A Comprehensive Review of Deep-Learning Applications to Power Quality Analysis

Power quality (PQ) monitoring and detection has emerged as an essential requirement due to the proliferation of sensitive power electronic interfacing devices, electric vehicle charging stations, energy storage devices, and distributed generation energy sources in the recent smart grid and microgrid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 16; H. 11; S. 4406
Hauptverfasser: Samanta, Indu Sekhar, Panda, Subhasis, Rout, Pravat Kumar, Bajaj, Mohit, Piecha, Marian, Blazek, Vojtech, Prokop, Lukas
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 30.05.2023
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Power quality (PQ) monitoring and detection has emerged as an essential requirement due to the proliferation of sensitive power electronic interfacing devices, electric vehicle charging stations, energy storage devices, and distributed generation energy sources in the recent smart grid and microgrid scenarios. Even though, to date, the traditional approaches play a vital role in providing a solution to the above issue, the limitations, such as the requirement of significant human effort and not being scalable for large-scale power systems, force us to think of alternative approaches. Looking at a better perspective, deep-learning (DL) has gained the main attraction for various researchers due to its inherent capability to classify the data by extracting dominating and prominent features. This manuscript attempts to provide a comprehensive review of PQ detection and classification based on DL approaches to explore its potential, efficiency, and consistency to produce results accurately. In addition, this state-of-the-art review offers an overview of the novel concepts and the step-by-step method for detecting and classifying PQ events. This review has been presented categorically with DL approaches, such as convolutional neural networks (CNNs), autoencoders, and recurrent neural networks (RNNs), to analyze PQ data. This paper also highlights the challenges and limitations of using DL for PQ analysis, and identifies potential areas for future research. This review concludes that DL algorithms have shown promising PQ detection and classification results, and could replace traditional methods.
AbstractList Power quality (PQ) monitoring and detection has emerged as an essential requirement due to the proliferation of sensitive power electronic interfacing devices, electric vehicle charging stations, energy storage devices, and distributed generation energy sources in the recent smart grid and microgrid scenarios. Even though, to date, the traditional approaches play a vital role in providing a solution to the above issue, the limitations, such as the requirement of significant human effort and not being scalable for large-scale power systems, force us to think of alternative approaches. Looking at a better perspective, deep-learning (DL) has gained the main attraction for various researchers due to its inherent capability to classify the data by extracting dominating and prominent features. This manuscript attempts to provide a comprehensive review of PQ detection and classification based on DL approaches to explore its potential, efficiency, and consistency to produce results accurately. In addition, this state-of-the-art review offers an overview of the novel concepts and the step-by-step method for detecting and classifying PQ events. This review has been presented categorically with DL approaches, such as convolutional neural networks (CNNs), autoencoders, and recurrent neural networks (RNNs), to analyze PQ data. This paper also highlights the challenges and limitations of using DL for PQ analysis, and identifies potential areas for future research. This review concludes that DL algorithms have shown promising PQ detection and classification results, and could replace traditional methods.
Audience Academic
Author Rout, Pravat Kumar
Piecha, Marian
Samanta, Indu Sekhar
Prokop, Lukas
Blazek, Vojtech
Panda, Subhasis
Bajaj, Mohit
Author_xml – sequence: 1
  givenname: Indu Sekhar
  surname: Samanta
  fullname: Samanta, Indu Sekhar
– sequence: 2
  givenname: Subhasis
  orcidid: 0000-0002-9753-7255
  surname: Panda
  fullname: Panda, Subhasis
– sequence: 3
  givenname: Pravat Kumar
  surname: Rout
  fullname: Rout, Pravat Kumar
– sequence: 4
  givenname: Mohit
  orcidid: 0000-0002-1086-457X
  surname: Bajaj
  fullname: Bajaj, Mohit
– sequence: 5
  givenname: Marian
  surname: Piecha
  fullname: Piecha, Marian
– sequence: 6
  givenname: Vojtech
  orcidid: 0000-0003-0508-8518
  surname: Blazek
  fullname: Blazek, Vojtech
– sequence: 7
  givenname: Lukas
  orcidid: 0000-0003-0495-5499
  surname: Prokop
  fullname: Prokop, Lukas
BookMark eNptUV1rHCEUlZJAkzQv_QVC3wqT6ujo-Dhs8wVL24T0WRznunGZ1YnOJuy_r82GJJR6Qa-Hc44f5xgdhBgAoc-UnDGmyDcIVFDKOREf0BFVSlSUSHbwrv-ITnNekzIYo4yxI_Sjw4u4mRLcQ8j-EfAtPHp4wtHh7wBTtQSTgg8r3E3T6K2ZfQwZzxH_ik-Q8M3WjH7e4S6YcZd9_oQOnRkznL6sJ-j3xfnd4qpa_ry8XnTLynJC5ooK1kjLWzIY3oMYhBictURS6aAVsheiGUD1UkDDWtWWveuZJcwK0statOwEXe99h2jWekp-Y9JOR-P1MxDTSps0ezuCNgMDUjsngfdcMGOIBNHUBQEg0DfF68vea0rxYQt51uu4TeVBWddtzZQqsyqssz1rZYqpDy7OydhSA2y8LUE4X_BONjWXXChRBF_3Aptizgnc6zUp0X_z0m95FTL5h2z9_PzZ5RQ__k_yBzj6mC0
CitedBy_id crossref_primary_10_1016_j_asej_2025_103677
crossref_primary_10_3390_s24082474
crossref_primary_10_3390_s24175807
crossref_primary_10_1016_j_jwpe_2025_107263
crossref_primary_10_1016_j_rineng_2024_103873
crossref_primary_10_1016_j_epsr_2024_110560
crossref_primary_10_3390_en17102260
crossref_primary_10_1038_s41598_025_11116_5
crossref_primary_10_1016_j_asoc_2025_113378
crossref_primary_10_1049_gtd2_70062
crossref_primary_10_1038_s41598_024_53792_9
crossref_primary_10_3390_en17020516
crossref_primary_10_3390_s25041256
crossref_primary_10_1038_s41598_025_86126_4
crossref_primary_10_1016_j_heliyon_2024_e37975
crossref_primary_10_3390_math12060839
crossref_primary_10_3390_electronics13101973
crossref_primary_10_1109_ACCESS_2024_3447156
crossref_primary_10_1109_ACCESS_2024_3477729
crossref_primary_10_1007_s00202_025_03149_w
crossref_primary_10_3390_electricity4040022
crossref_primary_10_1016_j_measurement_2024_116243
crossref_primary_10_1109_ACCESS_2025_3528296
crossref_primary_10_1007_s10462_024_10959_0
crossref_primary_10_3390_en17194961
crossref_primary_10_1016_j_procir_2024_10_073
crossref_primary_10_1109_ACCESS_2024_3416684
Cites_doi 10.3390/en14196319
10.1016/j.measurement.2019.107393
10.1109/TAPENERGY.2017.8397249
10.1145/3422622
10.1109/DISCOVER47552.2019.9008009
10.1109/EnergyEconomics.2015.7235071
10.3390/su11040987
10.1109/TII.2019.2910416
10.1109/ACCESS.2020.3014732
10.1080/02564602.2016.1196620
10.3390/s22207958
10.1049/iet-gtd.2009.0498
10.3390/app11167637
10.1016/j.epsr.2022.108633
10.1109/ACCESS.2022.3233767
10.3233/JIFS-191274
10.1016/j.measurement.2020.108097
10.1109/TII.2019.2895054
10.1049/gtd2.12364
10.1109/TIM.2021.3054673
10.1109/TPEL.2020.3023770
10.1109/CISP.2009.5301526
10.1002/2050-7038.12010
10.1016/j.isatra.2019.07.001
10.1016/j.epsr.2022.108887
10.1007/s00202-020-01066-8
10.1007/s00202-022-01701-6
10.1109/TIM.2022.3214284
10.1007/s42835-020-00612-5
10.1109/TPWRS.2022.3153591
10.1016/j.epsr.2021.107682
10.1109/SmartGridComm.2018.8587510
10.1109/TSG.2017.2686012
10.1016/j.rser.2014.08.070
10.1002/er.7671
10.1109/JSEN.2021.3071935
10.1016/S0893-6080(02)00083-7
10.1186/s41601-023-00277-y
10.1016/j.neucom.2012.11.050
10.3390/en12010043
10.1049/gtd2.12122
10.1002/2050-7038.12008
10.1088/1674-1056/abd160
10.1016/j.measurement.2020.108691
10.1109/TIM.2022.3197801
10.1016/j.egyr.2022.02.300
10.1109/TII.2019.2920689
10.3390/app10196755
10.1016/j.apenergy.2021.118454
10.1016/j.aci.2018.01.004
10.3390/en14102839
10.1109/ACCESS.2019.2898211
10.1016/j.knosys.2014.08.013
10.1109/CoDIT.2019.8820557
10.1109/ACCESS.2019.2905015
10.1109/ICHQP.2018.8378893
10.1016/B978-0-12-815480-9.00015-3
10.5220/0010347103730380
10.3390/en12071280
10.1109/TSG.2021.3107908
10.1007/s10462-022-10213-5
10.1016/j.epsr.2019.105876
10.1080/15325008.2019.1666178
10.1016/j.jweia.2021.104529
10.1007/s42835-023-01423-0
10.1109/PRIA.2017.7983049
10.1016/j.knosys.2020.105596
10.3390/app12178914
10.1007/s42835-022-01177-1
10.1155/2022/7020979
10.1109/ACCESS.2019.2937193
10.3390/en16062685
10.1109/IJCNN.2010.5596468
10.1016/j.epsr.2021.107042
10.1109/SEST48500.2020.9203082
10.1145/3578938
10.1162/neco.1997.9.8.1735
10.3390/en15186650
10.1007/s11042-018-6463-x
10.1016/j.rser.2015.11.064
10.1504/IJSCC.2023.127482
10.3390/en16083431
10.1111/1541-4337.12773
10.1016/j.epsr.2006.04.007
10.1016/j.measurement.2021.110460
10.1109/MSP.2017.2765202
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en16114406
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_ad3e02ff7e4b463aa07e6522ffee0eb5
A752474696
10_3390_en16114406
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c400t-16357c480da4be6d66dfcc0717fe867b665de9b76e53898b66fb3c03c60b72683
IEDL.DBID PIMPY
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005216300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:52:51 EDT 2025
Mon Jun 30 11:13:26 EDT 2025
Tue Nov 04 17:41:37 EST 2025
Sat Nov 29 07:15:22 EST 2025
Tue Nov 18 21:56:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-16357c480da4be6d66dfcc0717fe867b665de9b76e53898b66fb3c03c60b72683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1086-457X
0000-0002-9753-7255
0000-0003-0508-8518
0000-0003-0495-5499
OpenAccessLink https://www.proquest.com/publiccontent/docview/2823992829?pq-origsite=%requestingapplication%
PQID 2823992829
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_ad3e02ff7e4b463aa07e6522ffee0eb5
proquest_journals_2823992829
gale_infotracacademiconefile_A752474696
crossref_primary_10_3390_en16114406
crossref_citationtrail_10_3390_en16114406
PublicationCentury 2000
PublicationDate 2023-05-30
PublicationDateYYYYMMDD 2023-05-30
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-30
  day: 30
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_94
ref_92
ref_90
ref_14
Rodriguez (ref_68) 2021; 16
ref_99
ref_95
Nandi (ref_54) 2021; 21
ref_18
ref_16
Efe (ref_67) 2021; 31
Sahani (ref_15) 2020; 36
Thung (ref_49) 2018; 77
Panda (ref_51) 2022; 8
Salles (ref_82) 2022; 71
Galvan (ref_84) 2021; 20
ref_25
ref_24
ref_21
ref_28
ref_27
Liu (ref_52) 2019; 47
ref_72
ref_70
ref_78
Yang (ref_30) 2022; 189
Chawda (ref_38) 2020; 8
ref_74
Abdelsalam (ref_65) 2021; 15
Wen (ref_19) 2019; 15
Wang (ref_61) 2020; 96
Panda (ref_98) 2022; 46
Ravindran (ref_81) 2021; 12
Rizk (ref_55) 2019; 15
Sekar (ref_58) 2022; 2022
Fiore (ref_96) 2013; 122
Xi (ref_100) 2022; 16
Skydt (ref_71) 2021; 170
Sahani (ref_76) 2021; 70
ref_87
ref_86
Goodfellow (ref_39) 2020; 63
Spassiani (ref_89) 2021; 210
Menghani (ref_9) 2023; 55
ref_50
Kow (ref_88) 2016; 56
ref_57
Ortiz (ref_91) 2014; 71
ref_53
Ramalingappa (ref_13) 2022; 12
Cai (ref_60) 2019; 7
Mahela (ref_69) 2015; 41
Qiu (ref_17) 2019; 16
Cong (ref_10) 2023; 56
Ge (ref_80) 2021; 194
Zhiyi (ref_75) 2020; 152
ref_66
ref_64
ref_63
Caicedo (ref_2) 2023; 8
Ge (ref_77) 2020; 70
Mohammadi (ref_46) 2022; 212
Baldi (ref_29) 2012; 27
Shi (ref_31) 2019; 7
Cheng (ref_42) 2022; 37
Ekici (ref_12) 2021; 103
ref_36
ref_34
Sengupta (ref_56) 2020; 194
ref_33
Jian (ref_44) 2021; 40
Smith (ref_83) 2002; 15
Liu (ref_35) 2019; 29
ref_37
Dash (ref_79) 2022; 309
Bollen (ref_7) 2023; 214
Topaloglu (ref_8) 2023; 18
Bentley (ref_85) 2010; 4
Ai (ref_22) 2007; 77
Deng (ref_59) 2019; 15
Chiam (ref_73) 2023; 14
Qiu (ref_32) 2019; 174
Hochreiter (ref_62) 1997; 9
Creswell (ref_40) 2018; 35
Shi (ref_20) 2017; 9
Liu (ref_11) 2023; 11
ref_43
Decelle (ref_93) 2021; 30
ref_1
ref_3
Nagata (ref_26) 2020; 164
ref_48
Mishra (ref_23) 2019; 29
Ma (ref_47) 2017; 34
Gao (ref_97) 2022; 204
ref_5
ref_4
Pan (ref_41) 2019; 7
ref_6
Cui (ref_45) 2022; 71
References_xml – ident: ref_4
  doi: 10.3390/en14196319
– volume: 152
  start-page: 107393
  year: 2020
  ident: ref_75
  article-title: Transfer fault diagnosis of bearing installed in different machines using enhanced deep auto-encoder
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107393
– ident: ref_14
  doi: 10.1109/TAPENERGY.2017.8397249
– volume: 63
  start-page: 139
  year: 2020
  ident: ref_39
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– ident: ref_70
  doi: 10.1109/DISCOVER47552.2019.9008009
– ident: ref_53
  doi: 10.1109/EnergyEconomics.2015.7235071
– ident: ref_63
  doi: 10.3390/su11040987
– volume: 15
  start-page: 5266
  year: 2019
  ident: ref_19
  article-title: Real-time identification of power fluctuations based on LSTM recurrent neural network: A case study on Singapore power system
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2910416
– ident: ref_94
– volume: 8
  start-page: 146807
  year: 2020
  ident: ref_38
  article-title: Comprehensive review on detection and classification of power quality disturbances in utility grid with renewable energy penetration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3014732
– volume: 34
  start-page: 408
  year: 2017
  ident: ref_47
  article-title: Classification of power quality disturbances via deep learning
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2016.1196620
– ident: ref_6
  doi: 10.3390/s22207958
– volume: 4
  start-page: 1188
  year: 2010
  ident: ref_85
  article-title: Power quality disturbance source identification using self-organising maps
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2009.0498
– ident: ref_27
– ident: ref_34
  doi: 10.3390/app11167637
– volume: 212
  start-page: 108633
  year: 2022
  ident: ref_46
  article-title: A protection scheme based on conditional generative adversarial network and convolutional classifier for high impedance fault detection in distribution networks
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108633
– volume: 11
  start-page: 890
  year: 2023
  ident: ref_11
  article-title: Classification of Power Quality Disturbance Using Segmented and Modified S-Transform and DCNN-MSVM Hybrid Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3233767
– volume: 40
  start-page: 3875
  year: 2021
  ident: ref_44
  article-title: A novel semi-supervised method for classification of power quality disturbance using generative adversarial network
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-191274
– volume: 164
  start-page: 108097
  year: 2020
  ident: ref_26
  article-title: Real-time voltage sag detection and classification for power quality diagnostics
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108097
– volume: 15
  start-page: 4481
  year: 2019
  ident: ref_59
  article-title: A sequence-to-sequence deep learning architecture based on bidirectional GRU for type recognition and time location of combined power quality disturbance
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2895054
– volume: 16
  start-page: 1552
  year: 2022
  ident: ref_100
  article-title: Type identification and time location of multiple power quality disturbances based on KF-ML-aided DBN
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.12364
– volume: 70
  start-page: 9001912
  year: 2021
  ident: ref_76
  article-title: Deep convolutional stack autoencoder of process adaptive VMD data with robust multikernel RVFLN for power quality events recognition
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3054673
– volume: 36
  start-page: 4006
  year: 2020
  ident: ref_15
  article-title: FPGA-based deep convolutional neural network of process adaptive VMD data with online sequential RVFLN for power quality events recognition
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2020.3023770
– ident: ref_87
  doi: 10.1109/CISP.2009.5301526
– volume: 29
  start-page: e12010
  year: 2019
  ident: ref_35
  article-title: Classification of multiple power quality events via compressed deep learning
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12010
– volume: 96
  start-page: 457
  year: 2020
  ident: ref_61
  article-title: A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2019.07.001
– volume: 70
  start-page: 2501110
  year: 2020
  ident: ref_77
  article-title: Deep feature clustering for seeking patterns in daily harmonic variations
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 214
  start-page: 108887
  year: 2023
  ident: ref_7
  article-title: Deep learning for power quality
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108887
– volume: 103
  start-page: 67
  year: 2021
  ident: ref_12
  article-title: Power quality event classification using optimized Bayesian convolutional neural networks
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-020-01066-8
– ident: ref_25
  doi: 10.1007/s00202-022-01701-6
– ident: ref_86
– volume: 71
  start-page: 2519912
  year: 2022
  ident: ref_45
  article-title: Detection and Classification of Multiple Power Quality Disturbances Using Stockwell Transform and Deep Learning
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3214284
– volume: 16
  start-page: 249
  year: 2021
  ident: ref_68
  article-title: A classification method for power-quality disturbances using Hilbert–Huang transform and LSTM recurrent neural networks
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-020-00612-5
– ident: ref_92
– volume: 37
  start-page: 4807
  year: 2022
  ident: ref_42
  article-title: Online power system event detection via bidirectional generative adversarial networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2022.3153591
– volume: 204
  start-page: 107682
  year: 2022
  ident: ref_97
  article-title: Power quality disturbance classification under noisy conditions using adaptive wavelet threshold and DBN-ELM hybrid model
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107682
– ident: ref_21
  doi: 10.1109/SmartGridComm.2018.8587510
– volume: 9
  start-page: 5271
  year: 2017
  ident: ref_20
  article-title: Deep learning for household load forecasting—A novel pooling deep RNN
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2686012
– volume: 41
  start-page: 495
  year: 2015
  ident: ref_69
  article-title: A critical review of detection and classification of power quality events
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.08.070
– ident: ref_64
– volume: 46
  start-page: 7021
  year: 2022
  ident: ref_98
  article-title: A conceptual review on transformation of micro-grid to virtual power plant: Issues, modeling, solutions, and future prospects
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7671
– volume: 21
  start-page: 13695
  year: 2021
  ident: ref_54
  article-title: Hyperbolic window S-transform aided deep neural network model-based power quality monitoring framework in electrical power system
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3071935
– volume: 15
  start-page: 1107
  year: 2002
  ident: ref_83
  article-title: Applications of the self-organising map to reinforcement learning
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(02)00083-7
– volume: 8
  start-page: 3
  year: 2023
  ident: ref_2
  article-title: A systematic review of real-time detection and classification of power quality disturbances
  publication-title: Prot. Control Mod. Power Syst.
  doi: 10.1186/s41601-023-00277-y
– ident: ref_78
– volume: 27
  start-page: 37
  year: 2012
  ident: ref_29
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: PMLR
– volume: 122
  start-page: 13
  year: 2013
  ident: ref_96
  article-title: Network anomaly detection with the restricted Boltzmann machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.050
– ident: ref_57
  doi: 10.3390/en12010043
– volume: 15
  start-page: 1626
  year: 2021
  ident: ref_65
  article-title: Categorisation of power quality problems using long short-term memory networks
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/gtd2.12122
– volume: 29
  start-page: e12008
  year: 2019
  ident: ref_23
  article-title: Power quality disturbance detection and classification using signal processing and soft computing techniques: A comprehensive review
  publication-title: Int. Trans. Electr. Energy Syst.
  doi: 10.1002/2050-7038.12008
– ident: ref_90
– volume: 30
  start-page: 040202
  year: 2021
  ident: ref_93
  article-title: Restricted Boltzmann machine: Recent advances and mean-field theory
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/abd160
– volume: 170
  start-page: 108691
  year: 2021
  ident: ref_71
  article-title: A probabilistic sequence classification approach for early fault prediction in distribution grids using long short-term memory neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108691
– volume: 71
  start-page: 2516211
  year: 2022
  ident: ref_82
  article-title: Analytics of waveform distortion variations in railway pantograph measurements by deep learning
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3197801
– volume: 8
  start-page: 3727
  year: 2022
  ident: ref_51
  article-title: Residential Demand Side Management model, optimization and future perspective: A review
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.02.300
– volume: 16
  start-page: 3233
  year: 2019
  ident: ref_17
  article-title: An automatic identification framework for complex power quality disturbances based on multifusion convolutional neural network
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2920689
– ident: ref_24
  doi: 10.3390/app10196755
– volume: 309
  start-page: 118454
  year: 2022
  ident: ref_79
  article-title: Multiple power quality disturbances analysis in photovoltaic integrated direct current microgrid using adaptive morphological filter with deep learning algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118454
– volume: 15
  start-page: 81
  year: 2019
  ident: ref_55
  article-title: Deep belief networks and cortical algorithms: A comparative study for supervised classification
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.01.004
– ident: ref_36
  doi: 10.3390/en14102839
– volume: 7
  start-page: 20961
  year: 2019
  ident: ref_31
  article-title: An independent component analysis classification for complex power quality disturbances with sparse auto encoder features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898211
– volume: 71
  start-page: 322
  year: 2014
  ident: ref_91
  article-title: Feature selection by multi-objective optimisation: Application to network anomaly detection by hierarchical self-organising maps
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2014.08.013
– ident: ref_28
  doi: 10.1109/CoDIT.2019.8820557
– volume: 7
  start-page: 36322
  year: 2019
  ident: ref_41
  article-title: Recent progress on generative adversarial networks (GANs): A survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905015
– ident: ref_72
  doi: 10.1109/ICHQP.2018.8378893
– ident: ref_48
  doi: 10.1016/B978-0-12-815480-9.00015-3
– ident: ref_66
– ident: ref_33
  doi: 10.5220/0010347103730380
– ident: ref_16
  doi: 10.3390/en12071280
– volume: 12
  start-page: 22
  year: 2022
  ident: ref_13
  article-title: Power quality event classification using complex wavelets phasor models and customized convolution neural network
  publication-title: Int. J. Electr. Comput. Eng. IJECE
– volume: 12
  start-page: 5444
  year: 2021
  ident: ref_81
  article-title: Deep learning method with manual post-processing for identification of spectral patterns of waveform distortion in PV installations
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3107908
– volume: 56
  start-page: 1905
  year: 2023
  ident: ref_10
  article-title: A review of convolutional neural network architectures and their optimizations
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10213-5
– volume: 174
  start-page: 105876
  year: 2019
  ident: ref_32
  article-title: Power quality disturbances recognition using modified s transform and parallel stack sparse auto-encoder
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.105876
– volume: 47
  start-page: 1332
  year: 2019
  ident: ref_52
  article-title: Signal processing and deep learning techniques for power quality events monitoring and classification
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325008.2019.1666178
– volume: 210
  start-page: 104529
  year: 2021
  ident: ref_89
  article-title: Application of Self-organizing Maps to classify the meteorological origin of wind gusts in Australia
  publication-title: J. Wind. Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2021.104529
– ident: ref_95
  doi: 10.1007/s42835-023-01423-0
– ident: ref_50
  doi: 10.1109/PRIA.2017.7983049
– volume: 194
  start-page: 105596
  year: 2020
  ident: ref_56
  article-title: A review of deep learning with special emphasis on architectures, applications and recent trends
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2020.105596
– ident: ref_43
  doi: 10.3390/app12178914
– volume: 18
  start-page: 77
  year: 2023
  ident: ref_8
  article-title: Deep learning based a new approach for power quality disturbances classification in power transmission system
  publication-title: J. Electr. Eng. Technol.
  doi: 10.1007/s42835-022-01177-1
– ident: ref_18
– volume: 2022
  start-page: 7020979
  year: 2022
  ident: ref_58
  article-title: An improved power quality disturbance detection using deep learning approach
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/7020979
– volume: 7
  start-page: 119099
  year: 2019
  ident: ref_60
  article-title: Classification of power quality disturbances using wigner-ville distribution and deep convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937193
– ident: ref_1
  doi: 10.3390/en16062685
– ident: ref_74
  doi: 10.1109/IJCNN.2010.5596468
– volume: 194
  start-page: 107042
  year: 2021
  ident: ref_80
  article-title: Unsupervised deep learning and analysis of harmonic variation patterns using big data from multiple locations
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2021.107042
– ident: ref_37
  doi: 10.1109/SEST48500.2020.9203082
– volume: 55
  start-page: 1
  year: 2023
  ident: ref_9
  article-title: Efficient deep learning: A survey on making deep learning models smaller, faster, and better
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3578938
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_62
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 31
  start-page: e13204
  year: 2021
  ident: ref_67
  article-title: CNN/Bi-LSTM-based deep learning algorithm for classification of power quality disturbances by using spectrogram images
  publication-title: Int. Trans. Electr. Energy Syst.
– ident: ref_3
  doi: 10.3390/en15186650
– volume: 77
  start-page: 29705
  year: 2018
  ident: ref_49
  article-title: A brief review on multi-task learning
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6463-x
– volume: 56
  start-page: 334
  year: 2016
  ident: ref_88
  article-title: A review on performance of artificial intelligence and conventional method in mitigating PV grid-tied related power quality events
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.064
– volume: 14
  start-page: 22
  year: 2023
  ident: ref_73
  article-title: Global attention-based LSTM for noisy power quality disturbance classification
  publication-title: Int. J. Syst. Control. Commun.
  doi: 10.1504/IJSCC.2023.127482
– ident: ref_5
  doi: 10.3390/en16083431
– volume: 20
  start-page: 3136
  year: 2021
  ident: ref_84
  article-title: An overview of research of essential oils by self-organizing maps: A novel approach for meta-analysis study
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12773
– volume: 77
  start-page: 462
  year: 2007
  ident: ref_22
  article-title: Adaline and its application in power quality disturbances detection and frequency tracking
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2006.04.007
– volume: 189
  start-page: 110460
  year: 2022
  ident: ref_30
  article-title: Autoencoder-based representation learning and its application in intelligent fault diagnosis: A review
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110460
– volume: 35
  start-page: 53
  year: 2018
  ident: ref_40
  article-title: Generative adversarial networks: An overview
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2765202
– ident: ref_99
SSID ssj0000331333
Score 2.5040832
SecondaryResourceType review_article
Snippet Power quality (PQ) monitoring and detection has emerged as an essential requirement due to the proliferation of sensitive power electronic interfacing devices,...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4406
SubjectTerms Accuracy
artificial intelligence (AI)
Classification
classification of PQ disturbance
Datasets
deep-learning (DL)
Electric power systems
Energy management systems
feature extraction
machine learning (ML)
Neural networks
power quality monitoring and detection
Signal processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDDA96EH_idEpAQTyU1aZL0mP9MTyNHRR2C0n6ooJ0Y5uC_73vtd2coHjx2BJo-l5f8r5N8nmMncsElBAWI00HHaXBisgG1Ysw-bXa9YCQLFWxCTUY6NEoG66U-qI9YTUeuDZc1xYC4iQEBalLpbA2ViAxaQgBIAZX0Utjla2IqWoMFgLFl6h5pAJ1fRdKzG1oJVN-m4EqUP9vw3E1x_S32VaTHPK87tQOW4Nyl22uIAP32CDnFMJTeK53nvP65z4fB34LMIkaXuoTz1dWpvl8zIdUDo3XyIwPvmCR7LPH_t3DzX3U1ESIPEbbPLoifpxPdVzY1IEspCyC9yTKAmipnJS9AjKnJOBIlmm8Dk74WHgZO5VILQ5YqxyXcMh4oVxCPxToIHkaEuGkTRPviK-jM5z22-xyYSfjG2A41a14NSgcyKbmy6ZtdrZsO6kxGT-2uiZzL1sQ2rq6gQ43jcPNXw5vswtylqEAxO5425wjwJcilJXJVS9JFap-fFxn4U_TRObMoMQkFq9OsqP_6M0x26AC9NV-grjDWvPpG5ywdf8-f5lNT6uP8hPND-Yr
  priority: 102
  providerName: Directory of Open Access Journals
Title A Comprehensive Review of Deep-Learning Applications to Power Quality Analysis
URI https://www.proquest.com/docview/2823992829
https://doaj.org/article/ad3e02ff7e4b463aa07e6522ffee0eb5
Volume 16
WOSCitedRecordID wos001005216300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3db9MwEMBP0PLAHsa3VjYqSyAhHqJ6sWM7T1MHneBhVYRAGk-R7ZwHEmpKW5B44W-fL3G7IQFPvERKYikf5zvfne3fAbxQOWohbNQ0E0wmgxWZDbrIovNrjSuQkCxdsQk9n5uLi7JK26PXaVnl1iZ2hrqnPdO67WiEJ03rKWM-iYECEVVNXp4sv2VUQ4rmWlNBjdswJPAWH8CwendefdrlXLgQMSQTPaVUxGh_govo8dD8pvptXOrw_X8z0t3Ic3bv_77zfdhPHiib9l3mAdzCxUPYu8ElfATzKSM7scLP_fJ21s8gsDawN4jLLEFZL9n0xvQ327SsopprrOdy_GRb4Mlj-Hg2-_D6bZYKL2Q-qvQmOyZInZeGN1Y6VI1STfCeIr-ARmmnVNFg6bTCaC5LE8-DE54Lr7jTuTLiCQwW7QIPgDXa5ZS1oN3qMuTCKStz7wjiY8roW4zg1fa31z5Ryak4xtc6RickovpaRCN4vmu77Fkcf2x1StLbtSB-dnehXV3WSR1r2wjkeQgapZNKWMs1quiKhoDI0RUjeEmyr0nL4-t4mzYrxI8iXlY91UUutVRlfNzRVvZ1Uv91fS3qp_--fQh3qX59txyBH8Fgs_qOz-CO_7H5sl6NYXg6m1fvx12iIB7Pf83GqU9fAa_5A5Q
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFAk48I0IFLAECHFYdbEd23tAKFCqRm2jHIpUTq7tHbeVUDYkAdQ_xW_Esx9pkYBbDxx319pd28_PMx77DcALxVEL4dJIM9FkMjqRuagHWTJ-nfEDJEmWOtmEHo_N4WExWYOf3VkY2lbZcWJN1GUVaI18M7kGpKFqePFu9jWjrFEUXe1SaDSw2MWzH8llW7wdbaX-fcn59seDDztZm1UgCwmvy-wNKbAFafLSSY-qVKqMIZBbE9Eo7ZUalFh4rTBxQWHSdfQi5CKo3GuujEjvvQLrMoE978H6ZLQ_-bxa1cmFSE6faHRQhSjyTZwmm4oiqOq3ma9OEPC3aaCe27Zv_W-tchtutlY0GzawvwNrOL0LNy5oK96D8ZAR183xpNmiz5ooCKsi20KcZa2w7DEbXgjhs2XFJpQ3jjXaImesE225D58upUIPoDetpvgQWKk9p5UXOnEvIxdeOcmDJyEiUyT7qA-vu461oVVWpwQfX2zysAgE9hwEfXi-Kjtr9ET-WOo94WNVgjTA6xvV_Ni2lGJdKTDnMWqUXirhXK5RJXM6RsQc_aAPrwhdlpgq_U5w7YGLVCnS_LJDPeBSS1Wkz2106LIthS3sObQe_fvxM7i2c7C_Z_dG493HcJ0nK7DeXpFvQG85_4ZP4Gr4vjxdzJ-2o4XB0WVD8RcYo1C3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELXKFqFy4BuxUMASIMQh2mAntnNAaMt2RVUUrRBIvRnbGZdKaLPsLqD-NX4dM_nYFgm49cAxiZXEyfN4xjN-j7GnSoCW0uFIM9EkWXQycVHnCTq_zvgciJKlEZvQZWmOjorZFvvZ74WhssreJjaGuqoDrZGPMDQgDlUjilHsyiJmk-nrxdeEFKQo09rLabQQOYTTHxi-rV4dTPBfPxNiuv_hzdukUxhIAmJ3nbwkNraQmbRymQdVKVXFECjEiWCU9krlFRReK0C7UBg8jl6GVAaVei2UkXjfS2xbSwx6Bmx7b7-cvd-s8KRSYgAoW05UKYt0BHP0ryibqn6bBRuxgL9NCc08N73-P3-hG-xa513zcTscbrItmN9iV89xLt5m5ZiTDVzC57Z0n7fZEV5HPgFYJB3h7DEfn0vt83XNZ6Qnx1vOkVPek7ncYR8vpEN32WBez-Ee45X2glZkaCd-FoX0ymUieCIoMgX6TUP2ov_JNnSM6yT88cVi5EWAsGeAGLInm7aLlmfkj632CCubFsQN3pyol8e2MzXWVRJSEaOGzGdKOpdqUOhmxwiQgs-H7DkhzZIFw9cJrtuIgZ0iLjA71rnIdKYKfNxujzTbmbaVPYPZ_X9ffsyuIP7su4Py8AHbEegcNlUX6S4brJff4CG7HL6vT1bLR93A4ezTRSPxF9UYWVE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Review+of+Deep-Learning+Applications+to+Power+Quality+Analysis&rft.jtitle=Energies+%28Basel%29&rft.au=Samanta%2C+Indu+Sekhar&rft.au=Panda%2C+Subhasis&rft.au=Rout%2C+Pravat+Kumar&rft.au=Bajaj%2C+Mohit&rft.date=2023-05-30&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=11&rft.spage=4406&rft_id=info:doi/10.3390%2Fen16114406&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16114406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon