Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm

Recently, carbon price forecasting has become critical for financial markets and environmental protection. Due to their dynamic, nonlinear, and high noise characteristics, predicting carbon prices is difficult. Machine learning forecasting often uses stacked ensemble algorithms. As a result, common...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 16; H. 11; S. 4520
Hauptverfasser: Ye, Peng, Li, Yong, Siddik, Abu Bakkar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2023
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, carbon price forecasting has become critical for financial markets and environmental protection. Due to their dynamic, nonlinear, and high noise characteristics, predicting carbon prices is difficult. Machine learning forecasting often uses stacked ensemble algorithms. As a result, common stacking has many limitations when applied to time series data, as its cross-validation process disrupts the temporal sequentiality of the data. Using a double sliding window scheme, we proposed an improved stacking ensemble algorithm that avoided overfitting risks and maintained temporal sequentiality. We replaced cross-validation with walk-forward validation. Our empirical experiment involved the design of two dynamic forecasting frameworks utilizing the improved algorithm. This incorporated forecasting models from different domains as base learners. We used three popular machine learning models as the meta-model to integrate the predictions of each base learner, further narrowing the gap between the final predictions and the observations. The empirical part of this study used the return of carbon prices from the Shenzhen carbon market in China as the prediction target. This verified the enhanced accuracy of the modified stacking algorithm through the use of five statistical metrics and the model confidence set (MCS). Furthermore, we constructed a portfolio to examine the practical usefulness of the improved stacking algorithm. Empirical results showed that the improved stacking algorithm could significantly and robustly improve model prediction accuracy. Support vector machines (SVR) aggregated results better than the other two meta-models (Random forest and XGBoost) in the aggregation step. In different volatility states, the modified stacking algorithm performed differently. We also found that aggressive investment strategies can help investors achieve higher investment returns with carbon option assets.
AbstractList Recently, carbon price forecasting has become critical for financial markets and environmental protection. Due to their dynamic, nonlinear, and high noise characteristics, predicting carbon prices is difficult. Machine learning forecasting often uses stacked ensemble algorithms. As a result, common stacking has many limitations when applied to time series data, as its cross-validation process disrupts the temporal sequentiality of the data. Using a double sliding window scheme, we proposed an improved stacking ensemble algorithm that avoided overfitting risks and maintained temporal sequentiality. We replaced cross-validation with walk-forward validation. Our empirical experiment involved the design of two dynamic forecasting frameworks utilizing the improved algorithm. This incorporated forecasting models from different domains as base learners. We used three popular machine learning models as the meta-model to integrate the predictions of each base learner, further narrowing the gap between the final predictions and the observations. The empirical part of this study used the return of carbon prices from the Shenzhen carbon market in China as the prediction target. This verified the enhanced accuracy of the modified stacking algorithm through the use of five statistical metrics and the model confidence set (MCS). Furthermore, we constructed a portfolio to examine the practical usefulness of the improved stacking algorithm. Empirical results showed that the improved stacking algorithm could significantly and robustly improve model prediction accuracy. Support vector machines (SVR) aggregated results better than the other two meta-models (Random forest and XGBoost) in the aggregation step. In different volatility states, the modified stacking algorithm performed differently. We also found that aggressive investment strategies can help investors achieve higher investment returns with carbon option assets.
Audience Academic
Author Siddik, Abu Bakkar
Li, Yong
Ye, Peng
Author_xml – sequence: 1
  givenname: Peng
  surname: Ye
  fullname: Ye, Peng
– sequence: 2
  givenname: Yong
  surname: Li
  fullname: Li, Yong
– sequence: 3
  givenname: Abu Bakkar
  orcidid: 0000-0002-3953-198X
  surname: Siddik
  fullname: Siddik, Abu Bakkar
BookMark eNptkVFvFCEQxzemJtbaFz8BiW8mVwdYbuHxvLR6SU2Nrc9klp2947oLFWgTv720Z9SYwgMw8_v_GZjXzVGIgZrmLYczKQ18oMCXnLdKwIvmmBuzXHDo5NE_-1fNac57qENKLqU8buaLmMhhLj5sWdkR-0blPgUWR7bG1MfAvibviPnwlF3vfKBM7AumWyrsI2YaWIUwsM18l-JDPV4XdLePduch09xPxFbTNiZfdvOb5uWIU6bT3-tJ8_3i_Gb9eXF59WmzXl0uXAtQFpyDVk6rFjpH6EAiarEUXPRGjq1GIQehUGoA3raoXFUZWZNUUa3VIE-azcF3iLi3d8nPmH7aiN4-BWLaWkzFu4ks9IMjMhxgoLYHh4ZQQa9HUmLkAqvXu4NXfd6Pe8rF7mP9oVq-FVpIYzrFVaXODtQWq6kPYywJXZ0Dzd7VPo2-xledEm2ngJsqeH8QuBRzTjT-KZODfWyn_dvOCsN_sPMFi4-h3uKn5yS_AOBDods
CitedBy_id crossref_primary_10_1007_s42235_025_00741_5
crossref_primary_10_1007_s00607_024_01404_9
crossref_primary_10_1016_j_engappai_2024_108646
crossref_primary_10_3390_su17188514
crossref_primary_10_1016_j_istruc_2024_107615
Cites_doi 10.1016/j.rser.2018.04.026
10.1016/j.asoc.2016.02.029
10.1016/j.eneco.2013.06.017
10.3390/en12010147
10.1111/j.2517-6161.1996.tb02080.x
10.1155/2016/9895639
10.1016/j.eneco.2008.07.003
10.1016/j.apenergy.2017.01.076
10.1093/rfs/hhp063
10.1016/j.iref.2015.12.003
10.1016/j.swevo.2021.100913
10.1080/17583004.2019.1568138
10.1016/j.frl.2022.102809
10.1016/j.epsr.2017.01.035
10.1016/j.eswa.2019.113160
10.1016/j.jeconom.2013.08.033
10.3390/electronics10101195
10.3390/ijerph19020899
10.1111/j.1468-0262.2007.00785.x
10.1016/j.procs.2019.11.254
10.1109/ICDAR.1995.598994
10.3390/en14237845
10.3390/math10214072
10.1109/PROC.1979.11321
10.3906/elk-1902-188
10.1155/2017/5730295
10.1007/BF00058655
10.18637/jss.v091.i04
10.1016/0304-405X(87)90026-2
10.3389/fenvs.2021.740093
10.1080/07350015.2012.693850
10.1016/j.eneco.2021.105622
10.3390/en11071907
10.1016/j.eneco.2019.104548
10.1016/j.apenergy.2022.119784
10.1016/j.eswa.2020.113463
10.1007/BF00117832
10.1016/j.saa.2022.121231
10.2991/emeeit-15.2015.61
10.1016/j.patrec.2015.08.009
10.1016/j.omega.2012.06.005
10.1007/BF00116037
10.1016/S0893-6080(05)80023-1
10.1007/s10614-018-9862-1
10.1016/j.jempfin.2022.04.001
10.3390/en12020277
10.1080/00401706.1970.10488634
10.1016/j.jclepro.2020.124519
10.1109/CEC.2015.7256967
10.1093/rfs/hhm055
10.1016/j.scitotenv.2020.143099
10.3982/ECTA5771
10.1007/978-1-4757-3264-1
10.1016/j.ijforecast.2021.07.005
10.1016/j.eswa.2014.12.047
10.1016/j.ins.2009.08.025
10.1111/j.1467-9868.2005.00503.x
10.1016/j.rser.2016.11.060
10.1016/j.apenergy.2018.02.003
10.1109/MCSE.2018.2873940
10.3390/jpm13020373
10.1016/j.eneco.2017.12.030
10.1016/j.jeconom.2015.02.010
10.1023/A:1010933404324
10.1016/j.jclepro.2019.119386
10.1016/0304-4076(94)90067-1
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en16114520
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_0bdcee9100de4b0ca9ea50b8fe52f12a
A752475019
10_3390_en16114520
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c400t-11085c85407ceac03aa826212b93f48a23d25a3800144a5cc40932b9ec03885d3
IEDL.DBID BENPR
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001005762700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:26:27 EDT 2025
Mon Jun 30 07:33:38 EDT 2025
Tue Nov 04 17:41:39 EST 2025
Sat Nov 29 07:13:02 EST 2025
Tue Nov 18 22:38:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c400t-11085c85407ceac03aa826212b93f48a23d25a3800144a5cc40932b9ec03885d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3953-198X
OpenAccessLink https://www.proquest.com/docview/2823997515?pq-origsite=%requestingapplication%
PQID 2823997515
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_0bdcee9100de4b0ca9ea50b8fe52f12a
proquest_journals_2823997515
gale_infotracacademiconefile_A752475019
crossref_primary_10_3390_en16114520
crossref_citationtrail_10_3390_en16114520
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Segnon (ref_6) 2017; 69
Yang (ref_17) 2021; 9
Fan (ref_4) 2015; 42
Yahsi (ref_45) 2019; 10
Rossi (ref_64) 2012; 30
Lu (ref_3) 2020; 249
ref_14
Tan (ref_19) 2022; 38
Hansen (ref_58) 2011; 79
Ho (ref_68) 1995; Volume 1
Rapach (ref_59) 2009; 23
Chevallier (ref_8) 2009; 32
ref_10
Kim (ref_49) 2014; 178
Annappa (ref_36) 2022; 82
Byun (ref_7) 2013; 40
ref_18
Atsalakis (ref_11) 2016; 43
ref_16
Dasarathy (ref_25) 1979; 67
Shi (ref_56) 2016; 42
Drucker (ref_65) 1996; 9
Breiman (ref_28) 1996; 24
Liu (ref_61) 2019; 84
Zhang (ref_44) 2017; 2017
Nelson (ref_23) 1991; 59
Zhang (ref_39) 2022; 2022
Weng (ref_1) 2018; 91
ref_66
ref_63
Wang (ref_67) 2016; 2016
Ding (ref_29) 2019; 27
Pari (ref_35) 2020; 22
Liu (ref_54) 2021; 103
Hoerl (ref_70) 1970; 12
Zhang (ref_62) 2022; 46
Mallows (ref_51) 2000; 42
Breiman (ref_41) 1996; 24
Campbell (ref_42) 2007; 21
Qi (ref_2) 2022; 324
Tibshirani (ref_71) 1996; 58
ref_33
ref_32
Breiman (ref_69) 2001; 45
French (ref_22) 1987; 19
Schapire (ref_26) 1990; 5
ref_31
Zhu (ref_5) 2013; 41
ref_30
Zhu (ref_13) 2018; 70
ref_37
Zhang (ref_9) 2017; 146
Ji (ref_12) 2019; 162
Hamilton (ref_53) 1994; 64
Ardia (ref_57) 2019; 91
Hansen (ref_52) 2007; 75
Adekoya (ref_20) 2021; 282
Zhao (ref_60) 2022; 67
ref_47
Zhu (ref_43) 2017; 191
Qin (ref_15) 2020; 55
Zhao (ref_21) 2018; 216
Yang (ref_40) 2015; 68
ref_48
Benz (ref_24) 2009; 31
Wolpert (ref_27) 1992; 5
Cheng (ref_50) 2015; 186
Zou (ref_72) 2005; 67
Menahem (ref_34) 2009; 179
Dumancas (ref_38) 2022; 276
Wang (ref_55) 2020; 153
Wang (ref_46) 2021; 762
References_xml – volume: 91
  start-page: 613
  year: 2018
  ident: ref_1
  article-title: A review of China’s carbon trading market
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.04.026
– volume: 43
  start-page: 107
  year: 2016
  ident: ref_11
  article-title: Using computational intelligence to forecast carbon prices
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.02.029
– volume: 40
  start-page: 207
  year: 2013
  ident: ref_7
  article-title: Forecasting carbon futures volatility using GARCH models with energy volatilities
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.06.017
– ident: ref_14
  doi: 10.3390/en12010147
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_71
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B-Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 2016
  start-page: 9895639
  year: 2016
  ident: ref_67
  article-title: A hybrid model of EMD and PSO-SVR for short-term load forecasting in residential quarters
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2016/9895639
– volume: 31
  start-page: 4
  year: 2009
  ident: ref_24
  article-title: Modeling the price dynamics of CO2 emission allowances
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2008.07.003
– volume: 191
  start-page: 521
  year: 2017
  ident: ref_43
  article-title: Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.01.076
– volume: 23
  start-page: 821
  year: 2009
  ident: ref_59
  article-title: Out-of-sample equity premium prediction: Combination forecasts and links to the real economy
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhp063
– volume: 42
  start-page: 291
  year: 2016
  ident: ref_56
  article-title: Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach
  publication-title: Int. Rev. Econ. Financ.
  doi: 10.1016/j.iref.2015.12.003
– ident: ref_30
  doi: 10.1016/j.swevo.2021.100913
– volume: 10
  start-page: 175
  year: 2019
  ident: ref_45
  article-title: Carbon price forecasting models based on big data analytics
  publication-title: Carbon Manag.
  doi: 10.1080/17583004.2019.1568138
– volume: 46
  start-page: 102809
  year: 2022
  ident: ref_62
  article-title: Carbon price prediction models based on online news information analytics
  publication-title: Financ. Res. Lett.
  doi: 10.1016/j.frl.2022.102809
– volume: 146
  start-page: 270
  year: 2017
  ident: ref_9
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2017.01.035
– ident: ref_31
  doi: 10.1016/j.eswa.2019.113160
– volume: 178
  start-page: 352
  year: 2014
  ident: ref_49
  article-title: Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2013.08.033
– ident: ref_32
  doi: 10.3390/electronics10101195
– ident: ref_63
  doi: 10.3390/ijerph19020899
– volume: 75
  start-page: 1175
  year: 2007
  ident: ref_52
  article-title: Least squares model averaging
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2007.00785.x
– volume: 9
  start-page: 155
  year: 1996
  ident: ref_65
  article-title: Support vector regression machines
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 162
  start-page: 33
  year: 2019
  ident: ref_12
  article-title: Carbon futures price forecasting based with ARIMA-CNN-LSTM model
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.11.254
– volume: Volume 1
  start-page: 278
  year: 1995
  ident: ref_68
  article-title: Random decision forests
  publication-title: Proceedings of the 3rd International Conference on Document Analysis and Recognition
  doi: 10.1109/ICDAR.1995.598994
– ident: ref_48
  doi: 10.3390/en14237845
– ident: ref_47
  doi: 10.3390/math10214072
– volume: 67
  start-page: 708
  year: 1979
  ident: ref_25
  article-title: A composite classifier system design: Concepts and methodology
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1979.11321
– volume: 27
  start-page: 4231
  year: 2019
  ident: ref_29
  article-title: ABC-based stacking method for multilabel classification
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1902-188
– volume: 2017
  start-page: 5730295
  year: 2017
  ident: ref_44
  article-title: Interval forecasting of carbon futures prices using a novel hybrid approach with exogenous variables
  publication-title: Discret. Dyn. Nat. Soc.
  doi: 10.1155/2017/5730295
– volume: 24
  start-page: 123
  year: 1996
  ident: ref_28
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 59
  start-page: 347
  year: 1991
  ident: ref_23
  article-title: Conditional heteroskedasticity in asset returns: A new approach
  publication-title: Model. Stock. Mark. Volatility
– volume: 42
  start-page: 87
  year: 2000
  ident: ref_51
  article-title: Some comments on Cp
  publication-title: Technometrics
– volume: 2022
  start-page: 1780834
  year: 2022
  ident: ref_39
  article-title: Financial Fraud Identification Based on Stacking Ensemble Learning Algorithm: Introducing MD&A Text Information
  publication-title: Comput. Intell. Neurosci.
– volume: 91
  start-page: 1
  year: 2019
  ident: ref_57
  article-title: Markov-switching GARCH models in R: The MSGARCH package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v091.i04
– volume: 19
  start-page: 3
  year: 1987
  ident: ref_22
  article-title: Expected stock returns and volatility
  publication-title: J. Financ. Econ.
  doi: 10.1016/0304-405X(87)90026-2
– volume: 9
  start-page: 740093
  year: 2021
  ident: ref_17
  article-title: An ensemble prediction system based on artificial neural networks and deep learning methods for deterministic and probabilistic carbon price forecasting
  publication-title: Front. Environ. Sci.
  doi: 10.3389/fenvs.2021.740093
– volume: 30
  start-page: 432
  year: 2012
  ident: ref_64
  article-title: Out-of-sample forecast tests robust to the choice of window size
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.2012.693850
– volume: 103
  start-page: 105622
  year: 2021
  ident: ref_54
  article-title: Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2021.105622
– ident: ref_18
  doi: 10.3390/en11071907
– volume: 84
  start-page: 104548
  year: 2019
  ident: ref_61
  article-title: Geopolitical risk and oil volatility: A new insight
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2019.104548
– volume: 324
  start-page: 119784
  year: 2022
  ident: ref_2
  article-title: Predicting China’s carbon price based on a multi-scale integrated model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119784
– volume: 153
  start-page: 113463
  year: 2020
  ident: ref_55
  article-title: An integrated early warning system for stock market turbulence
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113463
– volume: 24
  start-page: 49
  year: 1996
  ident: ref_41
  article-title: Stacked regressions
  publication-title: Mach. Learn.
  doi: 10.1007/BF00117832
– volume: 276
  start-page: 121231
  year: 2022
  ident: ref_38
  article-title: A stacked regression ensemble approach for the quantitative determination of biomass feedstock compositions using near infrared spectroscopy
  publication-title: Spectrochim. Acta Part Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2022.121231
– ident: ref_10
  doi: 10.2991/emeeit-15.2015.61
– volume: 68
  start-page: 15
  year: 2015
  ident: ref_40
  article-title: A robust semi-supervised learning approach via mixture of label information
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2015.08.009
– volume: 41
  start-page: 517
  year: 2013
  ident: ref_5
  article-title: Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology
  publication-title: Omega
  doi: 10.1016/j.omega.2012.06.005
– volume: 5
  start-page: 197
  year: 1990
  ident: ref_26
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116037
– volume: 5
  start-page: 241
  year: 1992
  ident: ref_27
  article-title: Stacked generalization
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 55
  start-page: 1249
  year: 2020
  ident: ref_15
  article-title: A novel decomposition-ensemble based carbon price forecasting model integrated with local polynomial prediction
  publication-title: Comput. Econ.
  doi: 10.1007/s10614-018-9862-1
– volume: 67
  start-page: 288
  year: 2022
  ident: ref_60
  article-title: Stock return prediction: Stacking a variety of models
  publication-title: J. Empir. Financ.
  doi: 10.1016/j.jempfin.2022.04.001
– volume: 32
  start-page: 407
  year: 2009
  ident: ref_8
  article-title: On the realized volatility of the ECX CO2 emissions 2008 futures contract: Distribution, dynamics and forecasting
  publication-title: Ann. Stat.
– ident: ref_16
  doi: 10.3390/en12020277
– volume: 12
  start-page: 55
  year: 1970
  ident: ref_70
  article-title: Ridge regression—Biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 282
  start-page: 124519
  year: 2021
  ident: ref_20
  article-title: Predicting carbon allowance prices with energy prices: A new approach
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124519
– ident: ref_33
  doi: 10.1109/CEC.2015.7256967
– volume: 21
  start-page: 1509
  year: 2007
  ident: ref_42
  article-title: Predicting excess stock returns out of sample: Can anything beat the historical average?
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/hhm055
– volume: 82
  start-page: 14689
  year: 2022
  ident: ref_36
  article-title: An ensemble approach using a frequency-based and stacking classifiers for effective facial expression recognition
  publication-title: Multimed. Tools Appl.
– volume: 762
  start-page: 143099
  year: 2021
  ident: ref_46
  article-title: An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143099
– volume: 79
  start-page: 453
  year: 2011
  ident: ref_58
  article-title: The model confidence set
  publication-title: Econometrica
  doi: 10.3982/ECTA5771
– ident: ref_66
  doi: 10.1007/978-1-4757-3264-1
– volume: 38
  start-page: 944
  year: 2022
  ident: ref_19
  article-title: Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2021.07.005
– volume: 42
  start-page: 3945
  year: 2015
  ident: ref_4
  article-title: Chaotic characteristic identification for carbon price and an multi-layer perceptron network prediction model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.12.047
– volume: 179
  start-page: 4097
  year: 2009
  ident: ref_34
  article-title: Troika—An improved stacking schema for classification tasks
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.08.025
– volume: 67
  start-page: 301
  year: 2005
  ident: ref_72
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B-Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 69
  start-page: 692
  year: 2017
  ident: ref_6
  article-title: Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.060
– volume: 216
  start-page: 132
  year: 2018
  ident: ref_21
  article-title: Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.003
– volume: 22
  start-page: 74
  year: 2020
  ident: ref_35
  article-title: A multitier stacked ensemble algorithm for improving classification accuracy
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2018.2873940
– ident: ref_37
  doi: 10.3390/jpm13020373
– volume: 70
  start-page: 143
  year: 2018
  ident: ref_13
  article-title: A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2017.12.030
– volume: 186
  start-page: 280
  year: 2015
  ident: ref_50
  article-title: Forecasting with factor-augmented regression: A frequentist model averaging approach
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2015.02.010
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_69
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 249
  start-page: 119386
  year: 2020
  ident: ref_3
  article-title: Carbon trading volume and price forecasting in China using multiple machine learning models
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119386
– volume: 64
  start-page: 307
  year: 1994
  ident: ref_53
  article-title: Autoregressive conditional heteroskedasticity and changes in regime
  publication-title: J. Econom.
  doi: 10.1016/0304-4076(94)90067-1
SSID ssj0000331333
Score 2.36238
Snippet Recently, carbon price forecasting has become critical for financial markets and environmental protection. Due to their dynamic, nonlinear, and high noise...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4520
SubjectTerms Algorithms
Artificial intelligence
Carbon
carbon pricing
carbon return forecasting
Climate change
Econometrics
ensemble learning
Financial markets
Forecasts and trends
improved stacking
investment guidance
Literature reviews
Machine learning
Neural networks
Stochastic models
Time series
Volatility
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYh9JAeSpsHdbotggRKDmZty1rLx92QkEMbQkjD3oQe43ZhVxvWm_z-zMhO6kNLLz3aHoM8Gs18I4--YexUOPDWmzw1UmVp6StIjS_q1KlmMlHZRNn4u-D-W3V9rebz-mbQ6otqwjp64E5x48x69OMY1DIPpc2cqcHIzKoGZNHkRYRGWVUPkqnog4XA5Et0fKQC8_oxBMQ2eSmpsfcgAkWi_r-54xhjLt-zdz045NNuUB_YDoR99nZAGXjAVtRL05mWqpU5gjd-Cxg0Al83_Nxs7Drw2MidL0J8Su2xoQX-PR5u5jOMWZ6jkAm8207AS8SbjjbM-UVoYWWXwKfLn-vNYvtrdch-XF7cnV-lfcuE1OFi3KZU1C-dIlY9hy41E8Zg_oDhydaiKZUphC-kEYoyo9JIh28hgLM1OGKFkV4csd2wDvCRcassEf8AAjIoC2gMJj-VM7mThW9g4hN29qJG7Xo-cWprsdSYV5DK9W-VJ-zkVfahY9H4o9SMZuNVgpiv4w20B93bg_6XPSTsK82lpvWJw3GmP2aAH0VMV3payaJEmJTXCRu9TLfuF26rMQNFyFYhyjv-H6P5xPaoP31XWzZiu9vNI3xmb9zTdtFuvkSbfQZzv_Ik
  priority: 102
  providerName: Directory of Open Access Journals
Title Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm
URI https://www.proquest.com/docview/2823997515
https://doaj.org/article/0bdcee9100de4b0ca9ea50b8fe52f12a
Volume 16
WOSCitedRecordID wos001005762700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5QAHyqdYaCtLICEOUZM43jgntFttBRK7WlWAysnyx6SttJuUzcKR386M4932UHrhEimJIznyeObN2H6PsXfCgbfeZImRKk0KX0JifF4lTtXDoUqHyoblgu9fytlMnZ1V81hw6-K2yo1PDI7at45q5EeYGmAsLTH8frz6mZBqFK2uRgmN-2yXmMrQznfHk9n8dFtlSYXAJEz0vKQC8_sjaBDjZIUkge8bkSgQ9v_LLYdYc7L3v718wh5HlMlHvVk8ZfegecYe3eAefM6WJMrpTEfbnjmiQH4KGH0a3tb82Kxs2_CgCM8vm_CWdLahAz4Np6T5GIOf59jINLyvS-AtAldHlXc-aTpY2gXw0eIce7e-WL5g304mX48_JVF7IXE4q9cJnQ6QThE9n0PfnApjMBHBOGcrURfK5MLn0ghFKVZhpMOvEAnaChzRy0gvXrKdpm3gFeNWWWIQAkR2UORQG8yiSmcyJ3Nfw9AP2IfNOGgXiclJH2OhMUGhMdPXYzZgb7dtr3o6jltbjWk4ty2IQjs8aFfnOs5InVqPAAHRUuqhsKkzFRiZWlWDzOssNwP2noxB00TH7jgTzyvgTxFllh6VMi8Qb2XVgO1vjEFHD9Dpa0t4fffrN-whSdj328_22c569QsO2AP3e33ZrQ6jQR-GWgFep38m-Gz-eTr_8ReG_AO9
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qKRKw4I0IFBgJEGJh1Z7xxPYCobS0atQkilBBZTXMy6VSYpc4gPgpvpF7_Ui7AHZdsLQ9tvw4vvfceZwD8EJY74zTUaBlGgaxS3ygHc8Cm-aDQRoOUlMPF3wcJ9NpenyczTbgV7cWhqZVdjGxDtSutNRHvo2lAebSBNPv27OvAblG0ehqZ6HRwOLQ__yBJVv1ZvQOv-9Lzvf3jnYPgtZVILCI11VA896lTUl4zmLUCYXWSLExgptM5HGquXBcapFS8RBrafEs5Dgm85aEU6QTeN0rsBkj2MMebM5Gk9mnda9OKAQWfaLRQRUiC7d9gZwqiiUZil_IfLVBwN_SQJ3b9m_9b2_lNtxsWTQbNrC_Axu-uAs3Lmgr3oMFmY5aXdG0boYsl733mF0LVuZsVy9NWbDa8Z6dFvVR8hH3lWeTehU428Hk7hg20gVr-l1wE4m5pZEFtldUfmHmng3nJ_g2Vl8W9-HDpTzvA-gVZeEfAjOpIYUkj8zVx9znGqvExOrISu5yP3B9eN19d2Vb4XXy_5grLMAII-ocI314vm571siN_LHVDsFn3YIkwusd5fJEtRFHhcYhAUI2GDofm9DqzGsZmjT3kucR1314ReBTFMjwdqxu12PgQ5EkmBomksfIJ6OsD1sd-FQb4Sp1jrxH_z78DK4dHE3GajyaHj6G6xxJYjPVbgt6q-U3_wSu2u-r02r5tP2ZGHy-bKT-BoU_WV8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCE48EYECqwECHGwYu_a8fqAUNImomqJogpQb8u-XColdokDiL_Gr2PGj7QH4NYDR3vXlh_fznyzO_sNwAthvTNOR4FOZBjELvWBdjwLrMyHQxkOpamXCz4dprOZPD7O5lvwq9sLQ2mVnU2sDbUrLc2RDzA0QF-aovsd5G1axHxv-vbsa0AVpGiltSun0UDkwP_8geFb9WZ_D__1S86nkw-774K2wkBgEbvrgHLgEytJhM6iBQqF1ki30ZqbTOSx1Fw4nmghKZCIdWLxKuQ7JvOWRFQSJ_C-V2A7FRj09GB7PJnNjzYzPKEQGACKRhNViCwc-AL5VRQnVFz8ghesiwX8zSXUfm5663_-QrfhZsuu2agZDndgyxd34cYFzcV7sKRipFZXlO7NkP2yI49et2Blznb1ypQFm5POEjst6laqL-4rz97Xu8PZGJ2-Y9hJF6yZj8FDJOyWVhzYpKj80iw8Gy1O8Gusvyzvw8dLed8H0CvKwj8EZqQh5SSPjNbH3Ocao8fU6sgm3OV-6PrwusOAsq0gO9UFWSgMzAgv6hwvfXi-6XvWyJD8sdeYoLTpQdLh9YlydaJaS6RC45AYIUsMnY9NaHXmdRIamfuE5xHXfXhFQFRk4PBxrG73aeBLkVSYGqUJj5FnRlkfdjogqtbyVeochY_-3fwMriE81eH-7OAxXOfIHZsMvB3orVff_BO4ar-vT6vV03ZcMfh82UD9DVYZYfk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+the+Return+of+Carbon+Price+in+the+Chinese+Market+Based+on+an+Improved+Stacking+Ensemble+Algorithm&rft.jtitle=Energies+%28Basel%29&rft.au=Ye%2C+Peng&rft.au=Li%2C+Yong&rft.au=Abu+Bakkar+Siddik&rft.date=2023-06-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=16&rft.issue=11&rft.spage=4520&rft_id=info:doi/10.3390%2Fen16114520&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon