Deep Reinforcement Learning Based Resource Allocation for V2V Communications

In this paper, we develop a novel decentralized resource allocation mechanism for vehicle-to-vehicle (V2V) communications based on deep reinforcement learning, which can be applied to both unicast and broadcast scenarios. According to the decentralized resource allocation mechanism, an autonomous &q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on vehicular technology Jg. 68; H. 4; S. 3163 - 3173
Hauptverfasser: Ye, Hao, Li, Geoffrey Ye, Juang, Biing-Hwang Fred
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9545, 1939-9359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop a novel decentralized resource allocation mechanism for vehicle-to-vehicle (V2V) communications based on deep reinforcement learning, which can be applied to both unicast and broadcast scenarios. According to the decentralized resource allocation mechanism, an autonomous "agent," a V2V link or a vehicle, makes its decisions to find the optimal sub-band and power level for transmission without requiring or having to wait for global information. Since the proposed method is decentralized, it incurs only limited transmission overhead. From the simulation results, each agent can effectively learn to satisfy the stringent latency constraints on V2V links while minimizing the interference to vehicle-to-infrastructure communications.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2019.2897134