A Dual-Population-Based NSGA-III for Constrained Many-Objective Optimization
The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population c...
Uložené v:
| Vydané v: | Entropy (Basel, Switzerland) Ročník 25; číslo 1; s. 13 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
21.12.2022
MDPI |
| Predmet: | |
| ISSN: | 1099-4300, 1099-4300 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population convergence and diversity when dealing with conflicting objectives and constraints. This might lead to the population being stuck at some locally optimal or locally feasible regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named DP-NSGA-III, where the two populations exchange information through the offspring. The main population based on the NSGA-III solves CMaOPs and the auxiliary populations with different environment selection ignore the constraints. In addition, we designed an ε-constraint handling method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series of benchmark problems. The experimental results show that the proposed evolutionary algorithm is highly competitive in solving CMaOPs. |
|---|---|
| AbstractList | The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population convergence and diversity when dealing with conflicting objectives and constraints. This might lead to the population being stuck at some locally optimal or locally feasible regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named DP-NSGA-III, where the two populations exchange information through the offspring. The main population based on the NSGA-III solves CMaOPs and the auxiliary populations with different environment selection ignore the constraints. In addition, we designed an ε-constraint handling method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series of benchmark problems. The experimental results show that the proposed evolutionary algorithm is highly competitive in solving CMaOPs. The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population convergence and diversity when dealing with conflicting objectives and constraints. This might lead to the population being stuck at some locally optimal or locally feasible regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named DP-NSGA-III, where the two populations exchange information through the offspring. The main population based on the NSGA-III solves CMaOPs and the auxiliary populations with different environment selection ignore the constraints. In addition, we designed an ε-constraint handling method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series of benchmark problems. The experimental results show that the proposed evolutionary algorithm is highly competitive in solving CMaOPs.The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population convergence and diversity when dealing with conflicting objectives and constraints. This might lead to the population being stuck at some locally optimal or locally feasible regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named DP-NSGA-III, where the two populations exchange information through the offspring. The main population based on the NSGA-III solves CMaOPs and the auxiliary populations with different environment selection ignore the constraints. In addition, we designed an ε-constraint handling method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series of benchmark problems. The experimental results show that the proposed evolutionary algorithm is highly competitive in solving CMaOPs. |
| Author | Song, Feifei Geng, Huantong Shen, Junye Zhou, Zhengli |
| AuthorAffiliation | 1 School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China 2 School of Information Technology, Jiangsu Open University, Nanjing 210036, China |
