Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm
Recently, carbon price forecasting has become critical for financial markets and environmental protection. Due to their dynamic, nonlinear, and high noise characteristics, predicting carbon prices is difficult. Machine learning forecasting often uses stacked ensemble algorithms. As a result, common...
Uloženo v:
| Vydáno v: | Energies (Basel) Ročník 16; číslo 11; s. 4520 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2023
|
| Témata: | |
| ISSN: | 1996-1073, 1996-1073 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recently, carbon price forecasting has become critical for financial markets and environmental protection. Due to their dynamic, nonlinear, and high noise characteristics, predicting carbon prices is difficult. Machine learning forecasting often uses stacked ensemble algorithms. As a result, common stacking has many limitations when applied to time series data, as its cross-validation process disrupts the temporal sequentiality of the data. Using a double sliding window scheme, we proposed an improved stacking ensemble algorithm that avoided overfitting risks and maintained temporal sequentiality. We replaced cross-validation with walk-forward validation. Our empirical experiment involved the design of two dynamic forecasting frameworks utilizing the improved algorithm. This incorporated forecasting models from different domains as base learners. We used three popular machine learning models as the meta-model to integrate the predictions of each base learner, further narrowing the gap between the final predictions and the observations. The empirical part of this study used the return of carbon prices from the Shenzhen carbon market in China as the prediction target. This verified the enhanced accuracy of the modified stacking algorithm through the use of five statistical metrics and the model confidence set (MCS). Furthermore, we constructed a portfolio to examine the practical usefulness of the improved stacking algorithm. Empirical results showed that the improved stacking algorithm could significantly and robustly improve model prediction accuracy. Support vector machines (SVR) aggregated results better than the other two meta-models (Random forest and XGBoost) in the aggregation step. In different volatility states, the modified stacking algorithm performed differently. We also found that aggressive investment strategies can help investors achieve higher investment returns with carbon option assets. |
|---|---|
| AbstractList | Recently, carbon price forecasting has become critical for financial markets and environmental protection. Due to their dynamic, nonlinear, and high noise characteristics, predicting carbon prices is difficult. Machine learning forecasting often uses stacked ensemble algorithms. As a result, common stacking has many limitations when applied to time series data, as its cross-validation process disrupts the temporal sequentiality of the data. Using a double sliding window scheme, we proposed an improved stacking ensemble algorithm that avoided overfitting risks and maintained temporal sequentiality. We replaced cross-validation with walk-forward validation. Our empirical experiment involved the design of two dynamic forecasting frameworks utilizing the improved algorithm. This incorporated forecasting models from different domains as base learners. We used three popular machine learning models as the meta-model to integrate the predictions of each base learner, further narrowing the gap between the final predictions and the observations. The empirical part of this study used the return of carbon prices from