A reliable and efficient resonance theory based on analysis of DFT wave functions

Due to methodological difficulties and limitations of applicability, a quantitative bonding analysis based on the theory of resonance is presently not as convenient and popular as that based on the molecular orbital (MO) methods. Here, we propose an efficient quantitative resonance theory by expandi...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP Vol. 23; no. 3; p. 2331
Main Author: Wang, Yang
Format: Journal Article
Language:English
Published: England 28.01.2021
ISSN:1463-9084, 1463-9084
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to methodological difficulties and limitations of applicability, a quantitative bonding analysis based on the theory of resonance is presently not as convenient and popular as that based on the molecular orbital (MO) methods. Here, we propose an efficient quantitative resonance theory by expanding the DFT wave function in terms of a complete set of Lewis structures. By rigorously separating the resonance subsystem represented by a set of localized MOs, this approach is able to treat large molecules, nonplanar π-conjugate systems, and bonding systems mixing both σ and π electrons. Assessment in 2c-2e systems suggests a new projection-weighted symmetric orthogonalization method to evaluate the weights of resonance contributors, which overcomes the drawbacks of other weighting schemes. Applications to benzene, naphthalene and chlorobenzene show that the present method is insensitive to the basis set employed in the DFT calculations, and to the choices of the independent Lewis set determined by Rumer's rule. Advanced applications to diverse chemical problems provide unique and valuable insights into the understanding of hydrogen bonding, the π substituent effect on benzene, and the mechanism of Diels-Alder reactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1463-9084
1463-9084
DOI:10.1039/d0cp06207c