| AuthorAffiliation_xml | – name: 2 School of Information Technology, Jiangsu Open University, Nanjing 210036, China – name: 1 School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| Author_xml | – sequence: 1 givenname: Huantong orcidid: 0000-0002-0345-4169 surname: Geng fullname: Geng, Huantong – sequence: 2 givenname: Zhengli orcidid: 0000-0001-7288-5651 surname: Zhou fullname: Zhou, Zhengli – sequence: 3 givenname: Junye orcidid: 0000-0001-6350-479X surname: Shen fullname: Shen, Junye – sequence: 4 givenname: Feifei orcidid: 0000-0002-5913-6792 surname: Song fullname: Song, Feifei |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36673153$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkktvEzEUhS1URB-w4A-gkdjAYqgfM35skEKAMlIgSMDa8muKo4md2jOV2l9fJylRW7Gy5fvd42OfewqOQgwOgNcIfiBEwHOHW4ggROQZOEFQiLohEB492B-D05xXEGKCEX0BjgmljKCWnIDFrPo8qaH-GTfToEYfQ_1JZWerH78uZnXXdVUfUzWPIY9J-VAK31W4qZd65czor1213Ix-7W93rS_B814N2b26X8_An69ffs-_1YvlRTefLWpDhBjrnqPGaM4Q1QI5RjTUjBMGoeawabRpFLPOUUO5xQyjhvGW88Zqgy02prfkDHR7XRvVSm6SX6t0I6PycncQ06VUafRmcFJhZXjPqBVGNH0vijRruUAcQ44c5UXr415rM-m1s8aF8tDhkejjSvB_5WW8lqK4QpAVgXf3AileTS6Pcu2zccOggotTlphRjptWkO1db5-gqzilUL5qS7FiCTNYqDcPHR2s_AutAO_3gEkx5-T6A4Kg3A6EPAxEYc-fsMaPu7C2eQ7_6bgDpM-0kw |
| CitedBy_id | crossref_primary_10_3390_ma17143521 crossref_primary_10_1016_j_engappai_2025_110036 crossref_primary_10_1016_j_jclepro_2025_146093 crossref_primary_10_7717_peerj_cs_2102 crossref_primary_10_1016_j_energy_2024_133581 crossref_primary_10_1051_itmconf_20245902024 crossref_primary_10_3390_s23198298 |
| Cites_doi | 10.1016/j.swevo.2017.11.001 10.1016/j.knosys.2022.108582 10.1016/j.asoc.2018.10.027 10.1109/TEVC.2019.2894743 10.1109/4235.797969 10.1109/CEC.2010.5586545 10.1109/TCYB.2018.2819208 10.1109/TEVC.2019.2896967 10.1007/s40747-022-00812-8 10.1109/TEVC.2003.810761 10.1016/j.swevo.2018.08.017 10.1109/TEVC.2013.2281535 10.1109/TEVC.2010.2093582 10.1109/TEVC.2018.2855411 10.1016/j.ins.2021.07.048 10.1109/TEVC.2014.2308305 10.1109/TCYB.2020.3021138 10.1109/TEVC.2021.3066301 10.1109/4235.996017 10.1109/CEC.2010.5586396 10.1109/TCYB.2020.3031642 10.1109/TEVC.2008.2009032 10.1109/MCI.2017.2742868 10.1016/j.envsoft.2017.02.009 10.1016/j.asoc.2012.07.027 10.1080/00029890.1981.11995308 10.1016/j.swevo.2019.06.009 10.1145/3321707.3321839 10.1109/TEVC.2013.2281534 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION NPM 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ KR7 L6V M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
| DOI | 10.3390/e25010013 |
| DatabaseName | CrossRef PubMed Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database SciTech Premium Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1099-4300 |
| ExternalDocumentID | oai_doaj_org_article_a2ac8f76d9c94ff9a7d7589182081e68 PMC9858107 36673153 10_3390_e25010013 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51977100 |
| GroupedDBID | 29G 2WC 5GY 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ACIWK ACUHS ADBBV AEGXH AENEX AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BGLVJ CCPQU CITATION CS3 DU5 E3Z ESX F5P GROUPED_DOAJ GX1 HCIFZ HH5 IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 OVT PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RNS RPM TR2 TUS XSB ~8M NPM 7TB 8FD ABUWG AZQEC DWQXO FR3 KR7 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c399t-f814cb8716b91e73b0b783700b8044bc4a7dee6c68d27214785884dbc2d2ccfd3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918245300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1099-4300 |
| IngestDate | Fri Oct 03 12:46:09 EDT 2025 Tue Nov 04 02:06:39 EST 2025 Fri Sep 05 09:55:59 EDT 2025 Fri Jul 25 11:59:30 EDT 2025 Thu Jan 02 22:52:47 EST 2025 Sat Nov 29 07:09:55 EST 2025 Tue Nov 18 19:47:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | constrained many-objective optimization ε-constraint handling coevolution dual-population evolutionary algorithm |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c399t-f814cb8716b91e73b0b783700b8044bc4a7dee6c68d27214785884dbc2d2ccfd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0345-4169 0000-0001-6350-479X 0000-0001-7288-5651 0000-0002-5913-6792 |
| OpenAccessLink | https://www.proquest.com/docview/2767208270?pq-origsite=%requestingapplication% |
| PMID | 36673153 |
| PQID | 2767208270 |
| PQPubID | 2032401 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a2ac8f76d9c94ff9a7d7589182081e68 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9858107 proquest_miscellaneous_2768245938 proquest_journals_2767208270 pubmed_primary_36673153 crossref_primary_10_3390_e25010013 crossref_citationtrail_10_3390_e25010013 |
| PublicationCentury | 2000 |
| PublicationDate | 20221221 |
| PublicationDateYYYYMMDD | 2022-12-21 |
| PublicationDate_xml | – month: 12 year: 2022 text: 20221221 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Entropy (Basel, Switzerland) |
| PublicationTitleAlternate | Entropy (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zhou (ref_10) 2018; 50 Tian (ref_32) 2017; 12 Jain (ref_20) 2013; 18 Dong (ref_2) 2018; 39 Wang (ref_12) 2018; 49 Tian (ref_22) 2021; 52 ref_13 Ming (ref_8) 2021; 25 Sultanova (ref_1) 2017; 93 ref_19 ref_17 Deb (ref_24) 1996; 26 Deb (ref_15) 2002; 6 Fan (ref_6) 2019; 44 Ma (ref_27) 2019; 23 Wang (ref_18) 2012; 16 Liu (ref_7) 2019; 23 Jiao (ref_30) 2020; 51 Woldesenbet (ref_14) 2009; 13 Deb (ref_23) 1995; 9 Jan (ref_16) 2013; 13 Jiao (ref_31) 2021; 578 Li (ref_11) 2018; 23 Deb (ref_9) 2013; 18 Fan (ref_21) 2019; 74 Alefeld (ref_25) 1981; 88 Pan (ref_3) 2022; 245 Zitzler (ref_29) 1999; 3 Wang (ref_5) 2019; 49 ref_4 Zhang (ref_26) 2014; 19 Bosman (ref_28) 2003; 7 |
| References_xml | – volume: 39 start-page: 310 year: 2018 ident: ref_2 article-title: A tissue P system based evolutionary algorithm for multi-objective VRPTW publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.11.001 – volume: 245 start-page: 108582 year: 2022 ident: ref_3 article-title: A competitive mechanism based multi-objective differential evolution algorithm and its application in feature selection publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108582 – volume: 74 start-page: 621 year: 2019 ident: ref_21 article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.027 – volume: 23 start-page: 870 year: 2019 ident: ref_7 article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2894743 – volume: 3 start-page: 257 year: 1999 ident: ref_29 article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.797969 – ident: ref_17 doi: 10.1109/CEC.2010.5586545 – volume: 9 start-page: 115 year: 1995 ident: ref_23 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – volume: 49 start-page: 2060 year: 2018 ident: ref_12 article-title: Cooperative differential evolution framework for constrained multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2819208 – volume: 23 start-page: 972 year: 2019 ident: ref_27 article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2019.2896967 – ident: ref_4 doi: 10.1007/s40747-022-00812-8 – volume: 50 start-page: 3086 year: 2018 ident: ref_10 article-title: Tri-goal evolution framework for constrained many-objective optimization publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 26 start-page: 30 year: 1996 ident: ref_24 article-title: A combined genetic adaptive search (GeneAS) for engineering design publication-title: Comput. Sci. Inform. – volume: 7 start-page: 174 year: 2003 ident: ref_28 article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.810761 – volume: 44 start-page: 665 year: 2019 ident: ref_6 article-title: Push and pull search for solving constrained multi-objective optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.08.017 – volume: 18 start-page: 577 year: 2013 ident: ref_9 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 – volume: 16 start-page: 117 year: 2012 ident: ref_18 article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2093582 – volume: 23 start-page: 303 year: 2018 ident: ref_11 article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2855411 – volume: 578 start-page: 592 year: 2021 ident: ref_31 article-title: Two-type weight adjustments in MOEA/D for highly constrained many-objective optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.07.048 – volume: 19 start-page: 201 year: 2014 ident: ref_26 article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2308305 – volume: 52 start-page: 9559 year: 2021 ident: ref_22 article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3021138 – volume: 25 start-page: 739 year: 2021 ident: ref_8 article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3066301 – volume: 6 start-page: 182 year: 2002 ident: ref_15 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – ident: ref_19 doi: 10.1109/CEC.2010.5586396 – volume: 51 start-page: 4834 year: 2020 ident: ref_30 article-title: Handling constrained many-objective optimization problems via problem transformation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3031642 – volume: 13 start-page: 514 year: 2009 ident: ref_14 article-title: Constraint handling in multiobjective evolutionary optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.2009032 – volume: 12 start-page: 73 year: 2017 ident: ref_32 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2017.2742868 – volume: 93 start-page: 209 year: 2017 ident: ref_1 article-title: Lost in optimisation of water distribution systems? A literature review of system operation publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.02.009 – volume: 13 start-page: 128 year: 2013 ident: ref_16 article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2012.07.027 – volume: 88 start-page: 530 year: 1981 ident: ref_25 article-title: On the convergence of Halley’s Method publication-title: Am. Math. Mon. doi: 10.1080/00029890.1981.11995308 – volume: 49 start-page: 220 year: 2019 ident: ref_5 article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.06.009 – ident: ref_13 doi: 10.1145/3321707.3321839 – volume: 18 start-page: 602 year: 2013 ident: ref_20 article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281534 |
| SSID | ssj0023216 |
| Score | 2.3337271 |
| Snippet | The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of... |
| SourceID | doaj pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 13 |
| SubjectTerms | Archives & records coevolution Collaboration constrained many-objective optimization Constraints Design dual-population evolutionary algorithm Evolutionary algorithms Feasibility Genetic algorithms Methods Multiple objective analysis Optimization Populations ε-constraint handling |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryI4qu-qOLBSzBNsnkcd30u6Cqo4K3kVVTWKu6uv99J2y2uCF68dkKZzjSZ-Wjn-xA6lEHqwmcGO6805oJobKHuYUOU4dAeEFfzzF7JwUA9Purbb1Jf8Z-wmh64DtyxocapQgqvneZFoY30MirhQeVSWRDVmC-RegqmGqjFaCZqHiEGoP44QKGPZENspvpUJP2_dZY_f5D8VnHOl9FS0yqm3drFFTQXylV01U1PJ2aIb1vhLdyDQuTTwd1FF_f7_RS60DTKcFbiD2C4hu2Ob-xLfbKlN3BGvDbDl2vo4fzs_uQSN4oI2EEjMcaFyrizEeNYnQXJLLEystcQqwjn1nGITgjCCeWpjApEKs6heuuop84Vnq2j-fKtDJsoNYIB8jEdRTqWF4SpoAEMe2GhCZJMhwQdTSOVu4YuPDo-zAE2xKDmbVATdNAufa85Mn5b1IvhbhdEWuvqAiQ7b5Kd_5XsBO1Mk5U3e22UUykk2KkkCdpvzbBL4qcPU4a3SbVGUd7RDG6xUee29YRF5VM4-BMkZ7I-4-qspXx-qpi4NcQX8PPWfzzbNlqkcbQio5hmO2h-_DEJu2jBfY6fRx971ev9BcN6_g0 priority: 102 providerName: Directory of Open Access Journals |
| Title | A Dual-Population-Based NSGA-III for Constrained Many-Objective Optimization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36673153 https://www.proquest.com/docview/2767208270 https://www.proquest.com/docview/2768245938 https://pubmed.ncbi.nlm.nih.gov/PMC9858107 https://doaj.org/article/a2ac8f76d9c94ff9a7d7589182081e68 |
| Volume | 25 |
| WOSCitedRecordID | wos000918245300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M~E dateStart: 19990101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: BENPR dateStart: 19990301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: M7S dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1099-4300 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023216 issn: 1099-4300 databaseCode: PIMPY dateStart: 19990301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlgMXHuJR0xIZxIHLqvau4909oQRSiNSmEQUpnKx9GYqK0-bBkd_OjO0YgiouXHzwjqzxzu489vF9AC9lkLr0qWHOK82yPNHMYtxjJlEmw_QgcQ3O7ImcTNRspqftgtuyPVa58Ym1o_ZzR2vkR1zmkmO8ksnrq2tGrFG0u9pSaOzAHqEkpPXRvfOu4BI8zRs0IYGl_VHAcE-QQ2IrBtVQ_Tfll38fk_wj7hzf-1-N78PdNuOMB80QeQC3QvUQTgbx27W5ZNOOv4sNMZ75eHL-bsDG43GMyWxMbJ41hwQ2nKLXYGf2W-Mg4zN0Nd_bO5yP4NPx6OOb96wlVmAO85EVK1WaOUulktVpkMImVhIITmJVkmXWZUb6EHKXK88lERkpus7qreOeO1d68Rh2q3kV9iE2ucACyvRV0rdZmQgVNNbUPreYS0mhQwSvNl1duBZ1nBS_LLD6IKsUnVUieNGJXjVQGzcJDclenQChY9cv5osvRTvZCsONU6XMvXY6K0uNvyOJPRGzHZWGXEVwuLFY0U7ZZfHbXBE875pxstEOiqnCfF3LKJ71tcBPPGkGR6eJIAJVjB8RyK1hs6Xqdkt18bUG9NbYv1iGP_23Wgdwh9Pdi5Qznh7C7mqxDs_gtvuxulguerAjZ6oHe8PRZPqhVy8t9OrZQM-fI2yZjk-nn38BeYYSjA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQkuLGILFAgIJC5WHTsT2weEppTSqNNppRapt-AtbVHJlFlA_Cl-I8_ZYFDFrQeusWU925_fEvu9D-Cl8EKVLtHEOqlImlFFDNo9oqnUKboH1DZ1ZkdiPJZHR2p_BX52uTDhWWWnE2tF7SY2_CNfZyITDO2VoG_Pv5LAGhVuVzsKjQYWO_7HdwzZZm_yTdzfV4xtvT98t01aVgFi0RjPSSmT1JoQJxiVeMENNSJUgKFG0jQ1NtXCeZ_ZTDomAouPDLmczljmmLWl4zjuFbiKbgRT9VPBgz7A4yzJmupFnCu67tG9CCWO-JLNq6kBLvJn_36W-Yed27r1v63QbbjZetTxsDkCd2DFV3dhNIw3F_qM7Pf8ZGQD7bWLxwcfhiTP8xid9TiwldYcGdiwi1qR7JnPjQGI91CVfmlzVO_Bx0uZwH1YrSaVfwixzjgGiHog6cCkJeXSKymlywz6ioIrH8HrbmsL21ZVD4KfFRhdBRQUPQoieNF3PW9KiVzUaSPgo-8Qqn_XHybT46JVJoVm2spSZE5ZlZalwumIwA6J3pxMfCYjWOsQUrQqaVb8hkcEz_tmVCbhhkhXfrKo-0iWDhTHIR40YOwl4YEgFu1jBGIJpkuiLrdUpyd1wXKF65tQ8ejfYj2D69uHu6NilI93HsMNFvJMEkZYsgar8-nCP4Fr9tv8dDZ9Wp-6GD5dNoh_ASMjaQI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU4S4sIgtUCAgkLhY49iZ2D4gNGUYiDqdjgRI7SnES6CoZMosIP4av47nbDCo4tYD19iynu3Pb4n93gfwRDihChvlxFipSJxQRTTaPZJTmcfoHlBT15mdiOlUHh6q2Rb8bHNh_LPKVidWitrOjf9H3mciEQztlaD9onkWMRuNX5x-JZ5Byt-0tnQaNUT23I_vGL4tn6cj3OunjI1fvXv5hjQMA8SgYV6RQkax0T5m0Cpygmuqha8GQ7WkcaxNnAvrXGISaZnwjD7S53VabZhlxhSW47gXYBtd8pj1YHuW7s-OunCPsyipaxlxrmjfobPhCx7xDQtYEQWc5d3-_UjzD6s3vvo_r9c1uNL42uGwPhzXYcuVN2AyDEfr_ITMOuYysouW3IbTt6-HJE3TEN340POYVuwZ2LCP-pIc6M-1aQgPUMl-abJXb8L7c5nALeiV89LdgTBPOIaO-UDSgY4LyqVTUkqbaPQiBVcugGftNmemqbfuBT_JMO7yiMg6RATwuOt6WhcZOavTrsdK18HXBa8-zBcfs0bNZDnLjSxEYpVRcVEonI7wvJHo58nIJTKAnRYtWaOsltlvqATwqGtGNePvjvLSzddVH8nigeI4xO0amJ0k3FPHouUMQGxAdkPUzZby-FNVylzh-kZU3P23WA_hEmI3m6TTvXtwmfkElIgRFu1Ab7VYu_tw0XxbHS8XD5ojGMKH80bxL-xvczg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Population-Based+NSGA-III+for+Constrained+Many-Objective+Optimization&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Geng%2C+Huantong&rft.au=Zhou%2C+Zhengli&rft.au=Shen%2C+Junye&rft.au=Song%2C+Feifei&rft.date=2022-12-21&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=25&rft.issue=1&rft_id=info:doi/10.3390%2Fe25010013&rft.externalDocID=PMC9858107 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon |