Alternative direction for 3D orthogonal frequency division multiplexing massive MIMO FDD channel estimation and feedback

In this study, downlink channel estimation of three-dimensional massive multiple-input multiple-output (3D-MIMO) system operating in the frequency division duplexing (FDD) mode is considered. Inspired by the channel sparsity property, this study proposes a compressive sensing algorithm to exploit th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET communications Jg. 12; H. 11; S. 1380 - 1388
Hauptverfasser: Nasser, Ahmed, Elsabrouty, Maha, Muta, Osamu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: The Institution of Engineering and Technology 17.07.2018
Schlagworte:
BS
ISSN:1751-8628, 1751-8636
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this study, downlink channel estimation of three-dimensional massive multiple-input multiple-output (3D-MIMO) system operating in the frequency division duplexing (FDD) mode is considered. Inspired by the channel sparsity property, this study proposes a compressive sensing algorithm to exploit the channel sparsity structure in the angle–time domain. The proposed algorithm, named AMP-ADM, combines the multiple approximate message passing (M-AMP) algorithm with the alternative direction of multiplier (ADM) technique to efficiently exploit the sparsity structure of the 3D massive MIMO channel. First, the proposed AMP-ADM is implemented in the case of the conventional estimation for the FDD protocol where the channel is estimated individually at each user equipment. Then, building on this algorithm, a low complexity feedback AMP-ADM-T scheme at the transmitting base station (BS) side is proposed. In the proposed feedback AMP-ADM-T technique the users' channels are jointly estimated at the BS to fully exploit the common sparsity basis. Complexity and convergence analyses are provided for both the AMP-ADM and feedback AMP-ADM-T algorithms. Simulation results prove the improved performance of the proposed feedback AMP-ADM-T algorithm compared to different state-of-the-art joint channel estimation techniques.
AbstractList In this study, downlink channel estimation of three‐dimensional massive multiple‐input multiple‐output (3D‐MIMO) system operating in the frequency division duplexing (FDD) mode is considered. Inspired by the channel sparsity property, this study proposes a compressive sensing algorithm to exploit the channel sparsity structure in the angle–time domain. The proposed algorithm, named AMP‐ADM, combines the multiple approximate message passing (M‐AMP) algorithm with the alternative direction of multiplier (ADM) technique to efficiently exploit the sparsity structure of the 3D massive MIMO channel. First, the proposed AMP‐ADM is implemented in the case of the conventional estimation for the FDD protocol where the channel is estimated individually at each user equipment. Then, building on this algorithm, a low complexity feedback AMP‐ADM‐T scheme at the transmitting base station (BS) side is proposed. In the proposed feedback AMP‐ADM‐T technique the users' channels are jointly estimated at the BS to fully exploit the common sparsity basis. Complexity and convergence analyses are provided for both the AMP‐ADM and feedback AMP‐ADM‐T algorithms. Simulation results prove the improved performance of the proposed feedback AMP‐ADM‐T algorithm compared to different state‐of‐the‐art joint channel estimation techniques.
Author Nasser, Ahmed
Elsabrouty, Maha
Muta, Osamu
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Nasser
  fullname: Nasser, Ahmed
  email: ahmed.nasser@ejust.edu.eg
  organization: 1Electronics and Communication Department, Egypt-Japan University of Science and Technology, Burg El-Arab, Alexandria, Egypt
– sequence: 2
  givenname: Maha
  surname: Elsabrouty
  fullname: Elsabrouty, Maha
  organization: 1Electronics and Communication Department, Egypt-Japan University of Science and Technology, Burg El-Arab, Alexandria, Egypt
– sequence: 3
  givenname: Osamu
  surname: Muta
  fullname: Muta, Osamu
  organization: 2Center for Japan-Egypt Cooperation in Science and Technology, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi 819-0385, Japan
BookMark eNqFkcFSwjAURTOOzojoB7jLDxSTpm2oOwRRZmDcyLoT0hcIhkSToPD3tuC4cIGrl8U99yUnV-jcOgsI3VLSoyQr7zTERLpNLyWU90hJizPUoTynSb9gxfnvOe1foqsQ1oTkeZFlHbQbmAjeiqg_Adfag4zaWaycx2yEnY8rt3RWGKw8fGzByn2T-tShDW22Jup3Azttl3gjQmg7ZpPZCx6PRliuhLVgMISoN-LQKmyNFUC9EPLtGl0oYQLc_Mwumo8fX4fPyfTlaTIcTBOZEcISQUrIOc-aUWSKqTqt6zIvUkEXqs6J6HMhUiYZ9LOUinzBGZcgKU15XtYKCtZF9NgrvQvBg6refXMfv68oqVp1VaOuatRVrbqqVdcw_A8jdTw8IXqhzUny_kh-aQP7_1dVw9k8fRgTknHWwMkRbmNrt22-xYQTy74BTT6bNQ
CitedBy_id crossref_primary_10_1049_iet_spr_2018_5577
crossref_primary_10_1049_iet_com_2018_5134
crossref_primary_10_1109_LCOMM_2020_3017188
crossref_primary_10_1002_dac_5663
crossref_primary_10_1109_TCCN_2024_3427781
crossref_primary_10_1109_ACCESS_2019_2920861
Cites_doi 10.1016/j.sigpro.2005.05.030
10.1561/2200000016
10.1109/VTCSpring.2016.7504492
10.1109/MCOM.2010.5621984
10.1109/TSP.2014.2369005
10.1109/TSP.2005.849172
10.1109/TSP.2015.2463260
10.1109/TWC.2016.2612629
10.1109/TIT.2012.2189196
10.1017/CBO9780511807213
10.1109/ISCC.2016.7543870
10.1109/ACCESS.2016.2623772
10.1109/VTCSpring.2013.6691857
10.1109/GLOCOM.2013.6831581
10.1109/TVT.2007.905621
10.1109/JSAC.2013.130214
10.1109/ICC.2016.7511075
10.1109/WCNC.2013.6555020
10.1109/JSTSP.2014.2317671
10.1109/TSP.2014.2324991
10.1109/TWC.2014.2365813
10.1109/MCOM.2014.6736761
10.1137/100785028
10.1109/MCOM.2016.7402270
10.1109/JPROC.2010.2042415
10.1109/MSP.2007.914731
10.1049/el.2014.0985
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2021 The Institution of Engineering and Technology
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2021 The Institution of Engineering and Technology
DBID AAYXX
CITATION
DOI 10.1049/iet-com.2017.0916
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8636
EndPage 1388
ExternalDocumentID 10_1049_iet_com_2017_0916
CMU2BF00473
Genre article
GrantInformation_xml – fundername: Ministry of Higher Education
– fundername: Egypt japan university of science and technology
– fundername: Egyptian Ministry of Higher Education (MOHE)
– fundername: Egypt Japan University of Science and Technology (E‐JUST)
GroupedDBID 0R
24P
29I
4IJ
5GY
6IK
8VB
AAJGR
ABPTK
ACGFS
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
BFFAM
CS3
DU5
ESX
HZ
IFIPE
IPLJI
JAVBF
LAI
LOTEE
LXI
M43
MS
NADUK
NXXTH
O9-
OCL
QWB
RIE
RNS
RUI
U5U
UNMZH
ZL0
ZZ
.DC
0R~
0ZK
1OC
2QL
4.4
6OB
8FE
8FG
96U
AAHHS
AAHJG
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACXQS
ADEYR
AEEZP
AEGXH
AEQDE
AFAZI
AFKRA
AIAGR
AIWBW
AJBDE
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
ITC
K1G
L6V
M7S
MCNEO
MS~
OK1
P62
PTHSS
ROL
S0W
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ID FETCH-LOGICAL-c4003-a09e577409e64f3fd2dd9562a1bfd50a87aa23c3e8421a5b737cec112759dfe63
IEDL.DBID 24P
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436267700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8628
IngestDate Tue Nov 18 22:14:08 EST 2025
Wed Oct 29 21:24:09 EDT 2025
Wed Jan 22 16:32:20 EST 2025
Tue Jan 05 21:45:53 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords compressed sensing
convergence
user equipment
conventional estimation
complexity analysis
multiple approximate message passing algorithm
compressive sensing algorithm
feedback
multiplier technique
BS
3D massive MIMO channel
user channels
frequency division duplexing mode
three-dimensional massive multiple-input multiple-output system
OFDM modulation
wireless channels
3D orthogonal frequency division multiplexing massive MIMO FDD channel estimation
alternative direction of multiplier technique
3D-MIMO system
MIMO communication
FDD protocol
message passing
low complexity feedback AMP-ADM-T scheme
common sparsity basis
channel sparsity structure
angle–time domain
channel estimation
convergence analysis
M-AMP algorithm
frequency division multiplexing
joint channel estimation techniques
channel sparsity property
downlink channel estimation
transmitting base station
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4003-a09e577409e64f3fd2dd9562a1bfd50a87aa23c3e8421a5b737cec112759dfe63
PageCount 9
ParticipantIDs iet_journals_10_1049_iet_com_2017_0916
crossref_primary_10_1049_iet_com_2017_0916
crossref_citationtrail_10_1049_iet_com_2017_0916
wiley_primary_10_1049_iet_com_2017_0916_CMU2BF00473
ProviderPackageCode RUI
PublicationCentury 2000
PublicationDate 2018-07-17
PublicationDateYYYYMMDD 2018-07-17
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-17
  day: 17
PublicationDecade 2010
PublicationTitle IET communications
PublicationYear 2018
Publisher The Institution of Engineering and Technology
Publisher_xml – name: The Institution of Engineering and Technology
References Bj, E.; Larsson, E.G.; Marzetta, T.L. (C4) 2016; 54
Rao, X.; Lau, V.K. (C6) 2014; 62
Boyd, S.; Parikh, N.; Chu, E. (C16) 2011; 3
Lee, K.; Bresler, Y.; Junge, M. (C26) 2012; 58
Masood, M.; Afify, L.H.; Al-Naffouri, T.Y. (C5) 2015; 63
Xie, H.; Gao, F.; Jin, S. (C20) 2016; 4
Wen, C.K.; Jin, S.; Wong, K.K. (C9) 2015; 14
Huang, L.; Ho, C.K.; Bergmans, J.W. (C19) 2008; 57
Tropp, J.A.; Gilbert, A.C.; Strauss, M.J. (C27) 2006; 86
Berger, C.R.; Wang, Z.; Huang, J. (C22) 2010; 48
Cotter, S.F.; Rao, B.D.; Engan, K. (C28) 2005; 53
Gao, Z.; Dai, L.; Wang, Z. (C12) 2015; 63
Bajwa, W.U.; Haupt, J.; Sayeed, A.M. (C8) 2010; 98
Gao, Z.; Dai, L.; Wang, Z. (C21) 2014; 50
Lu, L.; Li, G.Y.; Swindlehurst, A.L. (C2) 2014; 8
Candès, E.J.; Wakin, M.B. (C7) 2008; 25
Wu, S.; Kuang, L.; Ni, Z. (C14) 2016; 15
Larson, E.; Edfors, O.; Tufvesson, F. (C1) 2014; 52
Van den Berg, E.; Friedlander, M.P. (C25) 2011; 21
Yin, H.; Gesbert, D.; Filippou, M. (C18) 2013; 31
2016; 4
2010; 98
2015; 14
2010; 48
2006; 86
2011
2015; 63
2013; 31
2016; 54
2008; 25
2007
2005; 53
2008; 57
2011; 21
2016
2005
2013
2014; 52
2012; 58
2014; 8
2014; 62
2011; 3
2014; 50
2016; 15
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
Deng W. (e_1_2_7_16_1) 2011
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 21
  start-page: 1201
  issue: 4
  year: 2011
  end-page: 1229
  ident: C25
  article-title: Sparse optimization with least-squares constraints
  publication-title: SIAM J. Optim.
– volume: 63
  start-page: 6169
  issue: 23
  year: 2015
  end-page: 6183
  ident: C12
  article-title: Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO
  publication-title: IEEE Trans. Signal Process.
– volume: 48
  start-page: 164
  issue: 11
  year: 2010
  end-page: 174
  ident: C22
  article-title: Application of compressive sensing to sparse channel estimation
  publication-title: IEEE Commun. Mag.
– volume: 15
  start-page: 8122
  issue: 12
  year: 2016
  end-page: 8138
  ident: C14
  article-title: Message-passing receiver for joint channel estimation and decoding in 3D massive MIMO-OFDM systems
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 63
  start-page: 104
  issue: 1
  year: 2015
  end-page: 118
  ident: C5
  article-title: Efficient coordinated recovery of sparse channels in massive MIMO
  publication-title: IEEE Trans. Signal Process.
– volume: 31
  start-page: 264
  issue: 2
  year: 2013
  end-page: 273
  ident: C18
  article-title: A coordinated approach to channel estimation in large-scale multiple-antenna systems
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 57
  start-page: 906
  issue: 2
  year: 2008
  end-page: 920
  ident: C19
  article-title: Pilot-aided angle-domain channel estimation techniques for MIMO-OFDM systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: 50
  start-page: 896
  issue: 12
  year: 2014
  end-page: 898
  ident: C21
  article-title: Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems
  publication-title: IET Electron. Lett.
– volume: 8
  start-page: 742
  issue: 5
  year: 2014
  end-page: 758
  ident: C2
  article-title: An overview of massive MIMO: benefits and challenges
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 52
  start-page: 186
  issue: 2
  year: 2014
  end-page: 195
  ident: C1
  article-title: Massive MIMO for next generation wireless systems
  publication-title: IEEE Commun. Mag.
– volume: 4
  start-page: 7313
  year: 2016
  end-page: 7321
  ident: C20
  article-title: An overview of low-rank channel estimation for massive MIMO systems
  publication-title: IEEE Access
– volume: 54
  start-page: 114
  issue: 2
  year: 2016
  end-page: 123
  ident: C4
  article-title: Massive MIMO: ten myths and one critical question
  publication-title: IEEE Commun. Mag.
– volume: 14
  start-page: 1356
  issue: 3
  year: 2015
  end-page: 1368
  ident: C9
  article-title: Channel estimation for massive MIMO using Gaussian-mixture Bayesian learning
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 25
  start-page: 21
  issue: 2
  year: 2008
  end-page: 30
  ident: C7
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process. Mag.
– volume: 53
  start-page: 2477
  issue: 7
  year: 2005
  end-page: 2488
  ident: C28
  article-title: Sparse solutions to linear inverse problems with multiple measurement vectors
  publication-title: IEEE Trans. Signal Process.
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  ident: C16
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 62
  start-page: 3261
  issue: 12
  year: 2014
  end-page: 3271
  ident: C6
  article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems
  publication-title: IEEE Trans. Signal Process.
– volume: 98
  start-page: 1058
  issue: 6
  year: 2010
  end-page: 1076
  ident: C8
  article-title: Compressed channel sensing: a new approach to estimating sparse multipath channels
  publication-title: Proc. IEEE
– volume: 58
  start-page: 3613
  issue: 6
  year: 2012
  end-page: 3641
  ident: C26
  article-title: Subspace methods for joint sparse recovery
  publication-title: IEEE Trans. Inf. Theory
– volume: 86
  start-page: 572
  issue: 3
  year: 2006
  end-page: 588
  ident: C27
  article-title: Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
  publication-title: Signal Process.
– volume: 98
  start-page: 1058
  issue: 6
  year: 2010
  end-page: 1076
  article-title: Compressed channel sensing: a new approach to estimating sparse multipath channels
  publication-title: Proc. IEEE
– volume: 4
  start-page: 7313
  year: 2016
  end-page: 7321
  article-title: An overview of low‐rank channel estimation for massive MIMO systems
  publication-title: IEEE Access
– volume: 54
  start-page: 114
  issue: 2
  year: 2016
  end-page: 123
  article-title: Massive MIMO: ten myths and one critical question
  publication-title: IEEE Commun. Mag.
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends Mach. Learn.
– volume: 62
  start-page: 3261
  issue: 12
  year: 2014
  end-page: 3271
  article-title: Distributed compressive CSIT estimation and feedback for FDD multi‐user massive MIMO systems
  publication-title: IEEE Trans. Signal Process.
– volume: 63
  start-page: 6169
  issue: 23
  year: 2015
  end-page: 6183
  article-title: Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO
  publication-title: IEEE Trans. Signal Process.
– year: 2005
– volume: 8
  start-page: 742
  issue: 5
  year: 2014
  end-page: 758
  article-title: An overview of massive MIMO: benefits and challenges
  publication-title: IEEE J. Sel. Top. Signal Process.
– year: 2007
– volume: 57
  start-page: 906
  issue: 2
  year: 2008
  end-page: 920
  article-title: Pilot‐aided angle‐domain channel estimation techniques for MIMO‐OFDM systems
  publication-title: IEEE Trans. Veh. Technol.
– volume: 52
  start-page: 186
  issue: 2
  year: 2014
  end-page: 195
  article-title: Massive MIMO for next generation wireless systems
  publication-title: IEEE Commun. Mag.
– volume: 48
  start-page: 164
  issue: 11
  year: 2010
  end-page: 174
  article-title: Application of compressive sensing to sparse channel estimation
  publication-title: IEEE Commun. Mag.
– start-page: 1018
  year: 2016
  end-page: 1023
– start-page: 1
  year: 2013
  end-page: 6
– volume: 50
  start-page: 896
  issue: 12
  year: 2014
  end-page: 898
  article-title: Structured compressive sensing based superimposed pilot design in downlink large‐scale MIMO systems
  publication-title: IET Electron. Lett.
– start-page: 3300
  year: 2013
  end-page: 3305
– volume: 25
  start-page: 21
  issue: 2
  year: 2008
  end-page: 30
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process. Mag.
– volume: 15
  start-page: 8122
  issue: 12
  year: 2016
  end-page: 8138
  article-title: Message‐passing receiver for joint channel estimation and decoding in 3D massive MIMO‐OFDM systems
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 31
  start-page: 264
  issue: 2
  year: 2013
  end-page: 273
  article-title: A coordinated approach to channel estimation in large‐scale multiple‐antenna systems
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 58
  start-page: 3613
  issue: 6
  year: 2012
  end-page: 3641
  article-title: Subspace methods for joint sparse recovery
  publication-title: IEEE Trans. Inf. Theory
– volume: 86
  start-page: 572
  issue: 3
  year: 2006
  end-page: 588
  article-title: Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
  publication-title: Signal Process.
– volume: 21
  start-page: 1201
  issue: 4
  year: 2011
  end-page: 1229
  article-title: Sparse optimization with least‐squares constraints
  publication-title: SIAM J. Optim.
– start-page: 2890
  year: 2013
  end-page: 2895
– volume: 63
  start-page: 104
  issue: 1
  year: 2015
  end-page: 118
  article-title: Efficient coordinated recovery of sparse channels in massive MIMO
  publication-title: IEEE Trans. Signal Process.
– start-page: 1
  year: 2016
  end-page: 6
– volume: 14
  start-page: 1356
  issue: 3
  year: 2015
  end-page: 1368
  article-title: Channel estimation for massive MIMO using Gaussian‐mixture Bayesian learning
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 53
  start-page: 2477
  issue: 7
  year: 2005
  end-page: 2488
  article-title: Sparse solutions to linear inverse problems with multiple measurement vectors
  publication-title: IEEE Trans. Signal Process.
– start-page: TR11‐06
  year: 2011
– ident: e_1_2_7_28_1
  doi: 10.1016/j.sigpro.2005.05.030
– ident: e_1_2_7_17_1
  doi: 10.1561/2200000016
– ident: e_1_2_7_4_1
  doi: 10.1109/VTCSpring.2016.7504492
– ident: e_1_2_7_23_1
  doi: 10.1109/MCOM.2010.5621984
– ident: e_1_2_7_6_1
  doi: 10.1109/TSP.2014.2369005
– ident: e_1_2_7_29_1
  doi: 10.1109/TSP.2005.849172
– ident: e_1_2_7_13_1
  doi: 10.1109/TSP.2015.2463260
– ident: e_1_2_7_11_1
– ident: e_1_2_7_15_1
  doi: 10.1109/TWC.2016.2612629
– ident: e_1_2_7_27_1
  doi: 10.1109/TIT.2012.2189196
– ident: e_1_2_7_18_1
  doi: 10.1017/CBO9780511807213
– ident: e_1_2_7_12_1
  doi: 10.1109/ISCC.2016.7543870
– ident: e_1_2_7_21_1
  doi: 10.1109/ACCESS.2016.2623772
– ident: e_1_2_7_25_1
  doi: 10.1109/VTCSpring.2013.6691857
– ident: e_1_2_7_14_1
  doi: 10.1109/GLOCOM.2013.6831581
– ident: e_1_2_7_20_1
  doi: 10.1109/TVT.2007.905621
– start-page: TR11‐06
  volume-title: Group sparse optimization by alternating direction method
  year: 2011
  ident: e_1_2_7_16_1
– ident: e_1_2_7_19_1
  doi: 10.1109/JSAC.2013.130214
– ident: e_1_2_7_24_1
  doi: 10.1109/ICC.2016.7511075
– ident: e_1_2_7_30_1
  doi: 10.1109/WCNC.2013.6555020
– ident: e_1_2_7_3_1
  doi: 10.1109/JSTSP.2014.2317671
– ident: e_1_2_7_7_1
  doi: 10.1109/TSP.2014.2324991
– ident: e_1_2_7_10_1
  doi: 10.1109/TWC.2014.2365813
– ident: e_1_2_7_2_1
  doi: 10.1109/MCOM.2014.6736761
– ident: e_1_2_7_26_1
  doi: 10.1137/100785028
– ident: e_1_2_7_5_1
  doi: 10.1109/MCOM.2016.7402270
– ident: e_1_2_7_9_1
  doi: 10.1109/JPROC.2010.2042415
– ident: e_1_2_7_8_1
  doi: 10.1109/MSP.2007.914731
– ident: e_1_2_7_22_1
  doi: 10.1049/el.2014.0985
SSID ssj0055644
Score 2.1983917
Snippet In this study, downlink channel estimation of three-dimensional massive multiple-input multiple-output (3D-MIMO) system operating in the frequency division...
In this study, downlink channel estimation of three‐dimensional massive multiple‐input multiple‐output (3D‐MIMO) system operating in the frequency division...
SourceID crossref
wiley
iet
SourceType Enrichment Source
Index Database
Publisher
StartPage 1380
SubjectTerms 3D massive MIMO channel
3D orthogonal frequency division multiplexing massive MIMO FDD channel estimation
3D‐MIMO system
alternative direction of multiplier technique
angle–time domain
channel estimation
channel sparsity property
channel sparsity structure
common sparsity basis
complexity analysis
compressed sensing
compressive sensing algorithm
conventional estimation
convergence
convergence analysis
downlink channel estimation
FDD protocol
feedback
frequency division duplexing mode
frequency division multiplexing
joint channel estimation techniques
low complexity feedback AMP‐ADM‐T scheme
message passing
MIMO communication
multiple approximate message passing algorithm
multiplier technique
M‐AMP algorithm
OFDM modulation
Research Article
three‐dimensional massive multiple‐input multiple‐output system
transmitting base station
user channels
user equipment
wireless channels
Title Alternative direction for 3D orthogonal frequency division multiplexing massive MIMO FDD channel estimation and feedback
URI http://digital-library.theiet.org/content/journals/10.1049/iet-com.2017.0916
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-com.2017.0916
Volume 12
WOSCitedRecordID wos000436267700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8628
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA86PejBb3F-kYN4EKJN0jbpUTeHO2x6UPRW0jQRUafMOeZ_73ttNxyCgnhoC2nyCO8leb8k74OQAxFnPPA-YlHmAxYaHbNM-oTBo4XKjAisLZJNqG5X390lVzOkMfaFKeNDTA7ccGYU6zVOcJOVWUgA1IIQH9yAocEHaDB1DFovniVznEuN-RtEeDVejqMoLjK6gprkDOC7nlxtJiffSEwpp1n4PQ1ZC53TWv6X3q6QpQpy0tNyjKySGddbI4tfAhGuk9HpU3UwOHS01HIgLwqAlsomxaudl3uE7NT3S9PrD4p-XHjSRscmiSOgRJ8BiyONTrtzSVvNJkXHYug7xWAepZckNb2celCambGPG-SmdX7duGBVTgZmQzRjM0HiIoCM8IlDL30u8hy2WMLwzOdRYLQyRkgrnQ4FN1GmpLLOcgwjn-TexXKT1HovPbdFKDci1kluQm5FqNAJ1nCnVC4S5WHb4-okGAsjtVXAcsyb8ZQWF-dhkgJTU2BqikxNkal1cjRp8lpG6_ip8iGWVXP27aeKshDt7yTTRudGnLUwBKfc_lOrHbIA5ZoVoTt3SW3Qf3d7ZN4OBw9v_f1iZMP7tt39BMZU_SI
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fT9swED5BhwQ8sA2GKGzDDxMPSIbEduLkEegqKmjHAwjeIsexJwS0qC1V-e-5S9JqaBKT0B6iSIltWecf9_l89x3ADxHnYeB9xKPcB1yZJOa59CnHJxE6NyKwtkw2oXu95OYmvViA1iwWpuKHmBvcaGWU-zUtcDJIVwdORSSZt27MyeMDVZg-QLUXL8IHhYCDEjhcd3qz_TiK4jKlK-rJkCN-T-Z3m-nhX0280k6L-Ps1Zi2VTvvj_-nuJ1irQSc7qmbJZ1hw_XVY_YOKcAOmR_e1aXDiWKXncMQYQlomW4wudwa_CbQzP6ycr58ZRXKRrY3NnBKn2BJ7QDRObXQ73V-s3WoxCi3GzjOi86jiJJnpF8yj2syNvfsCV-2flyenvM7KwK0iRzYTpC5C0IivWHnpC1EUeMgSJsx9EQUm0cYIaaVLlAhNlGuprbMhEcmnhXex3IRGf9B3W8BCI-IkLYwKrVCawmBN6LQuRKo9HnxcE4LZaGS2piynzBn3WXl1rtIMhZqhUDMSakZCbcL-vMpjxdfxVuE9-lav2tFbBWU5tv9uMjvpXonjNpFwyu131dqF5dPL7nl23umd7cAKlkl4SeT5FRrj4ZP7Bkt2Mr4dDb-X0_wFg9kAeg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS9xAEB_8KKV9UNtaatW6D6UPha3Zj2STR2sMFb3rPVTwLWz2Q6T2lPMq9r_vTJI7KoIF8SEEkt1hmf2Y3-7O_Abgo8wakcSY8rSJCdc2z3ijYsHxyaVprEyca5NNmOEwPz0tRgtQzmJhOn6I-YEbzYx2vaYJHq587Dacmkgyz8OUk8cHmjDzBc1etgjLOjWCxrbUo9l6nKZZm9IV7aTgiN_z-d1msXtPxB3rtIi_72LW1uhUq0_T3DVY6UEn2-tGyStYCOPX8PIfKsI3cLt30R8N3gTW2TnsMYaQlqmS0eXO5RmBdhYnnfP1H0aRXHTWxmZOibcoif1CNE4yBoeD76wqS0ahxdh4RnQeXZwks2PPIprNxrqf63BSHfzY_8b7rAzcaXJks0kRUgSN-Mp0VNFL73GTJa1ook8TmxtrpXIq5FoKmzZGGRecICL5wseQqbewNL4ch3fAhJVZXnirhZPaUBisFcEYLwsTceMTNiCZ9UbtespyypxxUbdX57qoUak1KrUmpdak1A34PK9y1fF1PFT4E33rZ-31QwVV27f_F1nvD07k14pIONX7R9XageejsqqPD4dHm_ACi-S85fHcgqXp5HfYhmfuZnp-PfnQjvK_jb3_gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alternative+direction+for+3D+orthogonal+frequency+division+multiplexing+massive+MIMO+FDD+channel+estimation+and+feedback&rft.jtitle=IET+communications&rft.au=Nasser%2C+Ahmed&rft.au=Elsabrouty%2C+Maha&rft.au=Muta%2C+Osamu&rft.date=2018-07-17&rft.issn=1751-8628&rft.eissn=1751-8636&rft.volume=12&rft.issue=11&rft.spage=1380&rft.epage=1388&rft_id=info:doi/10.1049%2Fiet-com.2017.0916&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_iet_com_2017_0916
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon