A tight compact quadratically constrained convex relaxation of the Optimal Power Flow problem
In this paper, we consider the Optimal Power Flow (OPF) problem which consists in determining the power production at each bus of an electric network by minimizing the production cost. Our contribution is an exact solution algorithm for the OPF problem. It consists in a spatial branch-and-bound algo...
Uložené v:
| Vydané v: | Computers & operations research Ročník 166; s. 106626 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.06.2024
Elsevier |
| Predmet: | |
| ISSN: | 0305-0548, 1873-765X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, we consider the Optimal Power Flow (OPF) problem which consists in determining the power production at each bus of an electric network by minimizing the production cost. Our contribution is an exact solution algorithm for the OPF problem. It consists in a spatial branch-and-bound algorithm based on a compact quadratically-constrained convex relaxation. It is computed by solving the semidefinite rank relaxation of OPF once at the root node of the algorithm. An important result is that the optimal value of our compact relaxation is equal to the rank relaxation value. Then, at every sub-nodes of our branch-and-bound, the lower bound is obtained by solving a quadratic convex problem instead of an SDP. Another contribution is that we add only O(n+m) variables that model the squares of the initial variables, where n is the number of buses in the power system and m the number of transmission lines, to construct our relaxation. Then, since the relations between the initial and auxiliary variables are non-convex, we relax them to get a quadratic convex relaxation. Finally, in our branch-and-bound algorithm, we only have to force a reduced number of equalities to prove global optimality. This quadratic convex relaxation approach is here tailored to the OPF problem, but it can address any application whose formulation is a quadratic optimization problem subject to quadratic equalities and ring constraints. Our first experiments on instances of the OPF problem show that our new algorithm Compact OPF (COPF) is more efficient than the standard solvers and other quadratic convex relaxation based methods we compare it with.
•Global Solution of Optimal Power Flow.•Spatial branch-and-bound based on quadratically constrained quadratic convex programming.•Rank-relaxation. |
|---|---|
| AbstractList | In this paper, we consider the Optimal Power Flow (OPF) problem which consists in determining the power production at each bus of an electric network by minimizing the production cost. Our contribution is an exact solution algorithm for the OPF problem. It consists in a spatial branch-and-bound algorithm based on a compact quadratically-constrained convex relaxation. It is computed by solving the semidefinite rank relaxation of OPF once at the root node of the algorithm. An important result is that the optimal value of our compact relaxation is equal to the rank relaxation value. Then, at every sub-nodes of our branch-and-bound, the lower bound is obtained by solving a quadratic convex problem instead of an SDP. Another contribution is that we add only O(n+m) variables that model the squares of the initial variables, where $n$ is the number of buses in the power system, and m the number of transmission lines to construct our relaxation. Then, since the relations between the initial and auxiliary variables are non-convex, we relax them to get a quadratic convex relaxation. Finally, in our branch-and-bound algorithm, we only have to force a reduced number of equalities to prove global optimality. This quadratic convex relaxation approach is here tailored to the OPF problem, but it can address any application whose formulation is a quadratic optimization problem subject to quadratic equalities and ring constraints. Our first experiments on instances of the OPF problem show that our new algorithm Compact OPF (COPF) is more efficient than the standard solvers and other quadratic convex relaxation based methods we compare it with. In this paper, we consider the Optimal Power Flow (OPF) problem which consists in determining the power production at each bus of an electric network by minimizing the production cost. Our contribution is an exact solution algorithm for the OPF problem. It consists in a spatial branch-and-bound algorithm based on a compact quadratically-constrained convex relaxation. It is computed by solving the semidefinite rank relaxation of OPF once at the root node of the algorithm. An important result is that the optimal value of our compact relaxation is equal to the rank relaxation value. Then, at every sub-nodes of our branch-and-bound, the lower bound is obtained by solving a quadratic convex problem instead of an SDP. Another contribution is that we add only O(n+m) variables that model the squares of the initial variables, where n is the number of buses in the power system and m the number of transmission lines, to construct our relaxation. Then, since the relations between the initial and auxiliary variables are non-convex, we relax them to get a quadratic convex relaxation. Finally, in our branch-and-bound algorithm, we only have to force a reduced number of equalities to prove global optimality. This quadratic convex relaxation approach is here tailored to the OPF problem, but it can address any application whose formulation is a quadratic optimization problem subject to quadratic equalities and ring constraints. Our first experiments on instances of the OPF problem show that our new algorithm Compact OPF (COPF) is more efficient than the standard solvers and other quadratic convex relaxation based methods we compare it with. •Global Solution of Optimal Power Flow.•Spatial branch-and-bound based on quadratically constrained quadratic convex programming.•Rank-relaxation. |
| ArticleNumber | 106626 |
| Author | Lambert, Amélie |
| Author_xml | – sequence: 1 givenname: Amélie orcidid: 0000-0001-8305-2145 surname: Lambert fullname: Lambert, Amélie email: amelie.lambert@cnam.fr organization: Cnam-CEDRIC, 292 Rue St Martin FR-75141 Paris Cedex 03, France |
| BackLink | https://hal.science/hal-03266868$$DView record in HAL |
| BookMark | eNp9kLtOwzAUhi0EEuXyAGxeGVJ8ie1ETBXiJlWCASQWZDnOCXXlxsUxBd4ehyIGBs7i46P_O7K_A7Tbhx4QOqFkSgmVZ8upDXHKCCvzXUomd9CEVooXSoqnXTQhnIiCiLLaRwfDsCS5FKMT9DzDyb0sErZhtTY24dc300aTnDXef-ZpP6RoXA_t2G_gA0fw5iMHQo9Dh9MC8N06uZXx-D68Q8RXPrzjdQyNh9UR2uuMH-D45zxEj1eXDxc3xfzu-vZiNi8sr-tUdJxXnLKqaRST0FrWcqiF4UaUShnFRF2WrKWkawQDqyxQW9uGSC6AcNFYfohOt3sXxut1zK-JnzoYp29mcz3OCGdSVrLasJyl26yNYRgidL8AJXp0qZc6u9SjS711mRn1h7EufTsY5fh_yfMtCfn7GwdRD9ZBb6F1EWzSbXD_0F-csZD8 |
| CitedBy_id | crossref_primary_10_1016_j_epsr_2025_111454 |
| Cites_doi | 10.1007/s10107-016-1095-2 10.1109/TPWRS.2013.2258044 10.1109/TPWRS.2007.901301 10.1007/s10107-010-0381-7 10.1016/S0305-0548(02)00039-4 10.1016/j.ejor.2021.10.003 10.1109/TPWRS.2011.2170772 10.1007/s101070100263 10.1109/CoDIT.2019.8820584 10.1109/TPWRS.2014.2320819 10.1007/s10107-015-0921-2 10.1007/s10107-004-0559-y 10.1017/S0962492913000032 10.1109/TPWRS.2015.2463111 10.1109/TPWRS.2011.2160974 10.1109/TPWRS.2006.879234 10.1016/j.ejor.2020.01.034 10.1016/j.cor.2021.105607 10.1287/opre.2016.1489 10.1016/j.cor.2017.09.021 10.1007/s12532-016-0112-z 10.1287/ijoc.2014.0594 10.1016/j.epsr.2020.106688 10.1287/opre.1110.1036 10.1137/S1052623400366802 10.1109/TPWRS.2014.2372478 10.1109/TPWRS.2002.800870 10.1007/BF01580665 10.1016/j.cor.2021.105398 10.1080/10556788.2017.1350675 10.1007/s12532-018-0150-9 10.1016/j.cor.2023.106391 10.1016/j.ijepes.2007.12.003 10.1109/TAC.2014.2332712 10.1109/TPWRS.2014.2322051 10.1109/59.736231 10.1007/s10898-018-00734-1 10.1016/j.cor.2015.01.012 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2024 The Author(s) – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.cor.2024.106626 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business Mathematics |
| EISSN | 1873-765X |
| ExternalDocumentID | oai:HAL:hal-03266868v2 10_1016_j_cor_2024_106626 S0305054824000984 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 186 1B1 1OL 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6I. 6J9 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAFJI AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQXK AARIN AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABFRF ABJNI ABMAC ABMMH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD AEBSH AEFWE AEHXG AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV AKRWK AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ARUGR ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HAMUX HVGLF HZ~ H~9 IHE J1W KOM LY1 M41 MHUIS MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- RIG ROL RPZ RXW SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSO SSV SSW SSZ T5K TAE TN5 U5U UAO UPT VH1 WUQ XFK XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 1XC VOOES |
| ID | FETCH-LOGICAL-c399t-f3383128bb726edc2d3e95a3a5477a7259442d10fb52ec7ce1c9cb0635e035bc3 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001222707500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0305-0548 |
| IngestDate | Tue Oct 14 20:35:54 EDT 2025 Tue Nov 18 20:40:39 EST 2025 Sat Nov 29 03:23:46 EST 2025 Sat Apr 13 16:39:16 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Optimal Power Flow Quadratic convex relaxation Global optimization Semidefinite programming Quadratically constrained quadratic programming |
| Language | English |
| License | This is an open access article under the CC BY license. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c399t-f3383128bb726edc2d3e95a3a5477a7259442d10fb52ec7ce1c9cb0635e035bc3 |
| ORCID | 0000-0001-8305-2145 |
| OpenAccessLink | https://hal.science/hal-03266868 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03266868v2 crossref_primary_10_1016_j_cor_2024_106626 crossref_citationtrail_10_1016_j_cor_2024_106626 elsevier_sciencedirect_doi_10_1016_j_cor_2024_106626 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & operations research |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Belotti, Kirches, Leyffer, Linderoth, Luedtke, Mahajan (b5) 2013; 22 Gan, Li, Topcu, Low (b18) 2015; 60 Billionnet, Elloumi, Lambert (b6) 2012; 131 Zimmerman, Murillo-Sánchez (b45) 2020 Jabr (b24) 2012; 27 Zohrizadeh, Josz, Jin, Madani, Lavaei, Sojoudi (b47) 2020; 287 Molzahn, Hiskens (b34) 2015; 30 Jabr (b23) 2006; 21 Wu, Debs, Marsten (b43) 1993; 9 Wächter, Biegler (b41) 2006; 106 Phan (b37) 2012; 60 Nagarajan, Lu, Wanh, Bent, Sundar (b36) 2019; 74 Foster (b17) 2013 Bostan, Li (b8) 2003; 30 Coffrin, Hentenryck (b12) 2014; 26 Kocuk, Dey, Sun (b28) 2018; 10 Dolan, Moré (b15) 1986; 91 Babaeinejadsarookolaee, Birchfield, Christie, Coffrin, DeMarco, Diao, Ferris, Fliscounakis, Greene, Huang, Josz, Korab, Lesieutre, Maeght, Mak, Molzahn, Overbye, Panciatici, Park, Snodgrass, Tbaileh, Hentenryck, Zimmerman (b2) 2021 Pinheiro, Balbo, Cabana, Nepomuceno (b38) 2022; 138 Madani, Sojoudi, Lavaei (b32) 2015; 30 Guo, Zephyr, Morillo, Wang, Anderson (b21) 2021; 134 Zheng, Jian, Yang, Quan (b44) 2016; 66 Lasserre (b29) 2001; 11 ApS (b1) 2019 Bai, Wei (b3) 2009; 3 Lu, Nagarajan, Bent, Eksioglu, Mason (b31) 2018 Cavalheiro, Vergílio, Lyra (b10) 2018; 96 Bai, Wei, Fujisawa, Wang (b4) 2008; 30 Josz, Maeght, Panciatici, Gilbert (b26) 2015; 30 Gopinath, Hijazi, Weisser, Nagarajan, Yetkin, Sundar, Bent (b20) 2020; 189 McCormick (b33) 1976; 10 Coffrin, Hijazi, Hentenryck (b13) 2017; 9 Elloumi, Lambert (b16) 2019; 34 Hammer, Rubin (b22) 1970; 4 Billionnet, Elloumi, Lambert (b7) 2016; 158 Jabr, Coonick, Cory (b25) 2002; 17 Kocuk, Dey, Sun (b27) 2016; 64 Lavaei, Low (b30) 2012; 27 Zohrizadeh, Josz, Jin, Madani, Lavaei, Sojoudi (b46) 2020; 287 Coffrin, Hijazi, Van Hentenryck (b14) 2016; 31 Molzahn, Holzer, Lesieutre, DeMarco (b35) 2013; 28 Brown, Moreno-Centeno (b9) 2023; 160 Torres, Quintana (b40) 1998; 13 Chen, Atamtürk, Oren (b11) 2017; 165 Wang, Murillo-Sánchez, Zimmerman, Thomas (b42) 2007; 22 Godard, H., Elloumi, S., Lambert, A., Maegth, J., Ruiz, M., 2019. Global Optimality of Optimal Power Flow Using Quadratic Convex Optimization. In: 6th International Conference on Control, Decision and Information Technologies. CODIT, pp. 1227–1232. Skolfield, Escobedo (b39) 2022; 300 Bostan (10.1016/j.cor.2024.106626_b8) 2003; 30 Bai (10.1016/j.cor.2024.106626_b3) 2009; 3 Foster (10.1016/j.cor.2024.106626_b17) 2013 Nagarajan (10.1016/j.cor.2024.106626_b36) 2019; 74 Skolfield (10.1016/j.cor.2024.106626_b39) 2022; 300 Kocuk (10.1016/j.cor.2024.106626_b28) 2018; 10 Zohrizadeh (10.1016/j.cor.2024.106626_b47) 2020; 287 Guo (10.1016/j.cor.2024.106626_b21) 2021; 134 Brown (10.1016/j.cor.2024.106626_b9) 2023; 160 Chen (10.1016/j.cor.2024.106626_b11) 2017; 165 Gan (10.1016/j.cor.2024.106626_b18) 2015; 60 Zimmerman (10.1016/j.cor.2024.106626_b45) 2020 Dolan (10.1016/j.cor.2024.106626_b15) 1986; 91 Billionnet (10.1016/j.cor.2024.106626_b6) 2012; 131 Zheng (10.1016/j.cor.2024.106626_b44) 2016; 66 Lasserre (10.1016/j.cor.2024.106626_b29) 2001; 11 Molzahn (10.1016/j.cor.2024.106626_b34) 2015; 30 Coffrin (10.1016/j.cor.2024.106626_b13) 2017; 9 10.1016/j.cor.2024.106626_b19 Wu (10.1016/j.cor.2024.106626_b43) 1993; 9 Babaeinejadsarookolaee (10.1016/j.cor.2024.106626_b2) 2021 Wächter (10.1016/j.cor.2024.106626_b41) 2006; 106 McCormick (10.1016/j.cor.2024.106626_b33) 1976; 10 Bai (10.1016/j.cor.2024.106626_b4) 2008; 30 Belotti (10.1016/j.cor.2024.106626_b5) 2013; 22 Gopinath (10.1016/j.cor.2024.106626_b20) 2020; 189 Madani (10.1016/j.cor.2024.106626_b32) 2015; 30 Molzahn (10.1016/j.cor.2024.106626_b35) 2013; 28 Kocuk (10.1016/j.cor.2024.106626_b27) 2016; 64 Lu (10.1016/j.cor.2024.106626_b31) 2018 Cavalheiro (10.1016/j.cor.2024.106626_b10) 2018; 96 Elloumi (10.1016/j.cor.2024.106626_b16) 2019; 34 Jabr (10.1016/j.cor.2024.106626_b25) 2002; 17 Wang (10.1016/j.cor.2024.106626_b42) 2007; 22 ApS (10.1016/j.cor.2024.106626_b1) 2019 Coffrin (10.1016/j.cor.2024.106626_b14) 2016; 31 Josz (10.1016/j.cor.2024.106626_b26) 2015; 30 Lavaei (10.1016/j.cor.2024.106626_b30) 2012; 27 Hammer (10.1016/j.cor.2024.106626_b22) 1970; 4 Pinheiro (10.1016/j.cor.2024.106626_b38) 2022; 138 Torres (10.1016/j.cor.2024.106626_b40) 1998; 13 Coffrin (10.1016/j.cor.2024.106626_b12) 2014; 26 Zohrizadeh (10.1016/j.cor.2024.106626_b46) 2020; 287 Jabr (10.1016/j.cor.2024.106626_b23) 2006; 21 Jabr (10.1016/j.cor.2024.106626_b24) 2012; 27 Billionnet (10.1016/j.cor.2024.106626_b7) 2016; 158 Phan (10.1016/j.cor.2024.106626_b37) 2012; 60 |
| References_xml | – volume: 10 start-page: 147 year: 1976 end-page: 175 ident: b33 article-title: Computability of global solutions to factorable non-convex programs: Part I - Convex underestimating problems publication-title: Math. Program. – volume: 22 start-page: 1 year: 2013 end-page: 131 ident: b5 article-title: Mixed-integer nonlinear optimization publication-title: Acta Numer. – volume: 30 start-page: 3168 year: 2015 end-page: 3180 ident: b34 article-title: Sparsity-Exploiting Moment-Based Relaxations of the Optimal Power Flow Problem publication-title: IEEE Trans. Power Syst. – year: 2020 ident: b45 article-title: MATPOWER – volume: 66 start-page: 241 year: 2016 end-page: 247 ident: b44 article-title: A deterministic method for the unit commitment problem in power systems publication-title: Comput. Oper. Res. – volume: 60 start-page: 72 year: 2015 end-page: 87 ident: b18 article-title: Exact convex relaxation of optimal power flow in radial networks publication-title: IEEE Trans. Automat. Control – volume: 60 start-page: 275 year: 2012 end-page: 285 ident: b37 article-title: Lagrangian duality and branch-and-bound algorithms for optimal power flow publication-title: Oper. Res. – year: 2021 ident: b2 article-title: The power grid library for benchmarking AC optimal power flow algorithms – reference: Godard, H., Elloumi, S., Lambert, A., Maegth, J., Ruiz, M., 2019. Global Optimality of Optimal Power Flow Using Quadratic Convex Optimization. In: 6th International Conference on Control, Decision and Information Technologies. CODIT, pp. 1227–1232. – volume: 30 start-page: 199 year: 2015 end-page: 211 ident: b32 article-title: Convex relaxation for optimal power flow problem: Mesh networks publication-title: IEEE Trans. Power Syst. – volume: 158 start-page: 235 year: 2016 end-page: 266 ident: b7 article-title: Exact quadratic convex reformulations of mixed-integer quadratically constrained problems publication-title: Math. Program. – volume: 28 start-page: 3987 year: 2013 end-page: 3998 ident: b35 article-title: Implementation of a large-scale optimal power flow solver based on semidefinite programming publication-title: IEEE Trans. Power Syst. – volume: 300 start-page: 387 year: 2022 end-page: 404 ident: b39 article-title: Operations research in optimal power flow: A guide to recent and emerging methodologies and applications publication-title: European J. Oper. Res. – volume: 10 start-page: 557 year: 2018 end-page: 596 ident: b28 article-title: Matrix minor reformulation and socp-based spatial branch-and-cut method for the ac optimal power flow problem publication-title: Math. Program. Comput. – volume: 64 start-page: 1177 year: 2016 end-page: 1196 ident: b27 article-title: Strong SOCP relaxations for the optimal power flow problem publication-title: Oper. Res. – volume: 13 start-page: 1211 year: 1998 end-page: 1218 ident: b40 article-title: An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates publication-title: IEEE Trans. Power Syst. – volume: 9 start-page: 321 year: 2017 end-page: 367 ident: b13 article-title: Convex quadratic relaxations for mixed-integer nonlinear programs in power systems publication-title: Math. Program. Comput. – volume: 30 start-page: 383 year: 2008 end-page: 392 ident: b4 article-title: Semidefinite programming for optimal power flow problems publication-title: Int. J. Electr. Power Energy Syst. – volume: 21 start-page: 1458 year: 2006 end-page: 1459 ident: b23 article-title: Radial distribution load flow using conic programming publication-title: IEEE Trans. Power Syst. – volume: 31 start-page: 3008 year: 2016 end-page: 3018 ident: b14 article-title: The QC relaxation: A theoretical and computational study on optimal power flow publication-title: IEEE Trans. Power Syst. – volume: 189 year: 2020 ident: b20 article-title: Proving global optimality of ACOPF solutions publication-title: Electr. Power Syst. Res. – volume: 22 start-page: 1185 year: 2007 end-page: 1193 ident: b42 article-title: On computational issues of market-based optimal power flow publication-title: IEEE Trans. Power Syst. – volume: 91 start-page: 201 year: 1986 end-page: 213 ident: b15 article-title: Benchmarking optimization software with performance profiles publication-title: Math. Program. – volume: 17 start-page: 654 year: 2002 end-page: 662 ident: b25 article-title: A primal-dual interior point method for optimal power flow dispatching publication-title: IEEE Trans. Power Syst. – volume: 30 start-page: 833 year: 2003 end-page: 849 ident: b8 article-title: A decision model for reducing active power losses during electric power dispatching publication-title: Comput. Oper. Res. – volume: 27 start-page: 92 year: 2012 end-page: 107 ident: b30 article-title: Zero duality gap in optimal power flow problem publication-title: IEEE Trans. Power Syst. – volume: 165 start-page: 549 year: 2017 end-page: 577 ident: b11 article-title: A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables publication-title: Math. Program. – volume: 160 year: 2023 ident: b9 article-title: A data mining transmission switching heuristic for post-contingency ac power flow violation reduction in real-world, large-scale systems publication-title: Comput. Oper. Res. – year: 2013 ident: b17 article-title: Mixed-Integer Quadratically-Constrained Programming, Piecewise-Linear Approximation and Error Analysis with Applications in Power Flow – volume: 4 start-page: 67 year: 1970 end-page: 79 ident: b22 article-title: Some remarks on quadratic programming with 0-1 variables publication-title: Revue Française d’Inform. Recherche Opérationnelle – volume: 26 start-page: 718 year: 2014 end-page: 734 ident: b12 article-title: A linear-programming approximation of AC power flows publication-title: INFORMS J. Comput. – volume: 27 start-page: 1138 year: 2012 end-page: 1139 ident: b24 article-title: Exploiting sparsity in SDP relaxations of the OPF problem publication-title: IEEE Trans. Power Syst. – year: 2019 ident: b1 article-title: The MOSEK optimization toolbox for MATLAB manual. Version 9.2. – volume: 106 start-page: 25 year: 2006 end-page: 57 ident: b41 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Math. Program. – volume: 9 start-page: 876 year: 1993 end-page: 883 ident: b43 article-title: A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows publication-title: IEEE Trans. Power Syst. – volume: 96 start-page: 272 year: 2018 end-page: 280 ident: b10 article-title: Optimal configuration of power distribution networks with variable renewable energy resources publication-title: Comput. Oper. Res. – volume: 3 year: 2009 ident: b3 article-title: Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints publication-title: IET Gener., Transm. Distribution – volume: 134 year: 2021 ident: b21 article-title: Chance constrained unit commitment approximation under stochastic wind energy publication-title: Comput. Oper. Res. – volume: 34 start-page: 98 year: 2019 end-page: 114 ident: b16 article-title: Global solution of non-convex quadratically constrained quadratic programs publication-title: Optim. Methods Softw. – volume: 287 start-page: 391 year: 2020 end-page: 409 ident: b46 article-title: A survey on conic relaxations of optimal power flow problem publication-title: European J. Oper. Res. – volume: 11 start-page: 796 year: 2001 end-page: 817 ident: b29 article-title: Global optimization with polynomials and the problem of moments publication-title: SIAM J. Optim. – volume: 74 start-page: 639 year: 2019 end-page: 675 ident: b36 article-title: An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs publication-title: J. Global Optim. – volume: 131 start-page: 381 year: 2012 end-page: 401 ident: b6 article-title: Extending the QCR method to the case of general mixed integer program publication-title: Math. Program. – volume: 30 start-page: 463 year: 2015 end-page: 470 ident: b26 article-title: Application of the moment-SOS approach to global optimization of the OPF problem publication-title: IEEE Trans. Power Syst. – volume: 138 year: 2022 ident: b38 article-title: Solving nonsmooth and discontinuous optimal power flow problems via interior-point publication-title: Comput. Oper. Res. – start-page: 1 year: 2018 end-page: 7 ident: b31 article-title: Tight piecewise convex relaxations for global optimization of optimal power flow publication-title: 2018 Power Systems Computation Conference – volume: 287 start-page: 391 year: 2020 end-page: 409 ident: b47 article-title: A survey on conic relaxations of optimal power flow problem publication-title: European J. Oper. Res. – year: 2019 ident: 10.1016/j.cor.2024.106626_b1 – volume: 165 start-page: 549 year: 2017 ident: 10.1016/j.cor.2024.106626_b11 article-title: A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables publication-title: Math. Program. doi: 10.1007/s10107-016-1095-2 – volume: 28 start-page: 3987 issue: 4 year: 2013 ident: 10.1016/j.cor.2024.106626_b35 article-title: Implementation of a large-scale optimal power flow solver based on semidefinite programming publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2258044 – volume: 22 start-page: 1185 issue: 3 year: 2007 ident: 10.1016/j.cor.2024.106626_b42 article-title: On computational issues of market-based optimal power flow publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2007.901301 – volume: 131 start-page: 381 issue: 1 year: 2012 ident: 10.1016/j.cor.2024.106626_b6 article-title: Extending the QCR method to the case of general mixed integer program publication-title: Math. Program. doi: 10.1007/s10107-010-0381-7 – volume: 30 start-page: 833 issue: 6 year: 2003 ident: 10.1016/j.cor.2024.106626_b8 article-title: A decision model for reducing active power losses during electric power dispatching publication-title: Comput. Oper. Res. doi: 10.1016/S0305-0548(02)00039-4 – year: 2020 ident: 10.1016/j.cor.2024.106626_b45 – volume: 300 start-page: 387 issue: 2 year: 2022 ident: 10.1016/j.cor.2024.106626_b39 article-title: Operations research in optimal power flow: A guide to recent and emerging methodologies and applications publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2021.10.003 – volume: 9 start-page: 876 year: 1993 ident: 10.1016/j.cor.2024.106626_b43 article-title: A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows publication-title: IEEE Trans. Power Syst. – volume: 27 start-page: 1138 issue: 2 year: 2012 ident: 10.1016/j.cor.2024.106626_b24 article-title: Exploiting sparsity in SDP relaxations of the OPF problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2170772 – volume: 91 start-page: 201 year: 1986 ident: 10.1016/j.cor.2024.106626_b15 article-title: Benchmarking optimization software with performance profiles publication-title: Math. Program. doi: 10.1007/s101070100263 – ident: 10.1016/j.cor.2024.106626_b19 doi: 10.1109/CoDIT.2019.8820584 – volume: 30 start-page: 463 issue: 1 year: 2015 ident: 10.1016/j.cor.2024.106626_b26 article-title: Application of the moment-SOS approach to global optimization of the OPF problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2320819 – volume: 158 start-page: 235 issue: 1 year: 2016 ident: 10.1016/j.cor.2024.106626_b7 article-title: Exact quadratic convex reformulations of mixed-integer quadratically constrained problems publication-title: Math. Program. doi: 10.1007/s10107-015-0921-2 – volume: 106 start-page: 25 issue: 1 year: 2006 ident: 10.1016/j.cor.2024.106626_b41 article-title: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming publication-title: Math. Program. doi: 10.1007/s10107-004-0559-y – volume: 22 start-page: 1 year: 2013 ident: 10.1016/j.cor.2024.106626_b5 article-title: Mixed-integer nonlinear optimization publication-title: Acta Numer. doi: 10.1017/S0962492913000032 – volume: 31 start-page: 3008 issue: 4 year: 2016 ident: 10.1016/j.cor.2024.106626_b14 article-title: The QC relaxation: A theoretical and computational study on optimal power flow publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2015.2463111 – volume: 27 start-page: 92 issue: 1 year: 2012 ident: 10.1016/j.cor.2024.106626_b30 article-title: Zero duality gap in optimal power flow problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2160974 – start-page: 1 year: 2018 ident: 10.1016/j.cor.2024.106626_b31 article-title: Tight piecewise convex relaxations for global optimization of optimal power flow – volume: 21 start-page: 1458 issue: 3 year: 2006 ident: 10.1016/j.cor.2024.106626_b23 article-title: Radial distribution load flow using conic programming publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.879234 – volume: 287 start-page: 391 issue: 2 year: 2020 ident: 10.1016/j.cor.2024.106626_b46 article-title: A survey on conic relaxations of optimal power flow problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2020.01.034 – volume: 138 year: 2022 ident: 10.1016/j.cor.2024.106626_b38 article-title: Solving nonsmooth and discontinuous optimal power flow problems via interior-point ℓp-penalty approach publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105607 – volume: 64 start-page: 1177 issue: 6 year: 2016 ident: 10.1016/j.cor.2024.106626_b27 article-title: Strong SOCP relaxations for the optimal power flow problem publication-title: Oper. Res. doi: 10.1287/opre.2016.1489 – volume: 287 start-page: 391 issue: 2 year: 2020 ident: 10.1016/j.cor.2024.106626_b47 article-title: A survey on conic relaxations of optimal power flow problem publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2020.01.034 – volume: 96 start-page: 272 year: 2018 ident: 10.1016/j.cor.2024.106626_b10 article-title: Optimal configuration of power distribution networks with variable renewable energy resources publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2017.09.021 – volume: 9 start-page: 321 issue: 3 year: 2017 ident: 10.1016/j.cor.2024.106626_b13 article-title: Convex quadratic relaxations for mixed-integer nonlinear programs in power systems publication-title: Math. Program. Comput. doi: 10.1007/s12532-016-0112-z – volume: 26 start-page: 718 year: 2014 ident: 10.1016/j.cor.2024.106626_b12 article-title: A linear-programming approximation of AC power flows publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2014.0594 – volume: 189 year: 2020 ident: 10.1016/j.cor.2024.106626_b20 article-title: Proving global optimality of ACOPF solutions publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106688 – volume: 60 start-page: 275 issue: 2 year: 2012 ident: 10.1016/j.cor.2024.106626_b37 article-title: Lagrangian duality and branch-and-bound algorithms for optimal power flow publication-title: Oper. Res. doi: 10.1287/opre.1110.1036 – volume: 11 start-page: 796 issue: 3 year: 2001 ident: 10.1016/j.cor.2024.106626_b29 article-title: Global optimization with polynomials and the problem of moments publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366802 – volume: 30 start-page: 3168 issue: 6 year: 2015 ident: 10.1016/j.cor.2024.106626_b34 article-title: Sparsity-Exploiting Moment-Based Relaxations of the Optimal Power Flow Problem publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2372478 – volume: 17 start-page: 654 issue: 3 year: 2002 ident: 10.1016/j.cor.2024.106626_b25 article-title: A primal-dual interior point method for optimal power flow dispatching publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2002.800870 – volume: 4 start-page: 67 year: 1970 ident: 10.1016/j.cor.2024.106626_b22 article-title: Some remarks on quadratic programming with 0-1 variables publication-title: Revue Française d’Inform. Recherche Opérationnelle – year: 2021 ident: 10.1016/j.cor.2024.106626_b2 – volume: 10 start-page: 147 issue: 1 year: 1976 ident: 10.1016/j.cor.2024.106626_b33 article-title: Computability of global solutions to factorable non-convex programs: Part I - Convex underestimating problems publication-title: Math. Program. doi: 10.1007/BF01580665 – volume: 134 year: 2021 ident: 10.1016/j.cor.2024.106626_b21 article-title: Chance constrained unit commitment approximation under stochastic wind energy publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105398 – volume: 34 start-page: 98 issue: 1 year: 2019 ident: 10.1016/j.cor.2024.106626_b16 article-title: Global solution of non-convex quadratically constrained quadratic programs publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2017.1350675 – volume: 10 start-page: 557 issue: 4 year: 2018 ident: 10.1016/j.cor.2024.106626_b28 article-title: Matrix minor reformulation and socp-based spatial branch-and-cut method for the ac optimal power flow problem publication-title: Math. Program. Comput. doi: 10.1007/s12532-018-0150-9 – volume: 160 year: 2023 ident: 10.1016/j.cor.2024.106626_b9 article-title: A data mining transmission switching heuristic for post-contingency ac power flow violation reduction in real-world, large-scale systems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2023.106391 – volume: 30 start-page: 383 issue: 6 year: 2008 ident: 10.1016/j.cor.2024.106626_b4 article-title: Semidefinite programming for optimal power flow problems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2007.12.003 – volume: 60 start-page: 72 issue: 1 year: 2015 ident: 10.1016/j.cor.2024.106626_b18 article-title: Exact convex relaxation of optimal power flow in radial networks publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2014.2332712 – volume: 3 year: 2009 ident: 10.1016/j.cor.2024.106626_b3 article-title: Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints publication-title: IET Gener., Transm. Distribution – year: 2013 ident: 10.1016/j.cor.2024.106626_b17 – volume: 30 start-page: 199 year: 2015 ident: 10.1016/j.cor.2024.106626_b32 article-title: Convex relaxation for optimal power flow problem: Mesh networks publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2014.2322051 – volume: 13 start-page: 1211 year: 1998 ident: 10.1016/j.cor.2024.106626_b40 article-title: An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.736231 – volume: 74 start-page: 639 issue: 4 year: 2019 ident: 10.1016/j.cor.2024.106626_b36 article-title: An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs publication-title: J. Global Optim. doi: 10.1007/s10898-018-00734-1 – volume: 66 start-page: 241 year: 2016 ident: 10.1016/j.cor.2024.106626_b44 article-title: A deterministic method for the unit commitment problem in power systems publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2015.01.012 |
| SSID | ssj0000721 |
| Score | 2.4469364 |
| Snippet | In this paper, we consider the Optimal Power Flow (OPF) problem which consists in determining the power production at each bus of an electric network by... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 106626 |
| SubjectTerms | Global optimization Mathematics Optimal Power Flow Optimization and Control Quadratic convex relaxation Quadratically constrained quadratic programming Semidefinite programming |
| Title | A tight compact quadratically constrained convex relaxation of the Optimal Power Flow problem |
| URI | https://dx.doi.org/10.1016/j.cor.2024.106626 https://hal.science/hal-03266868 |
| Volume | 166 |
| WOSCitedRecordID | wos001222707500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-765X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000721 issn: 0305-0548 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfYhhA88FFAjC9ZiCeqoNRx7PgxQpsGmsYkhtQXFNmOKzZ1adWWUf577mwn6YaYAImXqLIaO73fr-fz5T4IeS0ky6TLeeKM0gm3oyzRSrnEWaVgvzHcCOObTcijo2I8Vsexzd3StxOQTVOs12r-X6GGMQAbU2f_Au5uUhiAzwA6XAF2uP4R8OVwhQfuEF1ufdpkjTADGNMfGGW-9G0hXB0iztc-nWXdWY5oiH4EPXIO2B1jC7Xh_nT2fRgbz2zasm1DiKWnz2zuFjGsLhYQ6hzNhxq7joT6Bufhzfz01G36Gxjv46KCE6xNhOmjjnzyFcYA5qFo5lsXdGkhs0SKfHxJ2YYeK78o7uBDOAO5Y5FWxmFECHalSLbfdj_hWrgURr-mquBbZIfJXIFW3inf740_9Bux9Gl33bO1L7V9eN-VhX5nlmx9bR3s3uA4uU_uxpMCLQPCD8gN1wzIrTZRYUDutfKnUT8PyJ2N6pIPyZeSeibQyAR6iQl0gwk0MIH2TKCzCQUm0MgE6plAkQk0MuER-by_d_LuIIndNBILRugqmaAzAqwRYyQTrraszpzKdaZzLqWWcAzmnNWjdGJy5qy0bmSVNWDB5i7NcmOzx2S7mTXuCaEZt5xpZXk20WDcjJRNtdJYqNuJWqdil6StMCsbS83jD5pWbUzhWQXyr1D-VZD_LnnT3TIPdVau-zJvEaqioRgMwArodN1trwDNbnosrH5QHlY4lsIpRhSiuGBP_23uZ-R2_2d5TrZXi2_uBblpL1any8XLyMyfnMKYEw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tight+compact+quadratically+constrained+convex+relaxation+of+the+Optimal+Power+Flow+problem&rft.jtitle=Computers+%26+operations+research&rft.au=Lambert%2C+Am%C3%A9lie&rft.date=2024-06-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0548&rft.eissn=1873-765X&rft.volume=166&rft_id=info:doi/10.1016%2Fj.cor.2024.106626&rft.externalDocID=S0305054824000984 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon |