dyngraph2vec: Capturing network dynamics using dynamic graph representation learning

Learning graph representations is a fundamental task aimed at capturing various properties of graphs in vector space. The most recent methods learn such representations for static networks. However, real-world networks evolve over time and have varying dynamics. Capturing such evolution is key to pr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 187; s. 104816
Hlavní autoři: Goyal, Palash, Chhetri, Sujit Rokka, Canedo, Arquimedes
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.01.2020
Elsevier Science Ltd
Témata:
ISSN:0950-7051, 1872-7409
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Learning graph representations is a fundamental task aimed at capturing various properties of graphs in vector space. The most recent methods learn such representations for static networks. However, real-world networks evolve over time and have varying dynamics. Capturing such evolution is key to predicting the properties of unseen networks. To understand how the network dynamics affect the prediction performance, we propose an embedding approach which learns the structure of evolution in dynamic graphs and can predict unseen links with higher precision. Our model, dyngraph2vec, learns the temporal transitions in the network using a deep architecture composed of dense and recurrent layers. We motivate the need for capturing dynamics for the prediction on a toy dataset created using stochastic block models. We then demonstrate the efficacy of dyngraph2vec over existing state-of-the-art methods on two real-world datasets. We observe that learning dynamics can improve the quality of embedding and yield better performance in link prediction.
AbstractList Learning graph representations is a fundamental task aimed at capturing various properties of graphs in vector space. The most recent methods learn such representations for static networks. However, real-world networks evolve over time and have varying dynamics. Capturing such evolution is key to predicting the properties of unseen networks. To understand how the network dynamics affect the prediction performance, we propose an embedding approach which learns the structure of evolution in dynamic graphs and can predict unseen links with higher precision. Our model, dyngraph2vec, learns the temporal transitions in the network using a deep architecture composed of dense and recurrent layers. We motivate the need for capturing dynamics for the prediction on a toy dataset created using stochastic block models. We then demonstrate the efficacy of dyngraph2vec over existing state-of-the-art methods on two real-world datasets. We observe that learning dynamics can improve the quality of embedding and yield better performance in link prediction.
ArticleNumber 104816
Author Chhetri, Sujit Rokka
Canedo, Arquimedes
Goyal, Palash
Author_xml – sequence: 1
  givenname: Palash
  surname: Goyal
  fullname: Goyal, Palash
  email: palashgo@usc.edu
  organization: University of Southern California, Information Sciences Institute, 4676 Admiralty Way, Suite 1001, Marina del Rey, CA 90292, USA
– sequence: 2
  givenname: Sujit Rokka
  surname: Chhetri
  fullname: Chhetri, Sujit Rokka
  organization: University of California-Irvine Irvine, CA 92697, USA
– sequence: 3
  givenname: Arquimedes
  surname: Canedo
  fullname: Canedo, Arquimedes
  organization: Siemens Corporate Technology, 755 College Rd E, Princeton, NJ 08540, USA
BookMark eNqFkMtOwzAQRS1UJNrCH7CIxDph7DivLpBQxUuqxKZ7y7EnxWnrBDsp6t-Tkq5YwGo0M_fM487IxDYWCbmlEFGg6X0dbW3jjz5iQIsI0ggYvyBTmmcszDgUEzKFIoEwg4RekZn3NQAwRvMpWeuj3TjZfrADqkWwlG3XO2M3gcXuq3HbYOjLvVE-6P2pfE6DHyZw2Dr0aDvZmcYGO5TODqprclnJncebc5yT9fPTevkart5f3paPq1BxgC5kCeo8iyUtyiThrIirvMwlS3MuUatS8VJBGeu8ZDTWRYVphRUvOdUaMkyyeE7uxrGtaz579J2om97ZYaNgcQxJnhQZHVSLUaVc473DSigz3ts5aXaCgjiZKGoxmihOJgpIxWDiAPNfcOvMXrrjf9jDiOHw_cGgE14ZtAq1cag6oRvz94Bvg2aS0g
CitedBy_id crossref_primary_10_1007_s10115_024_02261_w
crossref_primary_10_1016_j_knosys_2023_110936
crossref_primary_10_1109_TKDE_2024_3402234
crossref_primary_10_3389_fdata_2023_1135191
crossref_primary_10_48084_etasr_10791
crossref_primary_10_1038_s41598_023_29098_7
crossref_primary_10_1145_3723359
crossref_primary_10_1016_j_knosys_2020_105502
crossref_primary_10_1016_j_eswa_2021_116240
crossref_primary_10_1016_j_cose_2024_103981
crossref_primary_10_3390_app122211464
crossref_primary_10_1145_3745024
crossref_primary_10_7717_peerj_cs_357
crossref_primary_10_1007_s00500_023_08220_x
crossref_primary_10_1145_3588771
crossref_primary_10_1016_j_neucom_2021_02_101
crossref_primary_10_1016_j_knosys_2021_108050
crossref_primary_10_1016_j_trc_2020_102851
crossref_primary_10_1145_3716391
crossref_primary_10_1016_j_knosys_2022_109659
crossref_primary_10_1109_ACCESS_2024_3367971
crossref_primary_10_1155_2022_6945397
crossref_primary_10_1109_TKDE_2023_3238360
crossref_primary_10_1016_j_ins_2023_120085
crossref_primary_10_1109_TKDE_2021_3085758
crossref_primary_10_1145_3483595
crossref_primary_10_1109_TNNLS_2024_3394161
crossref_primary_10_1145_3769107
crossref_primary_10_1007_s11063_024_11645_6
crossref_primary_10_1007_s11704_020_0088_8
crossref_primary_10_1016_j_ins_2024_120499
crossref_primary_10_1109_TKDE_2021_3135898
crossref_primary_10_1109_TETC_2022_3223058
crossref_primary_10_1371_journal_pone_0322202
crossref_primary_10_1007_s10489_024_05548_1
crossref_primary_10_3390_app11135861
crossref_primary_10_1016_j_cose_2025_104534
crossref_primary_10_1109_TKDE_2023_3295367
crossref_primary_10_1109_TNSE_2020_3035352
crossref_primary_10_1002_widm_1393
crossref_primary_10_1007_s11192_024_05132_x
crossref_primary_10_1016_j_ins_2022_04_024
crossref_primary_10_1109_TSMC_2022_3196506
crossref_primary_10_1016_j_ins_2022_10_092
crossref_primary_10_1109_TKDE_2023_3329238
crossref_primary_10_1109_TKDE_2021_3094332
crossref_primary_10_1007_s13042_023_01803_y
crossref_primary_10_1016_j_ins_2023_119637
crossref_primary_10_1007_s41109_020_00339_2
crossref_primary_10_1016_j_knosys_2022_108308
crossref_primary_10_1016_j_jcp_2024_113061
crossref_primary_10_1016_j_knosys_2020_106168
crossref_primary_10_1016_j_neucom_2021_03_138
crossref_primary_10_23919_JSC_2025_0008
crossref_primary_10_1049_ise2_9706647
crossref_primary_10_1109_TNNLS_2022_3185527
crossref_primary_10_1109_ACCESS_2025_3568695
crossref_primary_10_3390_electronics12051092
crossref_primary_10_1109_TKDE_2020_3033829
crossref_primary_10_1016_j_knosys_2023_110855
crossref_primary_10_1016_j_knosys_2024_112635
crossref_primary_10_1109_TSMC_2021_3130149
crossref_primary_10_1016_j_ipm_2023_103292
crossref_primary_10_1109_ACCESS_2020_3007835
crossref_primary_10_1145_3485189
crossref_primary_10_3390_electronics9060895
crossref_primary_10_3390_s22041402
crossref_primary_10_1145_3565575
crossref_primary_10_1016_j_physd_2025_134632
crossref_primary_10_1145_3654977
crossref_primary_10_1109_TKDE_2024_3438238
crossref_primary_10_1016_j_eswa_2023_122964
crossref_primary_10_3389_fnins_2023_1168112
crossref_primary_10_1109_ACCESS_2022_3172746
crossref_primary_10_1007_s40314_022_02071_2
crossref_primary_10_1109_TCYB_2022_3159661
crossref_primary_10_1002_int_22880
crossref_primary_10_1007_s11704_024_3853_2
crossref_primary_10_1007_s10479_024_05867_z
crossref_primary_10_1145_3524124
crossref_primary_10_1109_TCSS_2024_3416837
crossref_primary_10_3390_s22166279
crossref_primary_10_1109_TKDE_2023_3246059
crossref_primary_10_1109_TAI_2024_3350545
crossref_primary_10_1109_TCBB_2022_3153963
crossref_primary_10_1089_big_2020_0086
crossref_primary_10_1109_TKDE_2022_3144083
crossref_primary_10_1080_00207543_2024_2344661
crossref_primary_10_1109_TCSS_2022_3180586
crossref_primary_10_1016_j_physa_2023_128525
crossref_primary_10_1007_s10489_021_02518_9
crossref_primary_10_1109_TKDE_2020_3017687
crossref_primary_10_1145_3593314
crossref_primary_10_1016_j_neucom_2023_127038
crossref_primary_10_1177_01655515211034407
crossref_primary_10_1016_j_neucom_2025_131447
crossref_primary_10_1002_int_22967
crossref_primary_10_1109_TNNLS_2021_3084957
crossref_primary_10_1007_s13278_021_00816_1
crossref_primary_10_1016_j_neucom_2022_05_105
crossref_primary_10_1109_ACCESS_2021_3055280
crossref_primary_10_1016_j_neucom_2022_05_109
crossref_primary_10_1016_j_asoc_2023_110272
crossref_primary_10_1111_exsy_13083
crossref_primary_10_1016_j_ins_2022_01_020
crossref_primary_10_3233_AIC_230028
crossref_primary_10_1016_j_eswa_2025_129028
crossref_primary_10_1109_TNSE_2024_3485093
crossref_primary_10_1016_j_neunet_2025_108006
crossref_primary_10_1145_3669906
crossref_primary_10_1016_j_patcog_2023_109663
crossref_primary_10_3390_math12020285
crossref_primary_10_1016_j_neucom_2023_02_060
crossref_primary_10_1145_3387726_3387729
crossref_primary_10_1145_3676559
crossref_primary_10_1007_s10489_022_03919_0
crossref_primary_10_1007_s10618_021_00784_2
crossref_primary_10_3390_electronics12040837
crossref_primary_10_1016_j_ins_2023_119240
crossref_primary_10_3390_e25020257
crossref_primary_10_1109_TNNLS_2022_3222165
crossref_primary_10_1145_3480243
crossref_primary_10_1007_s10618_023_00935_7
crossref_primary_10_1109_TKDE_2020_3034396
crossref_primary_10_1140_epjds_s13688_021_00277_8
crossref_primary_10_1007_s41019_020_00138_w
crossref_primary_10_1016_j_neunet_2024_106384
crossref_primary_10_1049_cit2_12367
crossref_primary_10_1177_03611981241248160
crossref_primary_10_1016_j_ins_2023_119371
crossref_primary_10_1016_j_neunet_2025_107731
crossref_primary_10_3390_sym14102218
crossref_primary_10_1140_epjds_s13688_022_00344_8
crossref_primary_10_1016_j_neunet_2025_108056
crossref_primary_10_1109_TITS_2025_3526946
crossref_primary_10_1109_TC_2021_3057082
crossref_primary_10_1109_TNNLS_2022_3178706
crossref_primary_10_1016_j_neunet_2023_11_060
crossref_primary_10_3390_s23084168
crossref_primary_10_1016_j_asoc_2023_110059
crossref_primary_10_1109_ACCESS_2025_3553377
crossref_primary_10_1145_3762668
crossref_primary_10_1049_cit2_12215
crossref_primary_10_1016_j_knosys_2022_110167
crossref_primary_10_1016_j_neucom_2022_11_002
crossref_primary_10_1016_j_neunet_2024_106240
crossref_primary_10_3390_electronics13050957
crossref_primary_10_1109_TKDE_2022_3149999
crossref_primary_10_1016_j_neucom_2022_08_050
crossref_primary_10_1016_j_eswa_2024_125086
crossref_primary_10_1109_TCYB_2022_3168343
crossref_primary_10_1007_s10115_022_01792_4
crossref_primary_10_1016_j_knosys_2023_111308
crossref_primary_10_1016_j_patcog_2024_110577
crossref_primary_10_1109_JBHI_2022_3212863
crossref_primary_10_1016_j_neunet_2023_12_040
crossref_primary_10_1016_j_cities_2025_106334
crossref_primary_10_1016_j_neucom_2025_129439
crossref_primary_10_12677_mos_2024_133238
crossref_primary_10_1145_3633518
crossref_primary_10_1109_TKDE_2024_3388453
crossref_primary_10_1016_j_compbiomed_2024_109287
crossref_primary_10_1016_j_knosys_2024_111714
crossref_primary_10_1186_s40537_022_00595_2
crossref_primary_10_1007_s41019_021_00160_6
crossref_primary_10_1016_j_knosys_2021_107453
crossref_primary_10_1016_j_neucom_2023_126557
crossref_primary_10_1016_j_knosys_2025_113845
crossref_primary_10_1109_TNSE_2023_3301673
crossref_primary_10_1007_s44295_024_00042_3
crossref_primary_10_1109_TKDE_2023_3335223
crossref_primary_10_1016_j_neucom_2024_127265
crossref_primary_10_1109_ACCESS_2022_3192608
crossref_primary_10_1007_s43684_024_00067_9
crossref_primary_10_1109_TKDE_2022_3150272
crossref_primary_10_1016_j_eswa_2021_114913
crossref_primary_10_1016_j_patrec_2021_02_004
crossref_primary_10_1109_TNNLS_2024_3379735
crossref_primary_10_1007_s13721_022_00406_x
crossref_primary_10_1007_s41060_022_00376_3
crossref_primary_10_1016_j_ins_2022_05_079
crossref_primary_10_1016_j_neunet_2024_106151
crossref_primary_10_1109_TNNLS_2023_3328924
crossref_primary_10_1016_j_neucom_2023_01_039
crossref_primary_10_1109_ACCESS_2021_3082932
crossref_primary_10_1016_j_neunet_2023_04_022
crossref_primary_10_1145_3625820
crossref_primary_10_1109_TIM_2023_3284956
crossref_primary_10_1109_MCI_2022_3222049
crossref_primary_10_12677_mos_2025_145422
crossref_primary_10_3390_math9020168
crossref_primary_10_1109_TNSE_2022_3164659
crossref_primary_10_1109_TKDE_2021_3110580
crossref_primary_10_1088_2632_2153_ad66af
crossref_primary_10_1137_20M1386062
crossref_primary_10_1016_j_jpdc_2022_09_013
crossref_primary_10_1007_s00521_021_06706_z
crossref_primary_10_1016_j_patcog_2024_111093
crossref_primary_10_1016_j_knosys_2024_112110
crossref_primary_10_1016_j_neunet_2023_05_048
Cites_doi 10.1145/980972.980992
10.1186/1756-0381-1-12
10.1038/nprot.2009.177
10.1109/TKDE.2016.2591009
10.1080/01621459.1987.10478385
10.1016/j.physa.2017.12.092
10.1016/j.laa.2005.07.021
10.1016/j.knosys.2018.03.022
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 2020
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2019.06.024
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2019_06_024
S0950705119302916
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c400t-25ed873a19b554293f8b8a2684aedcbc4bc0b3d8b213d9fe6fef4b41dd07e573
ISICitedReferencesCount 312
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501653900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Fri Nov 14 18:45:30 EST 2025
Sat Nov 29 07:07:05 EST 2025
Tue Nov 18 22:11:22 EST 2025
Fri Feb 23 02:18:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Python graph embedding methods GEM library
Graph embedding applications
Graph embedding techniques
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c400t-25ed873a19b554293f8b8a2684aedcbc4bc0b3d8b213d9fe6fef4b41dd07e573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2330585971
PQPubID 2035257
ParticipantIDs proquest_journals_2330585971
crossref_citationtrail_10_1016_j_knosys_2019_06_024
crossref_primary_10_1016_j_knosys_2019_06_024
elsevier_sciencedirect_doi_10_1016_j_knosys_2019_06_024
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Goyal, Hosseinmardi, Ferrara, Galstyan (b14) 2018
P. Sarkar, D. Chakrabarti, M. Jordan, Nonparametric link prediction in dynamic networks, arXiv preprint
Tang, Qu, Wang, Zhang, Yan, Mei (b13) 2015
Gehrke, Ginsparg, Kleinberg (b1) 2003; 5
Belkin, Niyogi (b18) 2001
Leskovec, Kleinberg, Faloutsos (b37) 2005
Freeman (b2) 2000; 1
Theocharidis, Van Dongen, Enright, Freeman (b3) 2009; 4
T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint
Goyal, Sapienza, Ferrara (b4) 2018
Ou, Cui, Pei, Zhang, Zhu (b38) 2016
M. Rahman, T.K. Saha, M.A. Hasan, K.S. Xu, C.K. Reddy, Dylink2vec: Effective feature representation for link prediction in dynamic networks, arXiv preprint
Ou, Cui, Pei, Zhang, Zhu (b9) 2016
Talasu, Jonnalagadda, Pillai, Rahul (b32) 2017
Pavlopoulos, Wegener, Schneider (b5) 2008; 1
Grover, Leskovec (b8) 2016
Goyal, Kamra, He, Liu (b26) 2017
Ma, Sun, Wang (b31) 2018; 496
Wasserman, Faust (b6) 1994
Wang, Wong (b34) 1987; 82
Yang, Khot, Kersting, Natarajan (b29) 2016
D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
Wang, Cui, Zhu (b19) 2016
Perozzi, Al-Rfou, Skiena (b11) 2014
T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint
J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv preprint
Li, Cheng, Wu, Liu (b33) 2018
P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: Deep Embedding Method for Dynamic Graphs, arXiv preprint
Rumelhart, Hinton, Williams (b35) 1988
.
M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, arXiv preprint
Brand (b39) 2006; 415
Zhou, Yang, Ren, Wu, Zhuang (b15) 2018
Z. Zhang, P. Cui, J. Pei, X. Wang, W. Zhu, Timers: Error-Bounded svd restart on dynamic networks, arXiv preprint
Cao, Lu, Xu (b20) 2016
Ahmed, Shervashidze, Narayanamurthy, Josifovski, Smola (b10) 2013
Dunlavy, Kolda, Acar (b30) 2011; 5
Cao, Lu, Xu (b12) 2015
Goyal, Ferrara (b7) 2018
Zhu, Guo, Yin, Ver Steeg, Galstyan (b25) 2016; 28
Grover (10.1016/j.knosys.2019.06.024_b8) 2016
Theocharidis (10.1016/j.knosys.2019.06.024_b3) 2009; 4
Perozzi (10.1016/j.knosys.2019.06.024_b11) 2014
Rumelhart (10.1016/j.knosys.2019.06.024_b35) 1988
Ahmed (10.1016/j.knosys.2019.06.024_b10) 2013
Freeman (10.1016/j.knosys.2019.06.024_b2) 2000; 1
Gehrke (10.1016/j.knosys.2019.06.024_b1) 2003; 5
10.1016/j.knosys.2019.06.024_b21
Wasserman (10.1016/j.knosys.2019.06.024_b6) 1994
10.1016/j.knosys.2019.06.024_b28
Goyal (10.1016/j.knosys.2019.06.024_b14) 2018
Zhu (10.1016/j.knosys.2019.06.024_b25) 2016; 28
Ou (10.1016/j.knosys.2019.06.024_b38) 2016
Cao (10.1016/j.knosys.2019.06.024_b12) 2015
10.1016/j.knosys.2019.06.024_b27
Leskovec (10.1016/j.knosys.2019.06.024_b37) 2005
Pavlopoulos (10.1016/j.knosys.2019.06.024_b5) 2008; 1
10.1016/j.knosys.2019.06.024_b24
10.1016/j.knosys.2019.06.024_b22
Yang (10.1016/j.knosys.2019.06.024_b29) 2016
10.1016/j.knosys.2019.06.024_b23
Talasu (10.1016/j.knosys.2019.06.024_b32) 2017
Ou (10.1016/j.knosys.2019.06.024_b9) 2016
Wang (10.1016/j.knosys.2019.06.024_b19) 2016
Ma (10.1016/j.knosys.2019.06.024_b31) 2018; 496
Brand (10.1016/j.knosys.2019.06.024_b39) 2006; 415
Goyal (10.1016/j.knosys.2019.06.024_b26) 2017
Goyal (10.1016/j.knosys.2019.06.024_b7) 2018
Cao (10.1016/j.knosys.2019.06.024_b20) 2016
Wang (10.1016/j.knosys.2019.06.024_b34) 1987; 82
Belkin (10.1016/j.knosys.2019.06.024_b18) 2001
Goyal (10.1016/j.knosys.2019.06.024_b4) 2018
Zhou (10.1016/j.knosys.2019.06.024_b15) 2018
Li (10.1016/j.knosys.2019.06.024_b33) 2018
Tang (10.1016/j.knosys.2019.06.024_b13) 2015
10.1016/j.knosys.2019.06.024_b17
10.1016/j.knosys.2019.06.024_b16
10.1016/j.knosys.2019.06.024_b36
Dunlavy (10.1016/j.knosys.2019.06.024_b30) 2011; 5
References_xml – start-page: 1067
  year: 2015
  end-page: 1077
  ident: b13
  article-title: Line: Large-scale information network embedding
  publication-title: Proceedings 24th International Conference on World Wide Web
– reference: J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally connected networks on graphs, arXiv preprint
– start-page: 701
  year: 2014
  end-page: 710
  ident: b11
  article-title: Deepwalk: Online learning of social representations
  publication-title: Proceedings 20th International Conference on Knowledge Discovery and Data Mining
– start-page: 585
  year: 2001
  end-page: 591
  ident: b18
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: NIPS, Vol. 14
– start-page: 855
  year: 2016
  end-page: 864
  ident: b8
  article-title: Node2vec: Scalable feature learning for networks
  publication-title: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining
– start-page: 1105
  year: 2016
  end-page: 1114
  ident: b9
  article-title: Asymmetric transitivity preserving graph embedding
  publication-title: Proc. of ACM SIGKDD
– start-page: 38
  year: 2018
  end-page: 42
  ident: b14
  article-title: Embedding networks with edge attributes
  publication-title: Proceedings of the 29th on Hypertext and Social Media
– start-page: 2059
  year: 2017
  end-page: 2062
  ident: b32
  article-title: A link prediction based approach for recommendation systems
  publication-title: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
– reference: Z. Zhang, P. Cui, J. Pei, X. Wang, W. Zhu, Timers: Error-Bounded svd restart on dynamic networks, arXiv preprint
– volume: 28
  start-page: 2765
  year: 2016
  end-page: 2777
  ident: b25
  article-title: Scalable temporal latent space inference for link prediction in dynamic social networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2017
  ident: b26
  article-title: Dyngem: Deep embedding method for dynamic graphs
  publication-title: IJCAI International Workshop on Representation Learning for Graphs
– start-page: 1225
  year: 2016
  end-page: 1234
  ident: b19
  article-title: Structural deep network embedding
  publication-title: Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining
– reference: D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
– volume: 415
  start-page: 20
  year: 2006
  end-page: 30
  ident: b39
  article-title: Fast low-rank modifications of the thin singular value decomposition
  publication-title: Linear Algebr. Appl.
– reference: M. Rahman, T.K. Saha, M.A. Hasan, K.S. Xu, C.K. Reddy, Dylink2vec: Effective feature representation for link prediction in dynamic networks, arXiv preprint
– volume: 5
  year: 2003
  ident: b1
  article-title: Overview of the 2003 kdd cup
  publication-title: ACM SIGKDD Explor.
– volume: 1
  start-page: 4
  year: 2000
  ident: b2
  article-title: Visualizing social networks
  publication-title: J. Soc. Struct.
– reference: M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-structured data, arXiv preprint
– start-page: 1145
  year: 2016
  end-page: 1152
  ident: b20
  article-title: Deep neural networks for learning graph representations
  publication-title: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
– year: 1994
  ident: b6
  article-title: Social Network Analysis: Methods and Applications, Vol. 8
– year: 2018
  ident: b7
  article-title: Graph embedding techniques, applications, and performance: A survey
  publication-title: Knowl.-Based Syst.
– start-page: 1105
  year: 2016
  end-page: 1114
  ident: b38
  article-title: Asymmetric transitivity preserving graph embedding
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 696
  year: 1988
  end-page: 699
  ident: b35
  publication-title: Neurocomputing: Foundations of research
– start-page: 177
  year: 2005
  end-page: 187
  ident: b37
  article-title: Graphs over time: densification laws, shrinking diameters and possible explanations
  publication-title: Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
– year: 2018
  ident: b15
  article-title: Dynamic network embedding by modelling triadic closure process
  publication-title: AAAI
– reference: P. Sarkar, D. Chakrabarti, M. Jordan, Nonparametric link prediction in dynamic networks, arXiv preprint
– volume: 4
  start-page: 1535
  year: 2009
  end-page: 1550
  ident: b3
  article-title: Network visualization and analysis of gene expression data using biolayout express3d
  publication-title: Nat. Protoc.
– start-page: 57
  year: 2018
  end-page: 61
  ident: b4
  article-title: Recommending teammates with deep neural networks
  publication-title: Proceedings of the 29th on Hypertext and Social Media
– reference: .
– start-page: 891
  year: 2015
  end-page: 900
  ident: b12
  article-title: Grarep: Learning graph representations with global structural information
  publication-title: KDD15
– volume: 5
  start-page: 10
  year: 2011
  ident: b30
  article-title: Temporal link prediction using matrix and tensor factorizations
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– start-page: 37
  year: 2013
  end-page: 48
  ident: b10
  article-title: Distributed large-scale natural graph factorization
  publication-title: Proceedings of the 22nd International Conference on World Wide Web
– reference: P. Goyal, N. Kamra, X. He, Y. Liu, Dyngem: Deep Embedding Method for Dynamic Graphs, arXiv preprint
– reference: T.N. Kipf, M. Welling, Variational graph auto-encoders, arXiv preprint
– reference: T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint
– volume: 496
  start-page: 121
  year: 2018
  end-page: 136
  ident: b31
  article-title: Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks
  publication-title: Physica A
– volume: 82
  start-page: 8
  year: 1987
  end-page: 19
  ident: b34
  article-title: Stochastic blockmodels for directed graphs
  publication-title: J. Amer. Statist. Assoc.
– start-page: 369
  year: 2018
  end-page: 377
  ident: b33
  article-title: Streaming link prediction on dynamic attributed networks
  publication-title: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining
– year: 2016
  ident: b29
  article-title: Learning continuous-time bayesian networks in relational domains: A non-parametric approach
  publication-title: Thirtieth AAAI Conference on Artificial Intelligence
– volume: 1
  start-page: 12
  year: 2008
  ident: b5
  article-title: A survey of visualization tools for biological network analysis
  publication-title: Biodata Min.
– ident: 10.1016/j.knosys.2019.06.024_b17
– year: 2017
  ident: 10.1016/j.knosys.2019.06.024_b26
  article-title: Dyngem: Deep embedding method for dynamic graphs
– start-page: 585
  year: 2001
  ident: 10.1016/j.knosys.2019.06.024_b18
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
– year: 2018
  ident: 10.1016/j.knosys.2019.06.024_b15
  article-title: Dynamic network embedding by modelling triadic closure process
– ident: 10.1016/j.knosys.2019.06.024_b23
– volume: 5
  issue: 2
  year: 2003
  ident: 10.1016/j.knosys.2019.06.024_b1
  article-title: Overview of the 2003 kdd cup
  publication-title: ACM SIGKDD Explor.
  doi: 10.1145/980972.980992
– start-page: 2059
  year: 2017
  ident: 10.1016/j.knosys.2019.06.024_b32
  article-title: A link prediction based approach for recommendation systems
– start-page: 177
  year: 2005
  ident: 10.1016/j.knosys.2019.06.024_b37
  article-title: Graphs over time: densification laws, shrinking diameters and possible explanations
– volume: 1
  start-page: 12
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2019.06.024_b5
  article-title: A survey of visualization tools for biological network analysis
  publication-title: Biodata Min.
  doi: 10.1186/1756-0381-1-12
– start-page: 37
  year: 2013
  ident: 10.1016/j.knosys.2019.06.024_b10
  article-title: Distributed large-scale natural graph factorization
– ident: 10.1016/j.knosys.2019.06.024_b21
– ident: 10.1016/j.knosys.2019.06.024_b27
– start-page: 1105
  year: 2016
  ident: 10.1016/j.knosys.2019.06.024_b38
  article-title: Asymmetric transitivity preserving graph embedding
– ident: 10.1016/j.knosys.2019.06.024_b28
– volume: 4
  start-page: 1535
  year: 2009
  ident: 10.1016/j.knosys.2019.06.024_b3
  article-title: Network visualization and analysis of gene expression data using biolayout express3d
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.177
– year: 2016
  ident: 10.1016/j.knosys.2019.06.024_b29
  article-title: Learning continuous-time bayesian networks in relational domains: A non-parametric approach
– volume: 5
  start-page: 10
  issue: 2
  year: 2011
  ident: 10.1016/j.knosys.2019.06.024_b30
  article-title: Temporal link prediction using matrix and tensor factorizations
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– start-page: 369
  year: 2018
  ident: 10.1016/j.knosys.2019.06.024_b33
  article-title: Streaming link prediction on dynamic attributed networks
– volume: 28
  start-page: 2765
  issue: 10
  year: 2016
  ident: 10.1016/j.knosys.2019.06.024_b25
  article-title: Scalable temporal latent space inference for link prediction in dynamic social networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2591009
– start-page: 696
  year: 1988
  ident: 10.1016/j.knosys.2019.06.024_b35
– ident: 10.1016/j.knosys.2019.06.024_b16
– volume: 82
  start-page: 8
  issue: 397
  year: 1987
  ident: 10.1016/j.knosys.2019.06.024_b34
  article-title: Stochastic blockmodels for directed graphs
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1987.10478385
– year: 1994
  ident: 10.1016/j.knosys.2019.06.024_b6
– start-page: 57
  year: 2018
  ident: 10.1016/j.knosys.2019.06.024_b4
  article-title: Recommending teammates with deep neural networks
– start-page: 1105
  year: 2016
  ident: 10.1016/j.knosys.2019.06.024_b9
  article-title: Asymmetric transitivity preserving graph embedding
– start-page: 701
  year: 2014
  ident: 10.1016/j.knosys.2019.06.024_b11
  article-title: Deepwalk: Online learning of social representations
– ident: 10.1016/j.knosys.2019.06.024_b22
– ident: 10.1016/j.knosys.2019.06.024_b24
– volume: 496
  start-page: 121
  year: 2018
  ident: 10.1016/j.knosys.2019.06.024_b31
  article-title: Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2017.12.092
– start-page: 1225
  year: 2016
  ident: 10.1016/j.knosys.2019.06.024_b19
  article-title: Structural deep network embedding
– volume: 415
  start-page: 20
  issue: 1
  year: 2006
  ident: 10.1016/j.knosys.2019.06.024_b39
  article-title: Fast low-rank modifications of the thin singular value decomposition
  publication-title: Linear Algebr. Appl.
  doi: 10.1016/j.laa.2005.07.021
– start-page: 38
  year: 2018
  ident: 10.1016/j.knosys.2019.06.024_b14
  article-title: Embedding networks with edge attributes
– start-page: 891
  year: 2015
  ident: 10.1016/j.knosys.2019.06.024_b12
  article-title: Grarep: Learning graph representations with global structural information
– start-page: 1067
  year: 2015
  ident: 10.1016/j.knosys.2019.06.024_b13
  article-title: Line: Large-scale information network embedding
– start-page: 1145
  year: 2016
  ident: 10.1016/j.knosys.2019.06.024_b20
  article-title: Deep neural networks for learning graph representations
– volume: 1
  start-page: 4
  issue: 1
  year: 2000
  ident: 10.1016/j.knosys.2019.06.024_b2
  article-title: Visualizing social networks
  publication-title: J. Soc. Struct.
– year: 2018
  ident: 10.1016/j.knosys.2019.06.024_b7
  article-title: Graph embedding techniques, applications, and performance: A survey
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.022
– ident: 10.1016/j.knosys.2019.06.024_b36
– start-page: 855
  year: 2016
  ident: 10.1016/j.knosys.2019.06.024_b8
  article-title: Node2vec: Scalable feature learning for networks
SSID ssj0002218
Score 2.6548734
Snippet Learning graph representations is a fundamental task aimed at capturing various properties of graphs in vector space. The most recent methods learn such...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104816
SubjectTerms Datasets
Dynamics
Efficacy
Embedding
Evolution
Graph embedding applications
Graph embedding techniques
Graph representations
Graphical representations
Graphs
Learning
Machine learning
Networks
Performance prediction
Predictions
Property
Python graph embedding methods GEM library
Recurrent
Stochastic models
Title dyngraph2vec: Capturing network dynamics using dynamic graph representation learning
URI https://dx.doi.org/10.1016/j.knosys.2019.06.024
https://www.proquest.com/docview/2330585971
Volume 187
WOSCitedRecordID wos000501653900021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6FlAMXdkShIB8QF2uQ14yHWxWlbFFAyEi5WbOZJqmcNE2icuSf82ZzkrIUDlys2M449rzP733z8haEXuiFDlhlgUWkejjLRYa5SnKc15JR1qMZU0bSQzIaFeMx_dTpfPe5MJsz0jTF5SVd_FdRwzEQtk6d_QdxtxeFA_AZhA5bEDts_0rw8ltjqlAnG6VvKuyzxcrmIjY25DuUtgv9Rbg2jgK3G5pRoaly6TOSGt9V4usuif3g_XBY20DpqkG35PyN9khYdgrUvHU3909PdfcuGwo0nazCz_PZbBsnxEDf25Sb5fl6AjZa7XkkkuiKR6JNlfHaaRufZP2OESaRqzKrrNYtCND8LKL7apnsKNb4l-reeh6mr2bNHB5VB-pRU43VpmXvV9cefaxOvgyHVTkYly8X51g3HtN_0LsuLDfQQUJyWnTRwfG7wfh9a86TxDiJ2_v2-ZcmSPDnH_4dv7li6Q19Ke-i227dERxbvNxDHdXcR3d8T4_ATeIDVO7C53XQgidw4Ak8eAIDHr8bmDHBPngCD56HqDwZlP232HXewAJ0-gonuZIFSVlMea4bmqV1wQumCwMxJQUXGRcRT2XBkziVtFa9WtUZz2IpI6Jykj5C3WbeqMcooEKxNO7xNM7qjDFgvzBWgpERRPCUykOU-umqhKtKr5ujnFU-_HBa2Umu9CRXOgozyQ4RbkctbFWWa75PvCQqxywtY6wASdeMPPKCq9xLDudTeIACluLxkz-ffopubV-QI9RdLdfqGbopNqvJxfK5Q9oPZXao6A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=dyngraph2vec%3A+Capturing+network+dynamics+using+dynamic+graph+representation+learning&rft.jtitle=Knowledge-based+systems&rft.au=Goyal%2C+Palash&rft.au=Chhetri%2C+Sujit+Rokka&rft.au=Canedo%2C+Arquimedes&rft.date=2020-01-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=187&rft.spage=1&rft_id=info:doi/10.1016%2Fj.knosys.2019.06.024&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon