A Dual-Population-Based NSGA-III for Constrained Many-Objective Optimization

The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Entropy (Basel, Switzerland) Ročník 25; číslo 1; s. 13
Hlavní autori: Geng, Huantong, Zhou, Zhengli, Shen, Junye, Song, Feifei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 21.12.2022
MDPI
Predmet:
ISSN:1099-4300, 1099-4300
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population convergence and diversity when dealing with conflicting objectives and constraints. This might lead to the population being stuck at some locally optimal or locally feasible regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named DP-NSGA-III, where the two populations exchange information through the offspring. The main population based on the NSGA-III solves CMaOPs and the auxiliary populations with different environment selection ignore the constraints. In addition, we designed an ε-constraint handling method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series of benchmark problems. The experimental results show that the proposed evolutionary algorithm is highly competitive in solving CMaOPs.
AbstractList The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population convergence and diversity when dealing with conflicting objectives and constraints. This might lead to the population being stuck at some locally optimal or locally feasible regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named DP-NSGA-III, where the two populations exchange information through the offspring. The main population based on the NSGA-III solves CMaOPs and the auxiliary populations with different environment selection ignore the constraints. In addition, we designed an ε-constraint handling method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series of benchmark problems. The experimental results show that the proposed evolutionary algorithm is highly competitive in solving CMaOPs.
The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population convergence and diversity when dealing with conflicting objectives and constraints. This might lead to the population being stuck at some locally optimal or locally feasible regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named DP-NSGA-III, where the two populations exchange information through the offspring. The main population based on the NSGA-III solves CMaOPs and the auxiliary populations with different environment selection ignore the constraints. In addition, we designed an ε-constraint handling method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series of benchmark problems. The experimental results show that the proposed evolutionary algorithm is highly competitive in solving CMaOPs.The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of the existing constrained many-objective evolutionary algorithms (CMaOEAs) are feasibility-driven, neglecting the maintenance of population convergence and diversity when dealing with conflicting objectives and constraints. This might lead to the population being stuck at some locally optimal or locally feasible regions. To alleviate the above challenges, we proposed a dual-population-based NSGA-III, named DP-NSGA-III, where the two populations exchange information through the offspring. The main population based on the NSGA-III solves CMaOPs and the auxiliary populations with different environment selection ignore the constraints. In addition, we designed an ε-constraint handling method in combination with NSGA-III, aiming to exploit the excellent infeasible solutions in the main population. The proposed DP-NSGA-III is compared with four state-of-the-art CMaOEAs on a series of benchmark problems. The experimental results show that the proposed evolutionary algorithm is highly competitive in solving CMaOPs.
Author Song, Feifei
Geng, Huantong
Shen, Junye
Zhou, Zhengli
AuthorAffiliation 1 School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
2 School of Information Technology, Jiangsu Open University, Nanjing 210036, China
AuthorAffiliation_xml – name: 2 School of Information Technology, Jiangsu Open University, Nanjing 210036, China
– name: 1 School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
Author_xml – sequence: 1
  givenname: Huantong
  orcidid: 0000-0002-0345-4169
  surname: Geng
  fullname: Geng, Huantong
– sequence: 2
  givenname: Zhengli
  orcidid: 0000-0001-7288-5651
  surname: Zhou
  fullname: Zhou, Zhengli
– sequence: 3
  givenname: Junye
  orcidid: 0000-0001-6350-479X
  surname: Shen
  fullname: Shen, Junye
– sequence: 4
  givenname: Feifei
  orcidid: 0000-0002-5913-6792
  surname: Song
  fullname: Song, Feifei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36673153$$D View this record in MEDLINE/PubMed
BookMark eNptkktvEzEUhS1URB-w4A-gkdjAYqgfM35skEKAMlIgSMDa8muKo4md2jOV2l9fJylRW7Gy5fvd42OfewqOQgwOgNcIfiBEwHOHW4ggROQZOEFQiLohEB492B-D05xXEGKCEX0BjgmljKCWnIDFrPo8qaH-GTfToEYfQ_1JZWerH78uZnXXdVUfUzWPIY9J-VAK31W4qZd65czor1213Ix-7W93rS_B814N2b26X8_An69ffs-_1YvlRTefLWpDhBjrnqPGaM4Q1QI5RjTUjBMGoeawabRpFLPOUUO5xQyjhvGW88Zqgy02prfkDHR7XRvVSm6SX6t0I6PycncQ06VUafRmcFJhZXjPqBVGNH0vijRruUAcQ44c5UXr415rM-m1s8aF8tDhkejjSvB_5WW8lqK4QpAVgXf3AileTS6Pcu2zccOggotTlphRjptWkO1db5-gqzilUL5qS7FiCTNYqDcPHR2s_AutAO_3gEkx5-T6A4Kg3A6EPAxEYc-fsMaPu7C2eQ7_6bgDpM-0kw
CitedBy_id crossref_primary_10_3390_ma17143521
crossref_primary_10_1016_j_engappai_2025_110036
crossref_primary_10_1016_j_jclepro_2025_146093
crossref_primary_10_7717_peerj_cs_2102
crossref_primary_10_1016_j_energy_2024_133581
crossref_primary_10_1051_itmconf_20245902024
crossref_primary_10_3390_s23198298
Cites_doi 10.1016/j.swevo.2017.11.001
10.1016/j.knosys.2022.108582
10.1016/j.asoc.2018.10.027
10.1109/TEVC.2019.2894743
10.1109/4235.797969
10.1109/CEC.2010.5586545
10.1109/TCYB.2018.2819208
10.1109/TEVC.2019.2896967
10.1007/s40747-022-00812-8
10.1109/TEVC.2003.810761
10.1016/j.swevo.2018.08.017
10.1109/TEVC.2013.2281535
10.1109/TEVC.2010.2093582
10.1109/TEVC.2018.2855411
10.1016/j.ins.2021.07.048
10.1109/TEVC.2014.2308305
10.1109/TCYB.2020.3021138
10.1109/TEVC.2021.3066301
10.1109/4235.996017
10.1109/CEC.2010.5586396
10.1109/TCYB.2020.3031642
10.1109/TEVC.2008.2009032
10.1109/MCI.2017.2742868
10.1016/j.envsoft.2017.02.009
10.1016/j.asoc.2012.07.027
10.1080/00029890.1981.11995308
10.1016/j.swevo.2019.06.009
10.1145/3321707.3321839
10.1109/TEVC.2013.2281534
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
KR7
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.3390/e25010013
DatabaseName CrossRef
PubMed
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
SciTech Premium
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic

CrossRef
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 1099-4300
ExternalDocumentID oai_doaj_org_article_a2ac8f76d9c94ff9a7d7589182081e68
PMC9858107
36673153
10_3390_e25010013
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51977100
GroupedDBID 29G
2WC
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACIWK
ACUHS
ADBBV
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CS3
DU5
E3Z
ESX
F5P
GROUPED_DOAJ
GX1
HCIFZ
HH5
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RNS
RPM
TR2
TUS
XSB
~8M
NPM
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
KR7
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c399t-f814cb8716b91e73b0b783700b8044bc4a7dee6c68d27214785884dbc2d2ccfd3
IEDL.DBID M7S
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000918245300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1099-4300
IngestDate Fri Oct 03 12:46:09 EDT 2025
Tue Nov 04 02:06:39 EST 2025
Fri Sep 05 09:55:59 EDT 2025
Fri Jul 25 11:59:30 EDT 2025
Thu Jan 02 22:52:47 EST 2025
Sat Nov 29 07:09:55 EST 2025
Tue Nov 18 19:47:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords constrained many-objective optimization
ε-constraint handling
coevolution
dual-population
evolutionary algorithm
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-f814cb8716b91e73b0b783700b8044bc4a7dee6c68d27214785884dbc2d2ccfd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0345-4169
0000-0001-6350-479X
0000-0001-7288-5651
0000-0002-5913-6792
OpenAccessLink https://www.proquest.com/docview/2767208270?pq-origsite=%requestingapplication%
PMID 36673153
PQID 2767208270
PQPubID 2032401
ParticipantIDs doaj_primary_oai_doaj_org_article_a2ac8f76d9c94ff9a7d7589182081e68
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9858107
proquest_miscellaneous_2768245938
proquest_journals_2767208270
pubmed_primary_36673153
crossref_primary_10_3390_e25010013
crossref_citationtrail_10_3390_e25010013
PublicationCentury 2000
PublicationDate 20221221
PublicationDateYYYYMMDD 2022-12-21
PublicationDate_xml – month: 12
  year: 2022
  text: 20221221
  day: 21
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Entropy (Basel, Switzerland)
PublicationTitleAlternate Entropy (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zhou (ref_10) 2018; 50
Tian (ref_32) 2017; 12
Jain (ref_20) 2013; 18
Dong (ref_2) 2018; 39
Wang (ref_12) 2018; 49
Tian (ref_22) 2021; 52
ref_13
Ming (ref_8) 2021; 25
Sultanova (ref_1) 2017; 93
ref_19
ref_17
Deb (ref_24) 1996; 26
Deb (ref_15) 2002; 6
Fan (ref_6) 2019; 44
Ma (ref_27) 2019; 23
Wang (ref_18) 2012; 16
Liu (ref_7) 2019; 23
Jiao (ref_30) 2020; 51
Woldesenbet (ref_14) 2009; 13
Deb (ref_23) 1995; 9
Jan (ref_16) 2013; 13
Jiao (ref_31) 2021; 578
Li (ref_11) 2018; 23
Deb (ref_9) 2013; 18
Fan (ref_21) 2019; 74
Alefeld (ref_25) 1981; 88
Pan (ref_3) 2022; 245
Zitzler (ref_29) 1999; 3
Wang (ref_5) 2019; 49
ref_4
Zhang (ref_26) 2014; 19
Bosman (ref_28) 2003; 7
References_xml – volume: 39
  start-page: 310
  year: 2018
  ident: ref_2
  article-title: A tissue P system based evolutionary algorithm for multi-objective VRPTW
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.11.001
– volume: 245
  start-page: 108582
  year: 2022
  ident: ref_3
  article-title: A competitive mechanism based multi-objective differential evolution algorithm and its application in feature selection
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108582
– volume: 74
  start-page: 621
  year: 2019
  ident: ref_21
  article-title: MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.027
– volume: 23
  start-page: 870
  year: 2019
  ident: ref_7
  article-title: Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2894743
– volume: 3
  start-page: 257
  year: 1999
  ident: ref_29
  article-title: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– ident: ref_17
  doi: 10.1109/CEC.2010.5586545
– volume: 9
  start-page: 115
  year: 1995
  ident: ref_23
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 49
  start-page: 2060
  year: 2018
  ident: ref_12
  article-title: Cooperative differential evolution framework for constrained multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2819208
– volume: 23
  start-page: 972
  year: 2019
  ident: ref_27
  article-title: Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2896967
– ident: ref_4
  doi: 10.1007/s40747-022-00812-8
– volume: 50
  start-page: 3086
  year: 2018
  ident: ref_10
  article-title: Tri-goal evolution framework for constrained many-objective optimization
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 26
  start-page: 30
  year: 1996
  ident: ref_24
  article-title: A combined genetic adaptive search (GeneAS) for engineering design
  publication-title: Comput. Sci. Inform.
– volume: 7
  start-page: 174
  year: 2003
  ident: ref_28
  article-title: The balance between proximity and diversity in multiobjective evolutionary algorithms
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.810761
– volume: 44
  start-page: 665
  year: 2019
  ident: ref_6
  article-title: Push and pull search for solving constrained multi-objective optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.017
– volume: 18
  start-page: 577
  year: 2013
  ident: ref_9
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
– volume: 16
  start-page: 117
  year: 2012
  ident: ref_18
  article-title: Combining multiobjective optimization with differential evolution to solve constrained optimization problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2093582
– volume: 23
  start-page: 303
  year: 2018
  ident: ref_11
  article-title: Two-archive evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2855411
– volume: 578
  start-page: 592
  year: 2021
  ident: ref_31
  article-title: Two-type weight adjustments in MOEA/D for highly constrained many-objective optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.07.048
– volume: 19
  start-page: 201
  year: 2014
  ident: ref_26
  article-title: An efficient approach to nondominated sorting for evolutionary multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2308305
– volume: 52
  start-page: 9559
  year: 2021
  ident: ref_22
  article-title: Balancing objective optimization and constraint satisfaction in constrained evolutionary multiobjective optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3021138
– volume: 25
  start-page: 739
  year: 2021
  ident: ref_8
  article-title: A dual-population-based evolutionary algorithm for constrained multiobjective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3066301
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_15
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: ref_19
  doi: 10.1109/CEC.2010.5586396
– volume: 51
  start-page: 4834
  year: 2020
  ident: ref_30
  article-title: Handling constrained many-objective optimization problems via problem transformation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3031642
– volume: 13
  start-page: 514
  year: 2009
  ident: ref_14
  article-title: Constraint handling in multiobjective evolutionary optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.2009032
– volume: 12
  start-page: 73
  year: 2017
  ident: ref_32
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2017.2742868
– volume: 93
  start-page: 209
  year: 2017
  ident: ref_1
  article-title: Lost in optimisation of water distribution systems? A literature review of system operation
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.02.009
– volume: 13
  start-page: 128
  year: 2013
  ident: ref_16
  article-title: A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2012.07.027
– volume: 88
  start-page: 530
  year: 1981
  ident: ref_25
  article-title: On the convergence of Halley’s Method
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.1981.11995308
– volume: 49
  start-page: 220
  year: 2019
  ident: ref_5
  article-title: An adaptive weight vector guided evolutionary algorithm for preference-based multi-objective optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.06.009
– ident: ref_13
  doi: 10.1145/3321707.3321839
– volume: 18
  start-page: 602
  year: 2013
  ident: ref_20
  article-title: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
SSID ssj0023216
Score 2.3337271
Snippet The main challenge for constrained many-objective optimization problems (CMaOPs) is how to achieve a balance between feasible and infeasible solutions. Most of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 13
SubjectTerms Archives & records
coevolution
Collaboration
constrained many-objective optimization
Constraints
Design
dual-population
evolutionary algorithm
Evolutionary algorithms
Feasibility
Genetic algorithms
Methods
Multiple objective analysis
Optimization
Populations
ε-constraint handling
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHryI4qu-qOLBSzBNsnkcd30u6Cqo4K3kVVTWKu6uv99J2y2uCF68dkKZzjSZ-Wjn-xA6lEHqwmcGO6805oJobKHuYUOU4dAeEFfzzF7JwUA9Purbb1Jf8Z-wmh64DtyxocapQgqvneZFoY30MirhQeVSWRDVmC-RegqmGqjFaCZqHiEGoP44QKGPZENspvpUJP2_dZY_f5D8VnHOl9FS0yqm3drFFTQXylV01U1PJ2aIb1vhLdyDQuTTwd1FF_f7_RS60DTKcFbiD2C4hu2Ob-xLfbKlN3BGvDbDl2vo4fzs_uQSN4oI2EEjMcaFyrizEeNYnQXJLLEystcQqwjn1nGITgjCCeWpjApEKs6heuuop84Vnq2j-fKtDJsoNYIB8jEdRTqWF4SpoAEMe2GhCZJMhwQdTSOVu4YuPDo-zAE2xKDmbVATdNAufa85Mn5b1IvhbhdEWuvqAiQ7b5Kd_5XsBO1Mk5U3e22UUykk2KkkCdpvzbBL4qcPU4a3SbVGUd7RDG6xUee29YRF5VM4-BMkZ7I-4-qspXx-qpi4NcQX8PPWfzzbNlqkcbQio5hmO2h-_DEJu2jBfY6fRx971ev9BcN6_g0
  priority: 102
  providerName: Directory of Open Access Journals
Title A Dual-Population-Based NSGA-III for Constrained Many-Objective Optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/36673153
https://www.proquest.com/docview/2767208270
https://www.proquest.com/docview/2768245938
https://pubmed.ncbi.nlm.nih.gov/PMC9858107
https://doaj.org/article/a2ac8f76d9c94ff9a7d7589182081e68
Volume 25
WOSCitedRecordID wos000918245300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M~E
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: BENPR
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: M7S
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1099-4300
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023216
  issn: 1099-4300
  databaseCode: PIMPY
  dateStart: 19990301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RlgMXHuJR0xIZxIHLqvau4909oQRSiNSmEQUpnKx9GYqK0-bBkd_OjO0YgiouXHzwjqzxzu489vF9AC9lkLr0qWHOK82yPNHMYtxjJlEmw_QgcQ3O7ImcTNRspqftgtuyPVa58Ym1o_ZzR2vkR1zmkmO8ksnrq2tGrFG0u9pSaOzAHqEkpPXRvfOu4BI8zRs0IYGl_VHAcE-QQ2IrBtVQ_Tfll38fk_wj7hzf-1-N78PdNuOMB80QeQC3QvUQTgbx27W5ZNOOv4sNMZ75eHL-bsDG43GMyWxMbJ41hwQ2nKLXYGf2W-Mg4zN0Nd_bO5yP4NPx6OOb96wlVmAO85EVK1WaOUulktVpkMImVhIITmJVkmXWZUb6EHKXK88lERkpus7qreOeO1d68Rh2q3kV9iE2ucACyvRV0rdZmQgVNNbUPreYS0mhQwSvNl1duBZ1nBS_LLD6IKsUnVUieNGJXjVQGzcJDclenQChY9cv5osvRTvZCsONU6XMvXY6K0uNvyOJPRGzHZWGXEVwuLFY0U7ZZfHbXBE875pxstEOiqnCfF3LKJ71tcBPPGkGR6eJIAJVjB8RyK1hs6Xqdkt18bUG9NbYv1iGP_23Wgdwh9Pdi5Qznh7C7mqxDs_gtvuxulguerAjZ6oHe8PRZPqhVy8t9OrZQM-fI2yZjk-nn38BeYYSjA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBQkuLGILFAgIJC5WHTsT2weEppTSqNNppRapt-AtbVHJlFlA_Cl-I8_ZYFDFrQeusWU925_fEvu9D-Cl8EKVLtHEOqlImlFFDNo9oqnUKboH1DZ1ZkdiPJZHR2p_BX52uTDhWWWnE2tF7SY2_CNfZyITDO2VoG_Pv5LAGhVuVzsKjQYWO_7HdwzZZm_yTdzfV4xtvT98t01aVgFi0RjPSSmT1JoQJxiVeMENNSJUgKFG0jQ1NtXCeZ_ZTDomAouPDLmczljmmLWl4zjuFbiKbgRT9VPBgz7A4yzJmupFnCu67tG9CCWO-JLNq6kBLvJn_36W-Yed27r1v63QbbjZetTxsDkCd2DFV3dhNIw3F_qM7Pf8ZGQD7bWLxwcfhiTP8xid9TiwldYcGdiwi1qR7JnPjQGI91CVfmlzVO_Bx0uZwH1YrSaVfwixzjgGiHog6cCkJeXSKymlywz6ioIrH8HrbmsL21ZVD4KfFRhdBRQUPQoieNF3PW9KiVzUaSPgo-8Qqn_XHybT46JVJoVm2spSZE5ZlZalwumIwA6J3pxMfCYjWOsQUrQqaVb8hkcEz_tmVCbhhkhXfrKo-0iWDhTHIR40YOwl4YEgFu1jBGIJpkuiLrdUpyd1wXKF65tQ8ejfYj2D69uHu6NilI93HsMNFvJMEkZYsgar8-nCP4Fr9tv8dDZ9Wp-6GD5dNoh_ASMjaQI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU4S4sIgtUCAgkLhY49iZ2D4gNGUYiDqdjgRI7SnES6CoZMosIP4av47nbDCo4tYD19iynu3Pb4n93gfwRDihChvlxFipSJxQRTTaPZJTmcfoHlBT15mdiOlUHh6q2Rb8bHNh_LPKVidWitrOjf9H3mciEQztlaD9onkWMRuNX5x-JZ5Byt-0tnQaNUT23I_vGL4tn6cj3OunjI1fvXv5hjQMA8SgYV6RQkax0T5m0Cpygmuqha8GQ7WkcaxNnAvrXGISaZnwjD7S53VabZhlxhSW47gXYBtd8pj1YHuW7s-OunCPsyipaxlxrmjfobPhCx7xDQtYEQWc5d3-_UjzD6s3vvo_r9c1uNL42uGwPhzXYcuVN2AyDEfr_ITMOuYysouW3IbTt6-HJE3TEN340POYVuwZ2LCP-pIc6M-1aQgPUMl-abJXb8L7c5nALeiV89LdgTBPOIaO-UDSgY4LyqVTUkqbaPQiBVcugGftNmemqbfuBT_JMO7yiMg6RATwuOt6WhcZOavTrsdK18HXBa8-zBcfs0bNZDnLjSxEYpVRcVEonI7wvJHo58nIJTKAnRYtWaOsltlvqATwqGtGNePvjvLSzddVH8nigeI4xO0amJ0k3FPHouUMQGxAdkPUzZby-FNVylzh-kZU3P23WA_hEmI3m6TTvXtwmfkElIgRFu1Ab7VYu_tw0XxbHS8XD5ojGMKH80bxL-xvczg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Population-Based+NSGA-III+for+Constrained+Many-Objective+Optimization&rft.jtitle=Entropy+%28Basel%2C+Switzerland%29&rft.au=Geng%2C+Huantong&rft.au=Zhou%2C+Zhengli&rft.au=Shen%2C+Junye&rft.au=Song%2C+Feifei&rft.date=2022-12-21&rft.pub=MDPI&rft.eissn=1099-4300&rft.volume=25&rft.issue=1&rft_id=info:doi/10.3390%2Fe25010013&rft.externalDocID=PMC9858107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1099-4300&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1099-4300&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1099-4300&client=summon