the Shenzhen carbon market in China as the prediction target. This verified the enhanced accuracy of the modified stacking algorithm through the use of five statistical metrics and the model confidence set (MCS). Furthermore, we constructed a portfolio to examine the practical usefulness of the improved stacking algorithm. Empirical results showed that the improved stacking algorithm could significantly and robustly improve model prediction accuracy. Support vector machines (SVR) aggregated results better than the other two meta-models (Random forest and XGBoost) in the aggregation step. In different volatility states, the modified stacking algorithm performed differently. We also found that aggressive investment strategies can help investors achieve higher investment returns with carbon option assets. |
| Audience | Academic |
| Author | Siddik, Abu Bakkar Li, Yong Ye, Peng |
| Author_xml | – sequence: 1 givenname: Peng surname: Ye fullname: Ye, Peng – sequence: 2 givenname: Yong surname: Li fullname: Li, Yong – sequence: 3 givenname: Abu Bakkar orcidid: 0000-0002-3953-198X surname: Siddik fullname: Siddik, Abu Bakkar |
| BookMark | eNptkVFvFCEQxzemJtbaFz8BiW8mVwdYbuHxvLR6SU2Nrc9klp2947oLFWgTv720Z9SYwgMw8_v_GZjXzVGIgZrmLYczKQ18oMCXnLdKwIvmmBuzXHDo5NE_-1fNac57qENKLqU8buaLmMhhLj5sWdkR-0blPgUWR7bG1MfAvibviPnwlF3vfKBM7AumWyrsI2YaWIUwsM18l-JDPV4XdLePduch09xPxFbTNiZfdvOb5uWIU6bT3-tJ8_3i_Gb9eXF59WmzXl0uXAtQFpyDVk6rFjpH6EAiarEUXPRGjq1GIQehUGoA3raoXFUZWZNUUa3VIE-azcF3iLi3d8nPmH7aiN4-BWLaWkzFu4ks9IMjMhxgoLYHh4ZQQa9HUmLkAqvXu4NXfd6Pe8rF7mP9oVq-FVpIYzrFVaXODtQWq6kPYywJXZ0Dzd7VPo2-xledEm2ngJsqeH8QuBRzTjT-KZODfWyn_dvOCsN_sPMFi4-h3uKn5yS_AOBDods |
| CitedBy_id | crossref_primary_10_1007_s42235_025_00741_5 crossref_primary_10_1007_s00607_024_01404_9 crossref_primary_10_1016_j_engappai_2024_108646 crossref_primary_10_3390_su17188514 crossref_primary_10_1016_j_istruc_2024_107615 |
| Cites_doi | 10.1016/j.rser.2018.04.026 10.1016/j.asoc.2016.02.029 10.1016/j.eneco.2013.06.017 10.3390/en12010147 10.1111/j.2517-6161.1996.tb02080.x 10.1155/2016/9895639 10.1016/j.eneco.2008.07.003 10.1016/j.apenergy.2017.01.076 10.1093/rfs/hhp063 10.1016/j.iref.2015.12.003 10.1016/j.swevo.2021.100913 10.1080/17583004.2019.1568138 10.1016/j.frl.2022.102809 10.1016/j.epsr.2017.01.035 10.1016/j.eswa.2019.113160 10.1016/j.jeconom.2013.08.033 10.3390/electronics10101195 10.3390/ijerph19020899 10.1111/j.1468-0262.2007.00785.x 10.1016/j.procs.2019.11.254 10.1109/ICDAR.1995.598994 10.3390/en14237845 10.3390/math10214072 10.1109/PROC.1979.11321 10.3906/elk-1902-188 10.1155/2017/5730295 10.1007/BF00058655 10.18637/jss.v091.i04 10.1016/0304-405X(87)90026-2 10.3389/fenvs.2021.740093 10.1080/07350015.2012.693850 10.1016/j.eneco.2021.105622 10.3390/en11071907 10.1016/j.eneco.2019.104548 10.1016/j.apenergy.2022.119784 10.1016/j.eswa.2020.113463 10.1007/BF00117832 10.1016/j.saa.2022.121231 10.2991/emeeit-15.2015.61 10.1016/j.patrec.2015.08.009 10.1016/j.omega.2012.06.005 10.1007/BF00116037 10.1016/S0893-6080(05)80023-1 10.1007/s10614-018-9862-1 10.1016/j.jempfin.2022.04.001 10.3390/en12020277 10.1080/00401706.1970.10488634 10.1016/j.jclepro.2020.124519 10.1109/CEC.2015.7256967 10.1093/rfs/hhm055 10.1016/j.scitotenv.2020.143099 10.3982/ECTA5771 10.1007/978-1-4757-3264-1 10.1016/j.ijforecast.2021.07.005 10.1016/j.eswa.2014.12.047 10.1016/j.ins.2009.08.025 10.1111/j.1467-9868.2005.00503.x 10.1016/j.rser.2016.11.060 10.1016/j.apenergy.2018.02.003 10.1109/MCSE.2018.2873940 10.3390/jpm13020373 10.1016/j.eneco.2017.12.030 10.1016/j.jeconom.2015.02.010 10.1023/A:1010933404324 10.1016/j.jclepro.2019.119386 10.1016/0304-4076(94)90067-1 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/en16114520 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_0bdcee9100de4b0ca9ea50b8fe52f12a A752475019 10_3390_en16114520 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c400t-11085c85407ceac03aa826212b93f48a23d25a3800144a5cc40932b9ec03885d3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005762700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Fri Oct 03 12:26:27 EDT 2025 Mon Jun 30 07:33:38 EDT 2025 Tue Nov 04 17:41:39 EST 2025 Sat Nov 29 07:13:02 EST 2025 Tue Nov 18 22:38:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c400t-11085c85407ceac03aa826212b93f48a23d25a3800144a5cc40932b9ec03885d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3953-198X |
| OpenAccessLink | https://www.proquest.com/docview/2823997515?pq-origsite=%requestingapplication% |
| PQID | 2823997515 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0bdcee9100de4b0ca9ea50b8fe52f12a proquest_journals_2823997515 gale_infotracacademiconefile_A752475019 crossref_primary_10_3390_en16114520 crossref_citationtrail_10_3390_en16114520 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Segnon (ref_6) 2017; 69 Yang (ref_17) 2021; 9 Fan (ref_4) 2015; 42 Yahsi (ref_45) 2019; 10 Rossi (ref_64) 2012; 30 Lu (ref_3) 2020; 249 ref_14 Tan (ref_19) 2022; 38 Hansen (ref_58) 2011; 79 Ho (ref_68) 1995; Volume 1 Rapach (ref_59) 2009; 23 Chevallier (ref_8) 2009; 32 ref_10 Kim (ref_49) 2014; 178 Annappa (ref_36) 2022; 82 Byun (ref_7) 2013; 40 ref_18 Atsalakis (ref_11) 2016; 43 ref_16 Dasarathy (ref_25) 1979; 67 Shi (ref_56) 2016; 42 Drucker (ref_65) 1996; 9 Breiman (ref_28) 1996; 24 Liu (ref_61) 2019; 84 Zhang (ref_44) 2017; 2017 Nelson (ref_23) 1991; 59 Zhang (ref_39) 2022; 2022 Weng (ref_1) 2018; 91 ref_66 ref_63 Wang (ref_67) 2016; 2016 Ding (ref_29) 2019; 27 Pari (ref_35) 2020; 22 Liu (ref_54) 2021; 103 Hoerl (ref_70) 1970; 12 Zhang (ref_62) 2022; 46 Mallows (ref_51) 2000; 42 Breiman (ref_41) 1996; 24 Campbell (ref_42) 2007; 21 Qi (ref_2) 2022; 324 Tibshirani (ref_71) 1996; 58 ref_33 ref_32 Breiman (ref_69) 2001; 45 French (ref_22) 1987; 19 Schapire (ref_26) 1990; 5 ref_31 Zhu (ref_5) 2013; 41 ref_30 Zhu (ref_13) 2018; 70 ref_37 Zhang (ref_9) 2017; 146 Ji (ref_12) 2019; 162 Hamilton (ref_53) 1994; 64 Ardia (ref_57) 2019; 91 Hansen (ref_52) 2007; 75 Adekoya (ref_20) 2021; 282 Zhao (ref_60) 2022; 67 ref_47 Zhu (ref_43) 2017; 191 Qin (ref_15) 2020; 55 Zhao (ref_21) 2018; 216 Yang (ref_40) 2015; 68 ref_48 Benz (ref_24) 2009; 31 Wolpert (ref_27) 1992; 5 Cheng (ref_50) 2015; 186 Zou (ref_72) 2005; 67 Menahem (ref_34) 2009; 179 Dumancas (ref_38) 2022; 276 Wang (ref_55) 2020; 153 Wang (ref_46) 2021; 762 |
| References_xml | – volume: 91 start-page: 613 year: 2018 ident: ref_1 article-title: A review of China’s carbon trading market publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.04.026 – volume: 43 start-page: 107 year: 2016 ident: ref_11 article-title: Using computational intelligence to forecast carbon prices publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.02.029 – volume: 40 start-page: 207 year: 2013 ident: ref_7 article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.06.017 – ident: ref_14 doi: 10.3390/en12010147 – volume: 58 start-page: 267 year: 1996 ident: ref_71 article-title: Regression shrinkage and selection via the Lasso publication-title: J. R. Stat. Soc. Ser. B-Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 2016 start-page: 9895639 year: 2016 ident: ref_67 article-title: A hybrid model of EMD and PSO-SVR for short-term load forecasting in residential quarters publication-title: Math. Probl. Eng. doi: 10.1155/2016/9895639 – volume: 31 start-page: 4 year: 2009 ident: ref_24 article-title: Modeling the price dynamics of CO2 emission allowances publication-title: Energy Econ. doi: 10.1016/j.eneco.2008.07.003 – volume: 191 start-page: 521 year: 2017 ident: ref_43 article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.01.076 – volume: 23 start-page: 821 year: 2009 ident: ref_59 article-title: Out-of-sample equity premium prediction: Combination forecasts and links to the real economy publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/hhp063 – volume: 42 start-page: 291 year: 2016 ident: ref_56 article-title: Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach publication-title: Int. Rev. Econ. Financ. doi: 10.1016/j.iref.2015.12.003 – ident: ref_30 doi: 10.1016/j.swevo.2021.100913 – volume: 10 start-page: 175 year: 2019 ident: ref_45 article-title: Carbon price forecasting models based on big data analytics publication-title: Carbon Manag. doi: 10.1080/17583004.2019.1568138 – volume: 46 start-page: 102809 year: 2022 ident: ref_62 article-title: Carbon price prediction models based on online news information analytics publication-title: Financ. Res. Lett. doi: 10.1016/j.frl.2022.102809 – volume: 146 start-page: 270 year: 2017 ident: ref_9 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.01.035 – ident: ref_31 doi: 10.1016/j.eswa.2019.113160 – volume: 178 start-page: 352 year: 2014 ident: ref_49 article-title: Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence publication-title: J. Econom. doi: 10.1016/j.jeconom.2013.08.033 – ident: ref_32 doi: 10.3390/electronics10101195 – ident: ref_63 doi: 10.3390/ijerph19020899 – volume: 75 start-page: 1175 year: 2007 ident: ref_52 article-title: Least squares model averaging publication-title: Econometrica doi: 10.1111/j.1468-0262.2007.00785.x – volume: 9 start-page: 155 year: 1996 ident: ref_65 article-title: Support vector regression machines publication-title: Adv. Neural Inf. Process. Syst. – volume: 162 start-page: 33 year: 2019 ident: ref_12 article-title: Carbon futures price forecasting based with ARIMA-CNN-LSTM model publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.11.254 – volume: Volume 1 start-page: 278 year: 1995 ident: ref_68 article-title: Random decision forests publication-title: Proceedings of the 3rd International Conference on Document Analysis and Recognition doi: 10.1109/ICDAR.1995.598994 – ident: ref_48 doi: 10.3390/en14237845 – ident: ref_47 doi: 10.3390/math10214072 – volume: 67 start-page: 708 year: 1979 ident: ref_25 article-title: A composite classifier system design: Concepts and methodology publication-title: Proc. IEEE doi: 10.1109/PROC.1979.11321 – volume: 27 start-page: 4231 year: 2019 ident: ref_29 article-title: ABC-based stacking method for multilabel classification publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1902-188 – volume: 2017 start-page: 5730295 year: 2017 ident: ref_44 article-title: Interval forecasting of carbon futures prices using a novel hybrid approach with exogenous variables publication-title: Discret. Dyn. Nat. Soc. doi: 10.1155/2017/5730295 – volume: 24 start-page: 123 year: 1996 ident: ref_28 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 59 start-page: 347 year: 1991 ident: ref_23 article-title: Conditional heteroskedasticity in asset returns: A new approach publication-title: Model. Stock. Mark. Volatility – volume: 42 start-page: 87 year: 2000 ident: ref_51 article-title: Some comments on Cp publication-title: Technometrics – volume: 2022 start-page: 1780834 year: 2022 ident: ref_39 article-title: Financial Fraud Identification Based on Stacking Ensemble Learning Algorithm: Introducing MD&A Text Information publication-title: Comput. Intell. Neurosci. – volume: 91 start-page: 1 year: 2019 ident: ref_57 article-title: Markov-switching GARCH models in R: The MSGARCH package publication-title: J. Stat. Softw. doi: 10.18637/jss.v091.i04 – volume: 19 start-page: 3 year: 1987 ident: ref_22 article-title: Expected stock returns and volatility publication-title: J. Financ. Econ. doi: 10.1016/0304-405X(87)90026-2 – volume: 9 start-page: 740093 year: 2021 ident: ref_17 article-title: An ensemble prediction system based on artificial neural networks and deep learning methods for deterministic and probabilistic carbon price forecasting publication-title: Front. Environ. Sci. doi: 10.3389/fenvs.2021.740093 – volume: 30 start-page: 432 year: 2012 ident: ref_64 article-title: Out-of-sample forecast tests robust to the choice of window size publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.2012.693850 – volume: 103 start-page: 105622 year: 2021 ident: ref_54 article-title: Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2021.105622 – ident: ref_18 doi: 10.3390/en11071907 – volume: 84 start-page: 104548 year: 2019 ident: ref_61 article-title: Geopolitical risk and oil volatility: A new insight publication-title: Energy Econ. doi: 10.1016/j.eneco.2019.104548 – volume: 324 start-page: 119784 year: 2022 ident: ref_2 article-title: Predicting China’s carbon price based on a multi-scale integrated model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119784 – volume: 153 start-page: 113463 year: 2020 ident: ref_55 article-title: An integrated early warning system for stock market turbulence publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113463 – volume: 24 start-page: 49 year: 1996 ident: ref_41 article-title: Stacked regressions publication-title: Mach. Learn. doi: 10.1007/BF00117832 – volume: 276 start-page: 121231 year: 2022 ident: ref_38 article-title: A stacked regression ensemble approach for the quantitative determination of biomass feedstock compositions using near infrared spectroscopy publication-title: Spectrochim. Acta Part Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2022.121231 – ident: ref_10 doi: 10.2991/emeeit-15.2015.61 – volume: 68 start-page: 15 year: 2015 ident: ref_40 article-title: A robust semi-supervised learning approach via mixture of label information publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2015.08.009 – volume: 41 start-page: 517 year: 2013 ident: ref_5 article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology publication-title: Omega doi: 10.1016/j.omega.2012.06.005 – volume: 5 start-page: 197 year: 1990 ident: ref_26 article-title: The strength of weak learnability publication-title: Mach. Learn. doi: 10.1007/BF00116037 – volume: 5 start-page: 241 year: 1992 ident: ref_27 article-title: Stacked generalization publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80023-1 – volume: 55 start-page: 1249 year: 2020 ident: ref_15 article-title: A novel decomposition-ensemble based carbon price forecasting model integrated with local polynomial prediction publication-title: Comput. Econ. doi: 10.1007/s10614-018-9862-1 – volume: 67 start-page: 288 year: 2022 ident: ref_60 article-title: Stock return prediction: Stacking a variety of models publication-title: J. Empir. Financ. doi: 10.1016/j.jempfin.2022.04.001 – volume: 32 start-page: 407 year: 2009 ident: ref_8 article-title: On the realized volatility of the ECX CO2 emissions 2008 futures contract: Distribution, dynamics and forecasting publication-title: Ann. Stat. – ident: ref_16 doi: 10.3390/en12020277 – volume: 12 start-page: 55 year: 1970 ident: ref_70 article-title: Ridge regression—Biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 282 start-page: 124519 year: 2021 ident: ref_20 article-title: Predicting carbon allowance prices with energy prices: A new approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124519 – ident: ref_33 doi: 10.1109/CEC.2015.7256967 – volume: 21 start-page: 1509 year: 2007 ident: ref_42 article-title: Predicting excess stock returns out of sample: Can anything beat the historical average? publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/hhm055 – volume: 82 start-page: 14689 year: 2022 ident: ref_36 article-title: An ensemble approach using a frequency-based and stacking classifiers for effective facial expression recognition publication-title: Multimed. Tools Appl. – volume: 762 start-page: 143099 year: 2021 ident: ref_46 article-title: An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143099 – volume: 79 start-page: 453 year: 2011 ident: ref_58 article-title: The model confidence set publication-title: Econometrica doi: 10.3982/ECTA5771 – ident: ref_66 doi: 10.1007/978-1-4757-3264-1 – volume: 38 start-page: 944 year: 2022 ident: ref_19 article-title: Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2021.07.005 – volume: 42 start-page: 3945 year: 2015 ident: ref_4 article-title: Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.12.047 – volume: 179 start-page: 4097 year: 2009 ident: ref_34 article-title: Troika—An improved stacking schema for classification tasks publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.08.025 – volume: 67 start-page: 301 year: 2005 ident: ref_72 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 69 start-page: 692 year: 2017 ident: ref_6 article-title: Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.060 – volume: 216 start-page: 132 year: 2018 ident: ref_21 article-title: Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.003 – volume: 22 start-page: 74 year: 2020 ident: ref_35 article-title: A multitier stacked ensemble algorithm for improving classification accuracy publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2018.2873940 – ident: ref_37 doi: 10.3390/jpm13020373 – volume: 70 start-page: 143 year: 2018 ident: ref_13 article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2017.12.030 – volume: 186 start-page: 280 year: 2015 ident: ref_50 article-title: Forecasting with factor-augmented regression: A frequentist model averaging approach publication-title: J. Econom. doi: 10.1016/j.jeconom.2015.02.010 – volume: 45 start-page: 5 year: 2001 ident: ref_69 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 249 start-page: 119386 year: 2020 ident: ref_3 article-title: Carbon trading volume and price forecasting in China using multiple machine learning models publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119386 – volume: 64 start-page: 307 year: 1994 ident: ref_53 article-title: Autoregressive conditional heteroskedasticity and changes in regime publication-title: J. Econom. doi: 10.1016/0304-4076(94)90067-1 |
| SSID | ssj0000331333 |
| Score | 2.36238 |
| Snippet | Recently, carbon price forecasting has become critical for financial markets and environmental protection. Due to their dynamic, nonlinear, and high noise... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 4520 |
| SubjectTerms | Algorithms Artificial intelligence Carbon carbon pricing carbon return forecasting Climate change Econometrics ensemble learning Financial markets Forecasts and trends improved stacking investment guidance Literature reviews Machine learning Neural networks Stochastic models Time series Volatility |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9swELZQxQM8TDA2raMgS0Oa9hCRxHaTPBZEtZehaQKJN-vsXKBS66Km4_dz56TQh6G98JjkIjn2-e476_J9QpxlmafI74tk7EAnGpRJAMeQuKJJIc9LTIsmik0U19fl3V31e0vqi3vCOnrgbuLOU1dTHKekltaoXeqhQjCpKxs0eZPlERqlRbVVTMUYrBQVX6rjI1VU159jIGyTacPC3lsZKBL1vxWOY46ZHogPPTiUk25Qh2IHw0exv0UZeCQWrKXpoeVuZUngTf5BShpBLht5CSu3DDIKuctZiE9ZHhtblL_iz83ygnJWLckIguyOE-iS8KbnA3N5FVpcuDnKyfx-uZqtHxafxO306ubyZ9JLJiSeNuM64aZ-40tm1fMUUlMFQPUDpSdXqUaXkKs6N6BKrow0GE9vEYBzFXpmhTG1-iwGYRnwi5CATBNVcSRlq3EJY3DOOKx02TSFHoofm2m0vucTZ1mLuaW6gqfcvk75UHx7sX3sWDT-aXXBq_FiwczX8Qb5g-39wf7PH4biO6-l5f1Jw_HQ_2ZAH8VMV3ZSmFwTTMqqoRhtltv2G7e1VIESZCsI5X19j9Eciz3Wp-96y0ZisF79xROx65_Ws3Z1Gn32Gdh38Wg priority: 102 providerName: Directory of Open Access Journals |
| Title | Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm |
| URI | https://www.proquest.com/docview/2823997515 https://doaj.org/article/0bdcee9100de4b0ca9ea50b8fe52f12a |
| Volume | 16 |
| WOSCitedRecordID | wos001005762700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFBdbu8N26L5Zuq4INhg7mNqWFNunkZSU7ZAQygbdSTzJcltI5C5Oe-zf3vdkJe1h22UXg61nkHlP78vS78fYpyyz6PltkQwNyESCUAm4ISSmaFLI89KlRRPIJorZrDw7q-ax4dbFbZUbnxgcdd1a6pEfYWmAsbTA8Pv16ndCrFH0dzVSaDxmu4RUhna-O57M5qfbLksqBBZhosclFVjfHzmPOU4mFRF8P4hEAbD_b245xJqT5_87yxdsL2aZfNSbxUv2yPlX7NkD7MHXbEmknBY62vbMMQvkpw6jj-dtw49hZVrPAyM8v_RhlHi2Xef4NJyS5mMMfjVHIfC870vgLSauljrvfOI7tzQLx0eLc5zd-mL5hv08mfw4_pZE7oXE4qpeJ3Q6QNmS4Pks-uZUAGAhgnHOVKKRJeSizhWIkkosCcriW5gJmspZgpdRtXjLdnzr3TvGwRHeVEUumaSGJQzBGGVcJcumKeSAfdnoQdsITE78GAuNBQrpTN_rbMA-bmWvejiOP0qNSZ1bCYLQDg_a1bmOK1KnpsYEAbOltHbSpBYqByo1ZeNU3mQ5DNhnMgZNCx2nYyGeV8CPIsgsPSpULjHfyqoBO9gYg44eoNP3lrD_7-H37ClR2Pfbzw7Yznp17T6wJ_ZmfdmtDqNBH4ZeAV6ntxN8Nv8-nf-6A-ASAwE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAl64I0aKLASIMTBqr2P2D4glJZWjdpEESpSOW131-tSKbFLHED8KX4jM36kPQC3Hjg6nlh-fJ75Zr37fQCvoshh5ndxMLBGBtIIFRg_MIGN89BwnvgwzmuziXgySU5O0uka_OrWwtC0yi4n1ok6Kx2NkW9ja4C1NMby-_7ia0CuUfR1tbPQaGBx6H_-wJatejf6gM_3Nef7e8e7B0HrKhA4xOsyoHnvyiUkPOcw64TCGKTYmMFtKnKZGC4yroxIqHmQRjn8F3Icm3pHwikqE3jcG7AuEexhD9ano_H082pUJxQCmz7R6KAKkYbbvkBOFUlFhuJXKl9tEPC3MlDXtv27_9tduQd3WhbNhg3s78OaLx7AxhVtxYcwJ9NRZyqa1s2Q5bKPHqtrwcqc7ZqFLQtWO96z86LeSz7ivvJsXK8CZztY3DOGQaZgzbgLbiIxd_Rlge0VlZ_bmWfD2RnejeWX-SP4dC3X-xh6RVn4TWDGk55WSiWHogaJGRhrlfWpTPI8ln142z137VrhdfL_mGlswAgj-hIjfXi5ir1o5Eb-GLVD8FlFkER4_UO5ONNtxtGhzZAAIRsMMy9t6EzqjQptknvF84ibPrwh8GlKZHg6zrTrMfCiSBJMD2PFJfLJKO3DVgc-3Wa4Sl8i78m_d7-AWwfH4yN9NJocPoXbHEliM9VuC3rLxTf_DG6678vzavG8fZkYnF43Un8DU8FYow |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE48I0aKLASIMTBir1rx_YBoaRNRFWIogqk3pbZ9bqtlNglDiD-Gr-OGX-kPQC3HjgmnkSx8zzzZj37HsDLILCU-W3sDQ2GXogq8tAN0TNx7qOUifPjvDabiGez5Pg4nW_Br24vDI9VdjmxTtRZaXmNfECtAdXSmMrvIG_HIub703fnXz12kOInrZ2dRgORQ_fzB7Vv1duDffqvX0k5nXzae--1DgOeJeyuPZ6Bj2zCInSWMpCvEIluUzY3qcrDBKXKZIQq4UYixMjSp4jvmNRZFlGJMkXfew22Y0VNTw-2x5PZ_GizwuMrRQ2gajRRlUr9gSuIXwVhxObil6pgbRbwt5JQ17npnf_5Ct2F2y27FqPmdrgHW664D7cuaS4-gCWbkVqseNxbEPsVR46qbiHKXOzhypSFmLPOkjgr6qPsL-4qJz7Wu8PFmIp-JigIC9Gsx9BLIuyWnziISVG5pVk4MVqc0NVYny4fwucrOd9H0CvKwu2AQMc6WymXIo4aJjhEYyLj0jDJ8zjsw5sOA9q2guzsC7LQ1JgxXvQFXvrwYhN73siQ_DFqzFDaRLB0eP1GuTrRbSbSvsmIGBFL9DMXGt9i6jDyTZK7SOaBxD68ZiBqTnD0cyy2-zTopFgqTI_iSIbEM4O0D7sdEHWb-Sp9gcLH_z78HG4QPPWHg9nhE7gpiTs2E3i70FuvvrmncN1-X59Vq2ftfSXgy1UD9Tcdp2E9 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+the+Return+of+Carbon+Price+in+the+Chinese+Market+Based+on+an+Improved+Stacking+Ensemble+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Ye%2C+Peng&rft.au=Li%2C+Yong&rft.au=Siddik%2C+Abu+Bakkar&rft.date=2023-06-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=16&rft.issue=11&rft.spage=4520&rft_id=info:doi/10.3390%2Fen16114520&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en16114520 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |