquest.com/docview/2748532997 https://doaj.org/article/5308284eb3f14bccbceb7b76d9cf020e |
| Volume | 15 |
| WOSCitedRecordID | wos000897999500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB5VtIdyQH2KAEUrFaniYGF77Wx8DBBED6QRUImeVvsYQyTiWHbg2N_embWhObTqpRcfrLG0np3XZ-98A3BgE2Ni521kYoVRRjkmKnxuI2mUieUotUq5MGxCTaejm5titjbqi8-EdfTAneKOcuZTGWWE-coks85Zh1ZZNfSFK6nUQY6-sSrWwFSIwVIS-JIdH6kkXH-EFWUqWSQ8E3stAwWi_r-F45Bjzt7AVl8cinG3qLfwAqt3sLlGGfge6lPEWvSsqLeCP6OK03ldYyOu75olVY5efKMwsOj7K8X4_nbZkNRCUHkqJqHVT5yExssQLQQP53Sm5ePPYl6JqwXpRJwvH1rkP1PtB_h-Nrk-OY_6qQmRI39cRenQucQVlNiHPrMSk9JgKSmW5Mj1mS2GXlmrMpvl5NBlKjHlR3JuQi1Lb-VH2KiWFW6DME7a2I0w85JgSoyFs6lKfIqoEkwVDuDwSZPa9ZTiPNniXhO0YK3r31ofwOdn2boj0vij1DFvyLMEk1-HG2QSujcJ_S-TGMAX3k7NLkrLcabvNKCXYrIrPVZUNTJVYjKAvacd173vtppwOtUwlKbVzv9YzS68TrllIhyB2YONVfOAn-CVe1zN22YfXh5PprPL_WC-dL34OaF7s68Xsx-_ACZQ-WQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFIkPiY8CIlBgJUCIg1V7187GB4RC0ypR2xCJIJWT8a7HaaTGNnYK4k_xG5lxnDQH4NYDV3ttrddv38zs7rwBeGW8OHZtYpzY1ej4ZGOcMAmMo2Idu6orjda2LjahR6Pu6Wk43oJfq1wYPla54sSaqJPc8hr5HkVPZFmIPPX74pvDVaN4d3VVQmMJiyP8-YNCturdsE__97WUhweT_YHTVBVwLOF14ciOtZ4NyfB1Et8o9NIYU0VzLUD2X0zYSbQx2jd-QIBPpULJjwScpJmmiVH03muw7TPYW7A9Hp6Mv6xXdVylKOhTSx1UpUJ3DzOykCr0uBb3huWrCwT8zQzUtu3w7v82KvfgTuNFi94S9vdhC7MduN3b2BTZgVsbUosPoOgjFqJRk50KXn4W_VlRYCkmZ2VOHnciPhJ9zpu8VNE7n9KHLs7mgtx6cVCnSIr9OmG1ZlnBRU1tXPGxcTHLxKc5TUIxyC8q5B296iF8vpIReAStLM_wMYjYKuPaLvqJovDOxdAaqb1EImoPpcY2vF0hIbKNFDtXBDmPKCRj1ESXqGnDy3XbYilA8sdWHxhQ6xYsGl5fyMtp1HBQFLA0UddHo1LPN9Yai0Yb3UlCm1LUQN16w3CMmNqoOzZuMjToo1gkLOpp8rZZYtJrw-4KjlHDeVV0icUn_779Am4MJifH0fFwdPQUbkpOKKkPCO1Ca1Fe4DO4br8vZlX5vJleAr5eNXZ_A_RYZOM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCFA4lGoGiiwEiDEwYq9a2fjA0KhadSoECJRpHIy3vU4jdTYJk5B_DV-HTOOneYA3Hrgaq-t9fqb1-7MNwAvjBfHrk2ME7saHZ9sjBMmgXFUrGNX9aTR2lbNJvR43Ds9DSdb8KupheG0ykYnVoo6yS3vkXcoeiLLQspTd9I6LWIyGL4tvjncQYpPWpt2GiuIHOPPHxS-lW9GA_rXL6UcHp4cHDl1hwHHEnaXjuxa69mQjGA38Y1CL40xVSR3AbIvY8Juoo3RvvEDAn8qFUp-JOCCzTRNjKL3XoNtcsl92YLtyejD5Mt6h8dVigJAteJEVSp0O5iRtVShx325N6xg1SzgbyahsnPDu__zCt2DO7V3LforcbgPW5jtwO3-xmHJDtzaoGB8AMUAsRA1y-xU8La0GMyKAhfi5GyRkyeeiI-kVud1varon0_pQ5dnc0HuvjisSifFQVXIWmlfwc1ObVxyOrmYZeLTnIRTHOUXJfJJX_kQPl_JCuxCK8sz3AMRW2Vc20M_URT2uRhaI7WXSETtodTYhtcNKiJbU7Rzp5DziEI1RlB0iaA2PF-PLVbEJH8c9Y7BtR7BZOLVhXwxjWrdFAVMWdTz0ajU8421xqLRRneT0KYUTdC0XjE0I1Z5NB0b15Ub9FFMHhb1NXnhTD3ptWG_gWZU68IyusTlo3_ffgY3CLDR-9H4-DHclFxnUuUN7UNrubjAJ3Ddfl_OysXTWtIEfL1q6P4GptZtow |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+with+Dipper+Throated+Optimization+Algorithm+for+Energy+Consumption+Forecasting+in+Smart+Households&rft.jtitle=Energies+%28Basel%29&rft.au=Abdelaziz+A.+Abdelhamid&rft.au=El-Sayed+M.+El-Kenawy&rft.au=Fadwa+Alrowais&rft.au=Abdelhameed+Ibrahim&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=23&rft.spage=9125&rft_id=info:doi/10.3390%2Fen15239125&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5308284eb3f14bccbceb7b76d9cf020e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |