Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid
Membranes assembled from two‐dimensional (2‐D) layered materials have shown potential use in water purification. Recently, a 2‐D graphitic carbon nitride (g‐C3N4) nanosheets membrane exhibits considerable separation performance in water purification. In this study, to further improve this water sepa...
Uložené v:
| Vydané v: | AIChE journal Ročník 64; číslo 6; s. 2181 - 2188 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
American Institute of Chemical Engineers
01.06.2018
|
| Predmet: | |
| ISSN: | 0001-1541, 1547-5905 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Membranes assembled from two‐dimensional (2‐D) layered materials have shown potential use in water purification. Recently, a 2‐D graphitic carbon nitride (g‐C3N4) nanosheets membrane exhibits considerable separation performance in water purification. In this study, to further improve this water separation performance, polyacrylic acid (PAA) was introduced to tune the nanochannels formed between the g‐C3N4 nanosheets. The fabricated g‐C3N4‐PAA hybrid membranes possessed higher water flux without sacrificing much rejection rate compared with that of the g‐C3N4 membrane; however, noticeable fouling was observed upon addition of the PAA into the membrane composite structure. In addition, the effect of PAA on the morphology, surface hydrophilicity, separation performance, and antifouling properties of the g‐C3N4 membrane were examined in detail. Overall, incorporating PAA into the g‐C3N4 nanosheets membrane was an effective and convenient method to improve the water separation performance, which could promote the application of the 2‐D g‐C3N4 nanosheets membrane in practical ultrafiltration processes. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2181–2188, 2018 |
|---|---|
| AbstractList | Membranes assembled from two‐dimensional (2‐D) layered materials have shown potential use in water purification. Recently, a 2‐D graphitic carbon nitride (g‐C3N4) nanosheets membrane exhibits considerable separation performance in water purification. In this study, to further improve this water separation performance, polyacrylic acid (PAA) was introduced to tune the nanochannels formed between the g‐C3N4 nanosheets. The fabricated g‐C3N4‐PAA hybrid membranes possessed higher water flux without sacrificing much rejection rate compared with that of the g‐C3N4 membrane; however, noticeable fouling was observed upon addition of the PAA into the membrane composite structure. In addition, the effect of PAA on the morphology, surface hydrophilicity, separation performance, and antifouling properties of the g‐C3N4 membrane were examined in detail. Overall, incorporating PAA into the g‐C3N4 nanosheets membrane was an effective and convenient method to improve the water separation performance, which could promote the application of the 2‐D g‐C3N4 nanosheets membrane in practical ultrafiltration processes. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2181–2188, 2018 Membranes assembled from two‐dimensional (2‐D) layered materials have shown potential use in water purification. Recently, a 2‐D graphitic carbon nitride (g‐C 3 N 4 ) nanosheets membrane exhibits considerable separation performance in water purification. In this study, to further improve this water separation performance, polyacrylic acid (PAA) was introduced to tune the nanochannels formed between the g‐C 3 N 4 nanosheets. The fabricated g‐C 3 N 4 ‐PAA hybrid membranes possessed higher water flux without sacrificing much rejection rate compared with that of the g‐C 3 N 4 membrane; however, noticeable fouling was observed upon addition of the PAA into the membrane composite structure. In addition, the effect of PAA on the morphology, surface hydrophilicity, separation performance, and antifouling properties of the g‐C 3 N 4 membrane were examined in detail. Overall, incorporating PAA into the g‐C 3 N 4 nanosheets membrane was an effective and convenient method to improve the water separation performance, which could promote the application of the 2‐D g‐C 3 N 4 nanosheets membrane in practical ultrafiltration processes. © 2018 American Institute of Chemical Engineers AIChE J , 64: 2181–2188, 2018 |
| Author | Liu, Lingfei Xue, Jian Hou, Jiamin Wang, Yanjie Ding, Li Wang, Haihui |
| Author_xml | – sequence: 1 givenname: Yanjie surname: Wang fullname: Wang, Yanjie organization: South China University of Technology – sequence: 2 givenname: Lingfei surname: Liu fullname: Liu, Lingfei organization: South China University of Technology – sequence: 3 givenname: Jian surname: Xue fullname: Xue, Jian email: xuejian@scut.edu.cn organization: South China University of Technology – sequence: 4 givenname: Jiamin surname: Hou fullname: Hou, Jiamin organization: South China University of Technology – sequence: 5 givenname: Li surname: Ding fullname: Ding, Li organization: South China University of Technology – sequence: 6 givenname: Haihui orcidid: 0000-0002-2917-4739 surname: Wang fullname: Wang, Haihui email: hhwang@scut.edu.cn organization: South China University of Technology |
| BookMark | eNp9kD1PwzAQhi1UJNrCwD-wxMSQ9pwPJx2rqkClSiwwR7ZzaVyldnAcQf49hjIhwXS6u-e9j3dGJsYaJOSWwYIBxEuh1YJxyPkFmbIszaNsBdmETAGARaHArsis748hi_MinpLj1jTCKKzou_DoaN0OH9Q3zg6Hhh6c6BrttaJKOGkNNdo7XSE1wti-QfQ9PeFJOmGQypFqo6zrrBNemwPtbDsK5cY26IXS1TW5rEXb481PnJPXh-3L5inaPz_uNut9pFIAHlWZ5KJKw3WSFyuGBSsSnrHQk4AsrhiXaZJLlfMUZFogopBxniOIAlZVHSdzcnee2zn7NmDvy6MdnAkryxiSpMgZJDxQ92dKOdv3Duuyc_ok3FgyKL-sLIOV5beVgV3-YpX24UlrvBO6_U_xrlsc_x5drnebs-IToTGIHg |
| CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_106458 crossref_primary_10_1016_j_memsci_2020_118146 crossref_primary_10_1016_j_scitotenv_2021_148462 crossref_primary_10_1002_cssc_201802235 crossref_primary_10_1016_j_cej_2024_151029 crossref_primary_10_1016_j_memsci_2018_10_017 crossref_primary_10_1016_j_jtice_2020_12_022 crossref_primary_10_1016_j_memsci_2021_119080 crossref_primary_10_1002_admi_202100962 crossref_primary_10_1002_aic_16812 crossref_primary_10_1016_j_cej_2021_129574 crossref_primary_10_1016_j_memsci_2019_117525 crossref_primary_10_1016_j_cjche_2019_05_016 crossref_primary_10_1002_aic_16699 crossref_primary_10_1016_j_cjche_2021_01_011 crossref_primary_10_1007_s11705_020_2016_8 crossref_primary_10_1016_j_memsci_2022_120736 crossref_primary_10_1016_j_cej_2023_148445 crossref_primary_10_1016_j_seppur_2020_117200 crossref_primary_10_3390_membranes10100295 crossref_primary_10_5004_dwt_2023_29448 crossref_primary_10_1080_15567036_2024_2418442 crossref_primary_10_1016_j_memsci_2024_123566 crossref_primary_10_1016_j_memsci_2019_05_031 crossref_primary_10_1002_aic_17419 crossref_primary_10_1016_j_watres_2021_117207 crossref_primary_10_1016_j_cjche_2019_07_011 crossref_primary_10_1002_aic_17818 crossref_primary_10_1016_j_jelechem_2023_117967 crossref_primary_10_1002_aic_17215 crossref_primary_10_1002_app_52767 crossref_primary_10_1016_j_desal_2022_116061 crossref_primary_10_1016_j_colsurfa_2023_131259 crossref_primary_10_1002_smll_201904590 crossref_primary_10_1016_j_cjche_2018_10_019 crossref_primary_10_1016_j_jcis_2020_06_027 crossref_primary_10_1016_j_desal_2022_115929 crossref_primary_10_1002_pen_26566 crossref_primary_10_1016_j_chemosphere_2023_140593 crossref_primary_10_1016_j_mtcomm_2021_102934 crossref_primary_10_1016_j_jcis_2021_10_162 crossref_primary_10_1002_aic_16879 crossref_primary_10_1016_j_cej_2022_137624 crossref_primary_10_1016_j_memsci_2019_117300 crossref_primary_10_1002_app_54514 crossref_primary_10_1016_j_memsci_2019_117308 crossref_primary_10_1016_j_chemosphere_2021_130616 crossref_primary_10_1016_j_memsci_2018_07_027 crossref_primary_10_1016_j_cej_2021_130955 crossref_primary_10_1016_j_memsci_2020_117883 crossref_primary_10_1016_j_chemosphere_2021_130898 crossref_primary_10_1038_s41545_022_00209_7 crossref_primary_10_1002_aic_16790 crossref_primary_10_1016_j_seppur_2022_122252 crossref_primary_10_1016_j_cjche_2018_08_019 crossref_primary_10_1002_adfm_202208959 crossref_primary_10_1016_j_seppur_2023_124177 crossref_primary_10_1016_j_memsci_2021_119397 crossref_primary_10_1002_aic_17795 crossref_primary_10_1080_01496395_2022_2145222 crossref_primary_10_1016_j_chemosphere_2022_134364 |
| Cites_doi | 10.1039/C5NR06321C 10.1021/jp810630k 10.1126/science.1212101 10.1002/anie.201609306 10.1016/j.memsci.2013.03.029 10.1021/nl200841a 10.1038/nnano.2009.90 10.1002/chem.200601759 10.1002/anie.201401061 10.1039/c3cc41953c 10.1039/c3nr03693f 10.1002/cssc.201402118 10.1039/C5NR08697C 10.1039/C4CC05295A 10.1016/j.colsurfa.2015.10.015 10.1002/aic.15500 10.1126/science.1245711 10.1002/aic.13898 10.1039/c2cy20036h 10.1039/c3cc46136j 10.1002/ange.201409563 10.1039/c1cc10720h 10.1002/aic.15013 10.1039/C4CS00423J 10.1016/j.memsci.2013.09.018 10.1002/aic.14462 10.1002/adfm.201200922 10.1002/anie.201404407 10.1021/la8040693 10.1002/aic.15115 10.1038/nmat2317 10.1038/ncomms3979 10.1021/nn304471w 10.1002/anie.201403946 10.1002/anie.201701288 10.1016/j.apsusc.2015.06.078 10.1021/nn4055682 10.1002/anie.201409783 10.1126/science.1236098 10.1126/science.1211694 10.1021/nn501786m 10.1039/c3nr02031b 10.1016/j.watres.2012.09.058 10.1016/j.apcatb.2014.01.023 10.1126/science.1254227 10.1016/j.carbon.2016.03.001 10.1038/natrevmats.2016.18 |
| ContentType | Journal Article |
| Copyright | 2018 American Institute of Chemical Engineers |
| Copyright_xml | – notice: 2018 American Institute of Chemical Engineers |
| DBID | AAYXX CITATION 7ST 7U5 8FD C1K L7M SOI |
| DOI | 10.1002/aic.16076 |
| DatabaseName | CrossRef Environment Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Solid State and Superconductivity Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1547-5905 |
| EndPage | 2188 |
| ExternalDocumentID | 10_1002_aic_16076 AIC16076 |
| Genre | article |
| GrantInformation_xml | – fundername: Natural Science Foundation of the Guangdong Province funderid: 2014A030312007; 2017A030310431 – fundername: Fundamental Research Funds for the Central Universities funderid: 2017BQ016 – fundername: Natural Science Foundation of China funderid: 21536005; 51621001; 21706076 – fundername: China Postdoctoral Science Foundation funderid: 2017M612665 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3EH 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6TJ 702 7PT 7XC 8-0 8-1 8-3 8-4 8-5 88I 8FE 8FG 8FH 8G5 8R4 8R5 8UM 8WZ 930 9M8 A03 A6W AAESR AAEVG AAHHS AAHQN AAIHA AAIKC AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDEX ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BLYAC BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 CZ9 D-E D-F D1I DCZOG DPXWK DR1 DR2 DRFUL DRSTM DWQXO EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA GUQSH H.T H.X HBH HCIFZ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KB. KC. KQQ L6V LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M2O M2P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PDBOC PQQKQ PRG PROAC PTHSS PYCSY Q.N Q11 Q2X QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 S0X SAMSI SUPJJ TAE TN5 TUS UAO UB1 UHS V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZE2 ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX ABJIA ADMLS AEFGJ AEYWJ AFFHD AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION O8X PHGZM PHGZT PQGLB 7ST 7U5 8FD C1K L7M SOI |
| ID | FETCH-LOGICAL-c4006-d5b6ad4782b6891e8183651400b0e12d16b437bc7640b48eeeab277e0a809df23 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000431733600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0001-1541 |
| IngestDate | Mon Nov 10 02:54:29 EST 2025 Sat Nov 29 07:23:30 EST 2025 Tue Nov 18 22:15:27 EST 2025 Wed Jan 22 16:33:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4006-d5b6ad4782b6891e8183651400b0e12d16b437bc7640b48eeeab277e0a809df23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2917-4739 |
| PQID | 2033871036 |
| PQPubID | 7879 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2033871036 crossref_primary_10_1002_aic_16076 crossref_citationtrail_10_1002_aic_16076 wiley_primary_10_1002_aic_16076_AIC16076 |
| PublicationCentury | 2000 |
| PublicationDate | June 2018 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: June 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | AIChE journal |
| PublicationYear | 2018 |
| Publisher | American Institute of Chemical Engineers |
| Publisher_xml | – name: American Institute of Chemical Engineers |
| References | 2009; 25 2017; 63 2013; 47 2013; 4 2013; 49 2015; 127 2015; 54 2013; 342 2011; 11 2009; 113 2016; 103 2016; 488 2013; 7 2014; 451 2013; 5 2014; 60 2015; 7 2007; 13 2014; 152–153 2013; 59 2012; 2 2016; 1 2013; 438 2015; 61 2015; 353 2015; 44 2017; 56 2016; 62 2009; 8 2009; 4 2011; 47 2012; 335 2014; 8 2014; 50 2014; 7 2012; 22 2016; 8 2014; 346 2014; 343 2014; 53 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
| References_xml | – volume: 343 start-page: 752 issue: 6172 year: 2014 end-page: 754 article-title: Precise and ultrafast molecular sieving through graphene oxide membranes publication-title: Science. – volume: 342 start-page: 91 issue: 6154 year: 2013 end-page: 95 article-title: Selective gas transport through few‐layered graphene and graphene oxide membranes publication-title: Science. – volume: 8 start-page: 5696 issue: 10 year: 2016 end-page: 5705 article-title: A reduced graphene oxide nanofiltration membrane intercalated by well‐dispersed carbon nanotubes for drinking water purification publication-title: Nanoscale. – volume: 8 start-page: 850 issue: 1 year: 2014 end-page: 859 article-title: Selective trans‐membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation‐Π interactions publication-title: ACS Nano. – volume: 113 start-page: 8668 issue: 20 year: 2009 end-page: 8672 article-title: Preparation and characterization of carbon nitride nanotubes and their applications as catalyst supporter publication-title: J Phys Chem C. – volume: 346 start-page: 1356 issue: 6215 year: 2014 end-page: 1359 article-title: Metal‐organic framework nanosheets as building blocks for molecular sieving membranes publication-title: Science. – volume: 49 start-page: 5963 issue: 53 year: 2013 end-page: 5965 article-title: Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes publication-title: Chem Commun. – volume: 56 start-page: 8974 issue: 31 year: 2017 end-page: 8980 article-title: Water transport with ultralow friction through partially exfoliated g‐C N nanosheet membranes with self‐supporting spacers publication-title: Angew Chem Int Ed. – volume: 7 start-page: 428 issue: 1 year: 2013 end-page: 437 article-title: Selective ion penetration of graphene oxide membranes publication-title: ACS Nano. – volume: 13 start-page: 4969 issue: 17 year: 2007 end-page: 4980 article-title: Unmasking melon by a complementary approach employing electron diffraction, solid‐state NMR spectroscopy, and theoretical calculations‐structural characterization of a carbon nitride polymer publication-title: Chem‐Eur J. – volume: 50 start-page: 13089 issue: 86 year: 2014 end-page: 13092 article-title: Graphene oxide membranes with tunable permeability due to embedded carbon dots publication-title: Chem Commun. – volume: 2 start-page: 1396 issue: 7 year: 2012 end-page: 1402 article-title: Metal‐free photocatalytic degradation of 4‐chlorophenol in water by mesoporous carbon nitride semiconductors publication-title: Catal Sci Technol. – volume: 59 start-page: 1245 issue: 4 year: 2013 end-page: 1254 article-title: Advanced FO membranes from newly synthesized CAP polymer for wastewater reclamation through an integrated FO‐MD hybrid system publication-title: AIChE J. – volume: 4 start-page: 353 issue: 6 year: 2009 end-page: 357 article-title: Ultrafast permeation of water through protein‐based membranes publication-title: Nat Nanotechnol. – volume: 7 start-page: 17649 issue: 42 year: 2015 end-page: 17652 article-title: Ultrathin membranes of single‐layered MoS nanosheets for high‐permeance hydrogen separation publication-title: Nanoscale. – volume: 61 start-page: 3146 issue: 10 year: 2015 end-page: 3158 article-title: Advanced technologies for water treatment and reuse publication-title: AIChE J. – volume: 7 start-page: 2125 issue: 8 year: 2014 end-page: 2132 article-title: Ultrathin graphitic C N nanosheets/graphene composites: efficient organic electrocatalyst for oxygen evolution reaction publication-title: ChemSusChem. – volume: 353 start-page: 499 year: 2015 end-page: 503 article-title: Interpolymer complexes of poly (acrylic acid) and poly (ethylene glycol) for low dishing in STI CMP publication-title: Appl Surf Sci. – volume: 335 start-page: 444 issue: 6067 year: 2012 end-page: 447 article-title: Ultrafast viscous permeation of organic solvents through diamond‐like carbon nanosheets publication-title: Science. – volume: 47 start-page: 5810 issue: 20 year: 2011 end-page: 5812 article-title: Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration publication-title: Chem Commun. – volume: 25 start-page: 8514 issue: 15 year: 2009 end-page: 8518 article-title: Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants publication-title: Langmuir. – volume: 49 start-page: 10718 issue: 91 year: 2013 end-page: 10720 article-title: Laminar MoS membranes for molecule separation publication-title: Chem Commun. – volume: 22 start-page: 4763 issue: 22 year: 2012 end-page: 4770 article-title: Graphene‐like carbon nitride nanosheets for improved photocatalytic activities publication-title: Adv Funct Mater. – volume: 63 start-page: 1272 issue: 4 year: 2017 end-page: 1277 article-title: Highly stable hydrophobic SiNCO nanoparticle‐modified silicon nitride membrane for zero‐discharge water desalination publication-title: AIChE J. – volume: 60 start-page: 2374 issue: 7 year: 2014 end-page: 2381 article-title: 2‐Dimensional zeolites publication-title: AIChE J. – volume: 8 start-page: 76 issue: 1 year: 2009 end-page: 80 article-title: A metal‐free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat Mater. – volume: 335 start-page: 442 issue: 6067 year: 2012 end-page: 444 article-title: Unimpeded permeation of water through helium‐leak‐tight graphene‐based membranes publication-title: Science. – volume: 103 start-page: 94 year: 2016 end-page: 100 article-title: Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification publication-title: Carbon. – volume: 54 start-page: 3368 issue: 11 year: 2015 end-page: 3386 article-title: Synthetic membranes for water purification: status and future publication-title: Angew Chem Int Ed. – volume: 152–153 start-page: 46 year: 2014 end-page: 50 article-title: Fabrication of atomic single layer graphitic‐C N and its high performance of photocatalytic disinfection under visible light irradiation publication-title: Appl Catal B: Environ. – volume: 47 start-page: 3931 issue: 12 year: 2013 end-page: 3946 article-title: Applications of nanotechnology in water and wastewater treatment publication-title: Water Res. – volume: 451 start-page: 94 year: 2014 end-page: 102 article-title: Development of novel SiO ‐GO nanohybrid/polysulfone membrane with enhanced performance publication-title: J Membr Sci. – volume: 5 start-page: 11604 issue: 23 year: 2013 end-page: 11609 article-title: Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping‐mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose publication-title: Nanoscale. – volume: 438 start-page: 18 year: 2013 end-page: 28 article-title: Effects of pH and salt on nanofiltration‐a critical review publication-title: J Membr Sci. – volume: 1 start-page: 16018 issue: 5 year: 2016 article-title: Materials for next‐generation desalination and water purification membranes publication-title: Nat Rev Mater. – volume: 53 start-page: 10286 issue: 39 year: 2014 end-page: 10288 article-title: Graphene oxide: a new platform for high‐performance gas‐ and liquid‐separation membranes publication-title: Angew Chem Int Ed. – volume: 8 start-page: 6304 issue: 6 year: 2014 end-page: 6311 article-title: Ultrafast molecule separation through layered WS nanosheet membranes publication-title: ACS Nano. – volume: 53 start-page: 6929 issue: 27 year: 2014 end-page: 6932 article-title: A graphene oxide membrane with highly selective molecular separation of aqueous organic solution publication-title: Angew Chem Int Ed. – volume: 4 start-page: 2979 year: 2013 article-title: Ultrafast viscous water flow through nanostrand channelled graphene oxide membranes publication-title: Nat Commun. – volume: 44 start-page: 5016 issue: 15 year: 2015 end-page: 5030 article-title: Graphene‐based membranes publication-title: Chem Soc Rev. – volume: 11 start-page: 2430 issue: 6 year: 2011 end-page: 2435 article-title: Diffusion and filtration properties of self‐assembled gold nanocrystal membranes publication-title: Nano Lett. – volume: 62 start-page: 538 issue: 2 year: 2016 end-page: 546 article-title: Ceramic tubular MOF hybrid membrane fabricated through in situ layer‐by‐layer self‐assembly for nanofiltration publication-title: AIChE J. – volume: 488 start-page: 15 year: 2016 end-page: 19 article-title: Determination of polyelectrolyte p values using surface‐to‐air tension measurements publication-title: Colloids Surf A Physicochem Eng Asp. – volume: 53 start-page: 7281 issue: 28 year: 2014 end-page: 7285 article-title: Graphitic carbon nitride nanosheet–carbon nanotube three‐dimensional porous composites as high‐performance oxygen evolution electrocatalysts publication-title: Angew Chem Int Ed. – volume: 56 start-page: 1825 issue: 7 year: 2017 end-page: 1829 article-title: A two‐dimensional lamellar membrane: MXene nanosheet stacks publication-title: Angew Chem Int Ed. – volume: 127 start-page: 588 issue: 2 year: 2015 end-page: 592 article-title: Membranes with fast and selective gas‐transport channels of laminar graphene oxide for efficient CO capture publication-title: Angew Chem Int Ed. – volume: 5 start-page: 8921 issue: 19 year: 2013 end-page: 8924 article-title: Ultrathin graphitic carbon nitride nanosheets: a low‐cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application publication-title: Nanoscale. – ident: e_1_2_6_19_1 doi: 10.1039/C5NR06321C – ident: e_1_2_6_44_1 doi: 10.1021/jp810630k – ident: e_1_2_6_11_1 doi: 10.1126/science.1212101 – ident: e_1_2_6_33_1 doi: 10.1002/anie.201609306 – ident: e_1_2_6_46_1 doi: 10.1016/j.memsci.2013.03.029 – ident: e_1_2_6_8_1 doi: 10.1021/nl200841a – ident: e_1_2_6_10_1 doi: 10.1038/nnano.2009.90 – ident: e_1_2_6_43_1 doi: 10.1002/chem.200601759 – ident: e_1_2_6_24_1 doi: 10.1002/anie.201401061 – ident: e_1_2_6_28_1 doi: 10.1039/c3cc41953c – ident: e_1_2_6_39_1 doi: 10.1039/c3nr03693f – ident: e_1_2_6_38_1 doi: 10.1002/cssc.201402118 – ident: e_1_2_6_29_1 doi: 10.1039/C5NR08697C – ident: e_1_2_6_31_1 doi: 10.1039/C4CC05295A – ident: e_1_2_6_47_1 doi: 10.1016/j.colsurfa.2015.10.015 – ident: e_1_2_6_7_1 doi: 10.1002/aic.15500 – ident: e_1_2_6_21_1 doi: 10.1126/science.1245711 – ident: e_1_2_6_3_1 doi: 10.1002/aic.13898 – ident: e_1_2_6_37_1 doi: 10.1039/c2cy20036h – ident: e_1_2_6_16_1 doi: 10.1039/c3cc46136j – ident: e_1_2_6_22_1 doi: 10.1002/ange.201409563 – ident: e_1_2_6_27_1 doi: 10.1039/c1cc10720h – ident: e_1_2_6_5_1 doi: 10.1002/aic.15013 – ident: e_1_2_6_14_1 doi: 10.1039/C4CS00423J – ident: e_1_2_6_32_1 doi: 10.1016/j.memsci.2013.09.018 – ident: e_1_2_6_18_1 doi: 10.1002/aic.14462 – ident: e_1_2_6_35_1 doi: 10.1002/adfm.201200922 – ident: e_1_2_6_15_1 doi: 10.1002/anie.201404407 – ident: e_1_2_6_9_1 doi: 10.1021/la8040693 – ident: e_1_2_6_13_1 doi: 10.1002/aic.15115 – ident: e_1_2_6_42_1 doi: 10.1038/nmat2317 – ident: e_1_2_6_48_1 doi: 10.1038/ncomms3979 – ident: e_1_2_6_26_1 doi: 10.1021/nn304471w – ident: e_1_2_6_34_1 doi: 10.1002/anie.201403946 – ident: e_1_2_6_41_1 doi: 10.1002/anie.201701288 – ident: e_1_2_6_45_1 doi: 10.1016/j.apsusc.2015.06.078 – ident: e_1_2_6_25_1 doi: 10.1021/nn4055682 – ident: e_1_2_6_2_1 doi: 10.1002/anie.201409783 – ident: e_1_2_6_23_1 doi: 10.1126/science.1236098 – ident: e_1_2_6_6_1 doi: 10.1126/science.1211694 – ident: e_1_2_6_17_1 doi: 10.1021/nn501786m – ident: e_1_2_6_40_1 doi: 10.1039/c3nr02031b – ident: e_1_2_6_12_1 doi: 10.1016/j.watres.2012.09.058 – ident: e_1_2_6_36_1 doi: 10.1016/j.apcatb.2014.01.023 – ident: e_1_2_6_20_1 doi: 10.1126/science.1254227 – ident: e_1_2_6_30_1 doi: 10.1016/j.carbon.2016.03.001 – ident: e_1_2_6_4_1 doi: 10.1038/natrevmats.2016.18 |
| SSID | ssj0012782 |
| Score | 2.5164905 |
| Snippet | Membranes assembled from two‐dimensional (2‐D) layered materials have shown potential use in water purification. Recently, a 2‐D graphitic carbon nitride... Membranes assembled from two‐dimensional (2‐D) layered materials have shown potential use in water purification. Recently, a 2‐D graphitic carbon nitride (g‐C... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2181 |
| SubjectTerms | Antifouling Antifouling substances Carbon Carbon nitride Composite structures g‐C3N4 nanosheets Layered materials membrane Membranes modification Nanoparticles Nanosheets Polyacrylic acid Purification Rejection rate Separation Ultrafiltration Water purification |
| Title | Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faic.16076 https://www.proquest.com/docview/2033871036 |
| Volume | 64 |
| WOSCitedRecordID | wos000431733600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1547-5905 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012782 issn: 0001-1541 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_q1Qd98FusVgniQ1-WZrPZJItPpfZQkCJioW9LJpmlV657Zfdqe_-9sx93raAg-LaQSQiTmZ1fJslvAD7kPsuMq2SSYpUnOqBJUAWX6GgVpZXzGF1fbMIeH7vT0-LbFnxcv4UZ-CE2CbfOM_r_defgHtv9W9JQPwtdasSae7Ct2G71BLY_fZ-efN0cIijrBrJw3jEzUkjXxEJS7W86_x6ObjHmXaTah5rp4_-a5BN4NCJMcTCYxFPYovoZPLzDO_gczo_qs_7kX1wz1GxENb-6EWPFHtFTWHd34kTwDS5qwU7fzCKJ2teL9oxo2YoLuuBZ1SRwJTp6h4ENmccWl4v5yodmNef-PsziCziZHv04_JyMRReSoLvsQszR-KhZdWhckRIH9MwwqpISJaUqpgZ1ZjFYoyVqR0QelbUkvZNFrFT2Eib1oqZXIKw3hipuyVHqUCC6TBZIlJJyuY12B_bWui_DyEjeFcaYlwOXsipZfWWvvh14vxG9HGg4_iS0u17AcvTEtlSSN-EMozJu3uuX6u8DlAdfDvuP1_8u-gYeMIZyw-2xXZgsmyt6C_fDz-Wsbd6NJvkLVV3lvA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_sWWj7YL8s9aNtKH3wZTGbzSZZ8EXUQ-n1KEXBtyWTzOKVc0_2Tu3992Y_7rSgUOjbQiYhTGZ2fpkkvwH4ltokUabgUYxFGkmHKkLhTCS9FhQXxqI3TbEJPRya8_Ps5wrsLd7CtPwQy4Rb7RnN_7p28DohvXvPGmpHrs6NaPUMVmUwo7QHq4e_-meD5SmC0KZlCw9b5gAV4gWzEBe7y85_x6N7kPkQqjaxpv_6_2b5BtY6jMn2W6N4CytUvoNXD5gH38Pvo_KiOftntwFsVqwYX_9hXc0e1pBY17fimLMVTkoW3L4aeWKlLSfTC6LZlF3SZZhWSQznrCZ4aPmQw9jsajKeW1fNx6G_dSO_Dmf9o9OD46gruxA5WecXfIrKehl0h8pkMYWQnqiAqzhHTrHwsUKZaHRaSY7SEJFFoTVxa3jmC5F8gF45KekjMG2VoiK0pMilyxBNwjMkikmYVHu9ATsL5eeu4ySvS2OM85ZNWeRBfXmjvg34uhS9aok4HhPaXqxg3vniNBc8bMMDkEpC806zVk8PkO-fHDQfm_8u-gVeHJ_-GOSDk-H3LXgZEJVp75JtQ29WXdMneO5uZqNp9bmzzzsXJOms |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-slqIPrf0QbW0bpA--LGaz2SQLfRH1qFQOEQXflkwyi1fOvWPv_Lj_3uzHnQoVCn0LZBLCJJP5ZZL8BuBHapNEmYJHMRZpJB2qCIUzkfRaUFwYi940ySZ0v28uL7PTJfg5_wvT8kMsAm61ZTT7dW3gNPbF3iNrqB24Ojai1StYkWmmglmuHJ71Lk4WtwhCm5YtPByZA1SI58xCXOwtGj_3R48g8ylUbXxN793_jXId3nYYk-23i-I9LFH5AdaeMA9-hD9H5VVz98_uAtisWDG8uWddzh7WkFjXr-KYsxWOShbMvhp4YqUtR5MroumEXdN1GFZJDGesJnho-ZBD32w8Gs6sq2bD0N66gf8EF72j84NfUZd2IXKyji_4FJX1MugOlcliCi49UQFXcY6cYuFjhTLR6LSSHKUhIotCa-LW8MwXItmA5XJU0iYwbZWiItSkyKXLEE3CMySKSZhUe70Fu3Pl567jJK9TYwzzlk1Z5EF9eaO-LdhZiI5bIo6_CW3PZzDvbHGSCx6O4QFIJaF6t5mrlzvI948PmsLnfxf9Dm9OD3v5yXH_9xdYDYDKtE_JtmF5Wt3QV3jtbqeDSfWtW54Pw5jpJw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+water+flux+through+graphitic+carbon+nitride+nanosheets+membrane+by+incorporating+polyacrylic+acid&rft.jtitle=AIChE+journal&rft.au=Wang%2C+Yanjie&rft.au=Liu%2C+Lingfei&rft.au=Xue%2C+Jian&rft.au=Hou%2C+Jiamin&rft.date=2018-06-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=64&rft.issue=6&rft.spage=2181&rft.epage=2188&rft_id=info:doi/10.1002%2Faic.16076&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon |