Actuarial Risk Matrices: The Nearest Positive Semidefinite Matrix Problem
The manner in which a group of insurance risks are interrelated is commonly presented via a correlation matrix. Actuarial risk correlation matrices are often constructed using output from disparate modeling sources and can be subjectively adjusted, for example, increasing the estimated correlation b...
Uloženo v:
| Vydáno v: | North American actuarial journal Ročník 21; číslo 4; s. 552 - 564 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Routledge
02.10.2017
Taylor & Francis |
| ISSN: | 1092-0277, 2325-0453 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The manner in which a group of insurance risks are interrelated is commonly presented via a correlation matrix. Actuarial risk correlation matrices are often constructed using output from disparate modeling sources and can be subjectively adjusted, for example, increasing the estimated correlation between two risk sources to confer reserving prudence. Hence, while individual elements still obey the assumptions of correlation values, the overall matrix is often not mathematically valid (not positive semidefinite). This can prove problematic in using the matrix in statistical models. The first objective of this article is to review existing techniques that address the nearest positive semidefinite matrix problem in a very general setting. The chief approaches studied are Semidefinite Programming (SDP) and the Alternating Projections Method (APM). The second objective is to finesse the original problem specification to consider imposition of a block structure on the initial risk correlation matrix. This commonly employed technique identifies off-diagonal subsets of the matrix where values can or should be set equal to some constant. This may be due to similarity of the underlying risks and/or with the goal of increasing computational efficiency for processes involving large matrices. Implementation of further linear constraints of this nature requires adaptation of the standard SDP and APM algorithms. In addition, a new Shrinking Method is proposed to provide an alternative solution in the context of this increased complexity. "Nearness" is primarily considered in terms of two summary measures for differences between matrices: the Chebychev Norm (maximum element distance) and the Frobenius Norm (sum of squared element distances). Among the existing methods, adapted to function appropriately for actuarial risk matrices, APM is extremely efficient in producing solutions that are optimal in the Frobenius norm. An efficient algorithm that would return a positive semidefinite matrix that is optimal in Chebychev norm is currently unknown. However, APM is used to highlight the existence of matrices close to such an optimum and exploited, via the Shrinking Method, to find high-quality solutions. All methods are shown to work well both on artificial and real actuarial risk matrices provided under collaboration with Tokio Marine Kiln (TMK). Convergence speeds are calculated and compared and sample data and MATLAB code is provided. Ultimately the APM is identified as being superior in Frobenius distance and convergence speed. The Shrinking Method, building on the output of the APM algorithm, is demonstrated to provide excellent results at low computational cost for minimizing Chebychev distance. |
|---|---|
| AbstractList | The manner in which a group of insurance risks are interrelated is commonly presented via a correlation matrix. Actuarial risk correlation matrices are often constructed using output from disparate modeling sources and can be subjectively adjusted, for example, increasing the estimated correlation between two risk sources to confer reserving prudence. Hence, while individual elements still obey the assumptions of correlation values, the overall matrix is often not mathematically valid (not positive semidefinite). This can prove problematic in using the matrix in statistical models. The first objective of this article is to review existing techniques that address the nearest positive semidefinite matrix problem in a very general setting. The chief approaches studied are Semidefinite Programming (SDP) and the Alternating Projections Method (APM). The second objective is to finesse the original problem specification to consider imposition of a block structure on the initial risk correlation matrix. This commonly employed technique identifies off-diagonal subsets of the matrix where values can or should be set equal to some constant. This may be due to similarity of the underlying risks and/or with the goal of increasing computational efficiency for processes involving large matrices. Implementation of further linear constraints of this nature requires adaptation of the standard SDP and APM algorithms. In addition, a new Shrinking Method is proposed to provide an alternative solution in the context of this increased complexity. "Nearness" is primarily considered in terms of two summary measures for differences between matrices: the Chebychev Norm (maximum element distance) and the Frobenius Norm (sum of squared element distances). Among the existing methods, adapted to function appropriately for actuarial risk matrices, APM is extremely efficient in producing solutions that are optimal in the Frobenius norm. An efficient algorithm that would return a positive semidefinite matrix that is optimal in Chebychev norm is currently unknown. However, APM is used to highlight the existence of matrices close to such an optimum and exploited, via the Shrinking Method, to find high-quality solutions. All methods are shown to work well both on artificial and real actuarial risk matrices provided under collaboration with Tokio Marine Kiln (TMK). Convergence speeds are calculated and compared and sample data and MATLAB code is provided. Ultimately the APM is identified as being superior in Frobenius distance and convergence speed. The Shrinking Method, building on the output of the APM algorithm, is demonstrated to provide excellent results at low computational cost for minimizing Chebychev distance. |
| Author | Cutajar, Stefan Smigoc, Helena O'Hagan, Adrian |
| Author_xml | – sequence: 1 givenname: Stefan surname: Cutajar fullname: Cutajar, Stefan organization: Ascent Software, Luqa – sequence: 2 givenname: Helena surname: Smigoc fullname: Smigoc, Helena organization: School of Mathematics and Statistics, University College Dublin – sequence: 3 givenname: Adrian surname: O'Hagan fullname: O'Hagan, Adrian email: adrian.ohagan@ucd.ie organization: School of Mathematics and Statistics, University College Dublin |
| BackLink | http://www.econis.eu/PPNSET?PPN=1024433307$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften |
| BookMark | eNp9kNtKw0AQQBepYFv9BCE_kLq3JK2-WIqXQtWi9TlMNrO4mmRld730701IRfChT_NyzsxwRmTQ2AYJOWV0wuiUnjE645Rn2YRTlk2YYBnPxAEZcsGTmMpEDMiwY-IOOiIj718pZVwKNiTLuQof4AxU0aPxb9EdBGcU-vNo84LRPYJDH6K19SaYT4yesDYlatOYgD37Ha2dLSqsj8mhhsrjyW6OyfP11WZxG68ebpaL-SpWktIQs5koWDnTSmSgkLN0yspEai1hWjAoUq0LyXUGvGAppJoBR6UBFUVZIGgqxiTq96KyjfH5uzM1uG3OKJdSCEGzFrnoEeWs9w51rkyAYGwTHJiqRfMuXP4bLu_C5btwrZ38s_9O7Pcue8802roavqyryjzAtrJOO2hU-6zYv-IHefqGug |
| CitedBy_id | crossref_primary_10_3390_risks6020036 |
| Cites_doi | 10.1017/S0962492901000071 10.1080/01621459.1983.10477029 10.1023/A:1018363021404 10.1017/CBO9780511810817 10.1137/090776718 10.1137/1022058 10.1093/imanum/22.3.329 10.1098/rspl.1895.0041 10.1017/9780511811487 10.1137/0909059 10.1007/BF01582221 10.1080/01630569408816580 10.1080/10556789908805766 10.2307/1412159 |
| ContentType | Journal Article |
| Copyright | Copyright © 2017 Society of Actuaries 2017 |
| Copyright_xml | – notice: Copyright © 2017 Society of Actuaries 2017 |
| DBID | AAYXX CITATION OQ6 |
| DOI | 10.1080/10920277.2017.1317273 |
| DatabaseName | CrossRef ECONIS |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Business |
| EISSN | 2325-0453 |
| EndPage | 564 |
| ExternalDocumentID | 1024433307 10_1080_10920277_2017_1317273 1317273 |
| Genre | Article |
| GroupedDBID | .QK 0BK 0R~ 123 1VR 29N 2WC 4.4 7WY 8FL 8R4 8R5 96U AAHIA AAMFJ AAMIU AAPUL AAZMC ABCCY ABFIM ABJNI ABLIJ ABPEM ABTAI ABXUL ABXYU ACGFO ACGFS ACTIO ACTOA ADAHI ADCVX ADKVQ AECIN AEFOU AEISY AEKEX AEYOC AEZRU AFAZI AFRVT AGDLA AGMYJ AGRBW AHDZW AIJEM AIYEW AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG DGFLZ DKSSO E3Z EBS EJD E~B E~C G-F GTTXZ H13 HZ~ J9A K60 K6~ KYCEM M0C M4Z O9- P2P Q2X RNANH ROSJB RSYQP RWL RXW S-F STATR TAE TASJS TBQAZ TDBHL TEK TFH TFL TFW TNTFI TR2 TRJHH TUROJ U5U UT5 ~01 ~S~ AAYXX CITATION 8AO 8FW AAFVA ABGBO ABUWG ACEWE ADMHC ADYSH AFKRA AFUNZ AHSWU AOTUK AWPGZ BCKCY BENPR BEZIV BGEDN BPHCQ CCPQU DWQXO FRNLG GROUPED_ABI_INFORM_RESEARCH IPNFZ LJTGL ODZWD OQ6 PHGZT PQBIZ PQBZA PQQKQ PROAC RIG S0X |
| ID | FETCH-LOGICAL-c400t-193b1d9fc37ace21681d54ff4a8b1ab6ffb42f7a2b16a6f1a2ecfaec0e4beaf03 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423900300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1092-0277 |
| IngestDate | Sat Mar 08 17:03:29 EST 2025 Sat Nov 29 02:24:20 EST 2025 Tue Nov 18 21:25:37 EST 2025 Mon Oct 20 23:45:53 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-193b1d9fc37ace21681d54ff4a8b1ab6ffb42f7a2b16a6f1a2ecfaec0e4beaf03 |
| PageCount | 13 |
| ParticipantIDs | econis_primary_1024433307 crossref_primary_10_1080_10920277_2017_1317273 crossref_citationtrail_10_1080_10920277_2017_1317273 informaworld_taylorfrancis_310_1080_10920277_2017_1317273 |
| PublicationCentury | 2000 |
| PublicationDate | 10/2/2017 |
| PublicationDateYYYYMMDD | 2017-10-02 |
| PublicationDate_xml | – month: 10 year: 2017 text: 10/2/2017 day: 02 |
| PublicationDecade | 2010 |
| PublicationTitle | North American actuarial journal |
| PublicationYear | 2017 |
| Publisher | Routledge Taylor & Francis |
| Publisher_xml | – name: Routledge – name: Taylor & Francis |
| References | Deutsch F. (cit0008) 1995; 454 cit0011 cit0022 Mishra S. K. (cit0021) 2007 cit0010 (cit0001) 2015 Von Neumann J. (cit0027) 1950 Luenberger D. G. (cit0019) 1969 Golub G. (cit0012) 1996 Boyle J. P. (cit0003) 1986; 37 Cantrell C. D. (cit0006) 2000 cit0009 cit0017 cit0007 cit0018 Shih-Ping H. (cit0023) 1988; 40 Burtschell X. (cit0004) 2005 cit0026 cit0005 cit0002 cit0013 cit0024 cit0025 |
| References_xml | – year: 2005 ident: cit0004 publication-title: ISFA Actuarial School and BNP Parisbas – ident: cit0026 doi: 10.1017/S0962492901000071 – volume: 454 start-page: 107 year: 1995 ident: cit0008 publication-title: NATO ASI Series C Mathematical and Physical Sciences-Advanced Study Institute – volume-title: The MOSEK Optimization Toolbox for MATLAB Manual. Version 7.1 (Revision 28). year: 2015 ident: cit0001 – volume: 37 start-page: 4 issue: 28 year: 1986 ident: cit0003 publication-title: Lecture Notes in Statistics – ident: cit0010 doi: 10.1080/01621459.1983.10477029 – ident: cit0018 doi: 10.1023/A:1018363021404 – ident: cit0017 doi: 10.1017/CBO9780511810817 – ident: cit0002 doi: 10.1137/090776718 – year: 1950 ident: cit0027 publication-title: Functional Operators: Measures and Integrals (Vol. 1) – ident: cit0011 doi: 10.1137/1022058 – ident: cit0013 doi: 10.1093/imanum/22.3.329 – ident: cit0022 doi: 10.1098/rspl.1895.0041 – volume: 40 start-page: 1 year: 1988 ident: cit0023 publication-title: Mathematical Programming – volume-title: Modern Mathematical Methods for Physicists and Engineers year: 2000 ident: cit0006 doi: 10.1017/9780511811487 – ident: cit0005 doi: 10.1137/0909059 – year: 2007 ident: cit0021 publication-title: Available at SSRN 980403 – ident: cit0007 doi: 10.1007/BF01582221 – ident: cit0009 doi: 10.1080/01630569408816580 – ident: cit0025 doi: 10.1080/10556789908805766 – volume-title: Matrix Computations year: 1996 ident: cit0012 – ident: cit0024 doi: 10.2307/1412159 – volume-title: Optimization by Vector Space Methods year: 1969 ident: cit0019 |
| SSID | ssj0012431 |
| Score | 2.0908837 |
| SecondaryResourceType | review_article |
| Snippet | The manner in which a group of insurance risks are interrelated is commonly presented via a correlation matrix. Actuarial risk correlation matrices are often... |
| SourceID | econis crossref informaworld |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 552 |
| Title | Actuarial Risk Matrices: The Nearest Positive Semidefinite Matrix Problem |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10920277.2017.1317273 http://www.econis.eu/PPNSET?PPN=1024433307 |
| Volume | 21 |
| WOSCitedRecordID | wos000423900300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 2325-0453 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012431 issn: 1092-0277 databaseCode: TFW dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yhvrix1SsX-TB1441ydrGtyEOfXAMnbi3kqQXKOqUpQ7_fJO0lSmoD_pUCrlQLpfc_Zq73yF0GufEQi6Shklf5yHjEQ05UzwUQCGxgAhYnvtmE8lolE6nfFxnE5o6rdJhaF0RRfiz2m1uIU2TEWef3EH2xCVmJd2Ieh9sT2Hr-t3WnAzvP-4RCPMdCZ2Ev61sani-m-WTd2o7SFqYLySmS-5nuPkPH76FNurYEw8qY9lGKzDroNUm9b2D1poqZbODrgaussRZJ74pzAO-9lT-YM6wNSw8csy3psRjn_K1AHwLT0UOunARbDX2DY-rXjW76G54MTm_DOu2C6GyG7oMbUgno5xrRROhgESxDWn7TGsmUhkJGWstGdGJIDKKRawjQUBpAaoHTILQPbqHWrPnGewjrLVFSDFVUtmoRUhIpU77grOYQGqhGQkQa9SdqZqT3LXGeMyimrq0UVnmVJbVKgtQ90PspSLl-E0gqNZyabiNayi1J1yA-PLyZqX_U6KrtiYZ_XHegz_IHqJ19-oTA8kRapXzVzhGbbUoCzM_8Wb8DqIB65A |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDLZgTIwLjwFiPHPgWkSTrA9uE2IaAiYEQ-xWJakjVcBAtCB-PknaooEEHODUQ-OocpzYX2N_BtgPUmogF428sKtTj8c-82KuYk8gw9AAIuRp6ppNhMNhNB7H07UwNq3SYmhdEkW4s9pubvszuk6JM8_YYvbQZmaFBz5zTngW5rrG11r-_FH_9uMmgXLXk9CKuPvKuornu2k--aemBaVZ_oXGdMoB9Zf-49OXYbEKP0mvtJcVmMFJG-br7Pc2tOpC5XwVTnu2uMQaKLnK8jty4dj8MT8ixrbI0JLf5gW5dFlfr0iu8SFLUWc2iC3HvpHLsl3NGtz0T0bHA6_qvOAps6cLz0R10k9jrVgoFFI_MFFtl2vNRSR9IQOtJac6FFT6gQi0LygqLVAdIpco9CFbh8bkcYIbQLQ2IClgSioTuAiJkdRRV8Q8oBgZdEY7wGt9J6qiJbfdMe4Tv2IvrVWWWJUllco6cPAh9lTycvwm0CkXc2q4CW0YM4dcB-Lp9U0K97NEl51NEvbjvJt_kN2D1mB0cZ6cnw7PtmDBvnJ5gnQbGsXzC-5AU70WWf6862z6HaHS77o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH5igLpdBmOgdYPhw66pGtvNj90QUFExqooVwS2ynfekiK1UTYb25892kqogDQ5wyiF-VvT8bL8v_vw9gG9Rzi3k4kkQDygPZBqKIJUmDRQKjC0gQpnnvthEPB4nNzfppGETlg2t0mFoqoUi_FrtJvc8p5YRZ5-pg-yxI2bFvVD4PfgNbNjUOXJBPh1eLw8SuPQlCZ2JP65sL_H8r5sH29Omw6RF-UjFdGX_GW69wpdvw_sm-WRHdbR8gDWc7UCn5b7vwNv2mnL5EUZH7mqJC092WZS37MJr-WP5ndnIYmMnfVtWbOI5X_fIfuLvIkcqXApbt_3LJnWxml24Gp5Oj8-Cpu5CYOyMrgKb0-kwT8mIWBnkYWRz2oEkkirRodIRkZacYsV1GKmIQsXRkELTR6lRUV_swfrsboafgBFZiBQJo41NW5TGRFMyUKmMOCYWm_EuyNbdmWlEyV1tjF9Z2GiXti7LnMuyxmVd6C3N5rUqx3MG3XosV5rbxEYIu8R1IV0d3qzyv0qormuSiSf7_fwC20PoTE6G2Y_R-PwLvHNvPEmQ78N6tfiDB7Bp7quiXHz1Ef0Pz83ubA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Actuarial+Risk+Matrices%3A+The+Nearest+Positive+Semidefinite+Matrix+Problem&rft.jtitle=North+American+actuarial+journal&rft.au=Cutajar%2C+Stefan&rft.au=Smigoc%2C+Helena&rft.au=O%27Hagan%2C+Adrian&rft.date=2017-10-02&rft.pub=Routledge&rft.issn=1092-0277&rft.eissn=2325-0453&rft.volume=21&rft.issue=4&rft.spage=552&rft.epage=564&rft_id=info:doi/10.1080%2F10920277.2017.1317273&rft.externalDocID=1317273 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1092-0277&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1092-0277&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1092-0277&client=summon |