Comparison of Machine Learning Algorithms for Daily Runoff Forecasting with Global Rainfall Products in Algeria
Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation for these models, notably in many African countries, although some recent global rainfall products can effectively monitor rainfall from spa...
Gespeichert in:
| Veröffentlicht in: | Atmosphere Jg. 16; H. 2; S. 213 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2025
MDPI |
| Schlagworte: | |
| ISSN: | 2073-4433, 2073-4433 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation for these models, notably in many African countries, although some recent global rainfall products can effectively monitor rainfall from space. In Algeria, to identify a relevant modeling approach using this new source of rainfall information, the present research aims to (i) compare a conceptual model (GR4J) and seven machine learning algorithms (FFNN, ELM, LSTM, LSTM2, GRU, SVM, and GPR) and (ii) compare different types of precipitation inputs, including four satellite products (CHIRPS, SM2RAIN, GPM, and PERSIANN), one reanalysis product (ERA5), and observed precipitation, to assess which combination of models and precipitation data provides the optimal performance for river discharge simulation. The results show that the ELM, FFNN, and LSTM algorithms give the best performance (NSE > 0.6) for river runoff simulation and provide reliable alternatives compared to a conceptual hydrological model. The SM2RAIN-ASCAT and ERA5 rainfall products are as efficient as observed precipitation in this data-scarce context. Consequently, this work is the first step towards the implementation of these tools for the operational monitoring of surface water resources in Algeria. |
|---|---|
| AbstractList | Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation for these models, notably in many African countries, although some recent global rainfall products can effectively monitor rainfall from space. In Algeria, to identify a relevant modeling approach using this new source of rainfall information, the present research aims to (i) compare a conceptual model (GR4J) and seven machine learning algorithms (FFNN, ELM, LSTM, LSTM2, GRU, SVM, and GPR) and (ii) compare different types of precipitation inputs, including four satellite products (CHIRPS, SM2RAIN, GPM, and PERSIANN), one reanalysis product (ERA5), and observed precipitation, to assess which combination of models and precipitation data provides the optimal performance for river discharge simulation. The results show that the ELM, FFNN, and LSTM algorithms give the best performance (NSE > 0.6) for river runoff simulation and provide reliable alternatives compared to a conceptual hydrological model. The SM2RAIN-ASCAT and ERA5 rainfall products are as efficient as observed precipitation in this data-scarce context. Consequently, this work is the first step towards the implementation of these tools for the operational monitoring of surface water resources in Algeria. |
| Audience | Academic |
| Author | Bounab, Rayane Tramblay, Yves Boulmaiz, Tayeb Boutaghane, Hamouda |
| Author_xml | – sequence: 1 givenname: Rayane orcidid: 0009-0008-9768-5128 surname: Bounab fullname: Bounab, Rayane – sequence: 2 givenname: Hamouda orcidid: 0000-0002-8260-0397 surname: Boutaghane fullname: Boutaghane, Hamouda – sequence: 3 givenname: Tayeb surname: Boulmaiz fullname: Boulmaiz, Tayeb – sequence: 4 givenname: Yves orcidid: 0000-0003-0481-5330 surname: Tramblay fullname: Tramblay, Yves |
| BackLink | https://hal.science/hal-05082278$$DView record in HAL |
| BookMark | eNpVkd2P1CAUxRuzJq7rPvpO4pMPXfloaXmcjO5HMkaz0WdyoTDDpOWO0NHsfy-1xrjwADn87uHCeV1dRIyuqt4yeiOEoh9gnjAzSTnlTLyoLjntRN00Qlz8t39VXed8pGU0SnDRXFa4xekEKWSMBD35DPYQoiM7BymGuCebcY8pzIcpE4-JfIQwPpHHc0TvyS0mZyHPC_erMORuRAMjeYQQPYwj-ZpwONs5kxAXI5cCvKlelqPsrv-uV9X320_ftvf17svdw3azq61Qaq6dM166HrhV1oLhojPc9MCU4bLpKB-8FR6oBe8kB-alN9YZQ60Rnee8E1fVw-o7IBz1KYUJ0pNGCPqPgGmvIc3Bjk7bgQ8UhGy9443tvGJta1s_DIL5XorF6_3qdYDxmdX9ZqcXjba0L5f2P1lh363sKeGPs8uzPuI5xfJULVhHlWw72hbqZqX2UBoov4VzAlvm4KZgS7A-FH3TcyVVI3tRCuq1wCbMOTn_rw9G9ZK_fpa_-A27lqYS |
| Cites_doi | 10.3390/app11136238 10.1016/j.jhydrol.2012.01.011 10.1140/epjs/s11734-021-00017-z 10.1016/0022-1694(70)90255-6 10.1016/j.eswa.2013.06.077 10.1002/qj.3803 10.1109/ACCESS.2021.3077703 10.1016/j.envsoft.2023.105831 10.1109/TSMCB.2011.2168604 10.1038/sdata.2015.66 10.1080/02626667.2018.1474219 10.1162/neco.1997.9.8.1735 10.1007/s12145-021-00615-4 10.2166/hydro.2021.067 10.1002/qj.3313 10.1016/j.jhydrol.2019.05.071 10.3390/rs12111801 10.1007/s11269-017-1792-5 10.1016/j.jhydrol.2021.126433 10.3390/w10070927 10.1007/BF00994018 10.1016/j.jprocont.2019.12.007 10.5194/hess-22-6005-2018 10.1080/02626667.2023.2171295 10.1016/j.scitotenv.2021.146535 10.1155/2017/3695285 10.1016/S0022-1694(03)00225-7 10.1111/jfr3.12147 10.1016/j.jhydrol.2007.12.019 10.1007/s11269-013-0382-4 10.1016/j.jhydrol.2022.127553 10.1007/s40808-020-00780-3 10.1002/wat2.1533 10.1007/s11269-016-1340-8 10.1175/BAMS-D-13-00068.1 10.3390/w10101362 10.1016/j.neucom.2005.12.126 10.1007/s12145-021-00603-8 10.1016/j.jhydrol.2024.130678 10.1016/j.scitotenv.2022.155328 10.1080/15715124.2022.2118280 10.5194/essd-11-1583-2019 10.1016/j.apenergy.2019.113541 10.2166/wcc.2023.461 10.5194/nhess-20-2591-2020 10.5194/hess-20-375-2016 10.1002/joc.8671 10.1038/s41597-021-00940-9 10.3390/w9100719 10.1016/j.jhydrol.2009.08.003 10.3390/w8030069 10.1007/s40808-020-00830-w 10.1111/jfr3.12672 10.3390/w14020147 10.4000/physio-geo.5369 10.1029/2020WR028091 10.1016/j.ejrh.2022.101169 10.1080/23249676.2021.1884617 10.1016/j.atmosres.2015.05.015 10.1007/s10795-012-9125-6 10.1515/johh-2015-0016 10.1016/j.jhydrol.2020.125188 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | AAYXX CITATION 7QH 7ST 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI 1XC VOOES DOA |
| DOI | 10.3390/atmos16020213 |
| DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Computer Science |
| EISSN | 2073-4433 |
| ExternalDocumentID | oai_doaj_org_article_cd2d0a365fe24c7f9155c5fdd31f8637 oai:HAL:hal-05082278v1 A829694683 10_3390_atmos16020213 |
| GeographicLocations | Algeria North Africa |
| GeographicLocations_xml | – name: Algeria – name: North Africa |
| GroupedDBID | 2XV 5VS 8FE 8FH AAFWJ AAHBH AAYXX ADMLS AENEX AFFHD AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS BENPR BHPHI BKSAR CCPQU CITATION D1K GROUPED_DOAJ HCIFZ IAO ITC K6- KQ8 MODMG M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC 7QH 7ST 7TG 7TN 7UA ABUWG AZQEC C1K DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS SOI 1XC VOOES |
| ID | FETCH-LOGICAL-c399t-eebf6e8a2c9ccab237b2b8a19b264702dfc3fa0cafe62a1f6fbcebb0cb37f2273 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001430649300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4433 |
| IngestDate | Tue Oct 14 19:06:28 EDT 2025 Sat Nov 29 15:04:25 EST 2025 Mon Jun 30 12:36:12 EDT 2025 Sat Nov 29 10:29:21 EST 2025 Sat Nov 29 07:11:07 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Rainfall–runoff simulation Satellite rainfall Algeria Hydrologic models Machine learning |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c399t-eebf6e8a2c9ccab237b2b8a19b264702dfc3fa0cafe62a1f6fbcebb0cb37f2273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0481-5330 0000-0002-8260-0397 0009-0008-9768-5128 |
| OpenAccessLink | https://www.proquest.com/docview/3170965705?pq-origsite=%requestingapplication% |
| PQID | 3170965705 |
| PQPubID | 2032431 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_cd2d0a365fe24c7f9155c5fdd31f8637 hal_primary_oai_HAL_hal_05082278v1 proquest_journals_3170965705 gale_infotracacademiconefile_A829694683 crossref_primary_10_3390_atmos16020213 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Atmosphere |
| PublicationYear | 2025 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Zahar (ref_63) 2008; 351 ref_56 Cortes (ref_58) 1995; 20 ref_54 Ozdemir (ref_30) 2024; 44 Ouassanouan (ref_66) 2022; 834 Sadeghi (ref_38) 2021; 8 Brocca (ref_35) 2015; 63 ref_16 ref_15 Hussain (ref_28) 2020; 41 Nash (ref_59) 1970; 10 Nourani (ref_21) 2021; 14 Gadhawe (ref_26) 2021; 230 Alazzy (ref_29) 2017; 2017 Kratzert (ref_52) 2018; 22 Tramblay (ref_24) 2023; 68 Brocca (ref_34) 2019; 11 Tramblay (ref_2) 2020; 20 Chen (ref_4) 2016; 20 Cantoni (ref_25) 2022; 42 ref_69 Funk (ref_39) 2015; 2 Gowda (ref_1) 2022; 22 Zeroual (ref_20) 2016; 30 ref_64 Kapoor (ref_68) 2023; 169 Kling (ref_61) 2012; 424–425 Remini (ref_65) 2011; 25 Hersbach (ref_42) 2019; 159 Unduche (ref_5) 2018; 63 Ashouri (ref_37) 2015; 96 Perrin (ref_46) 2003; 279 Hochreiter (ref_53) 1997; 9 Ahani (ref_11) 2017; 32 Alizadeh (ref_14) 2021; 14 Katsanos (ref_41) 2016; 169 Huang (ref_51) 2006; 70 Sayama (ref_3) 2017; 10 (ref_55) 2013; 40 Xu (ref_12) 2021; 8 Ndiaye (ref_45) 2017; 11 Abdi (ref_19) 2020; 14 Hadid (ref_7) 2019; 86 Xu (ref_17) 2022; 608 Parisouj (ref_22) 2021; 9 Okkan (ref_70) 2021; 598 ref_31 Yeditha (ref_23) 2021; 24 Najmi (ref_32) 2023; 14 Guermoui (ref_49) 2016; 15 Belkhiri (ref_44) 2020; 19 Huang (ref_50) 2012; 42 Hipni (ref_57) 2013; 27 Nearing (ref_13) 2021; 57 Kirschbaum (ref_33) 2018; 144 Hersbach (ref_43) 2020; 146 Funk (ref_40) 2014; 832 Ghimire (ref_48) 2019; 253 Gupta (ref_60) 2009; 377 Koohi (ref_36) 2021; 779 ref_47 Boulmaiz (ref_8) 2020; 6 Gao (ref_18) 2020; 589 Ali (ref_27) 2020; 6 ref_9 Mazrooei (ref_10) 2019; 575 Tramblay (ref_67) 2024; 630 Le (ref_62) 2021; 9 ref_6 |
| References_xml | – ident: ref_9 doi: 10.3390/app11136238 – volume: 424–425 start-page: 264 year: 2012 ident: ref_61 article-title: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.01.011 – volume: 230 start-page: 3343 year: 2021 ident: ref_26 article-title: Network-based exploration of basin precipitation based on satellite and observed data publication-title: Eur. Phys. J. Spéc. Top. doi: 10.1140/epjs/s11734-021-00017-z – volume: 10 start-page: 398 year: 1970 ident: ref_59 article-title: River flow forecasting through conceptual models, I: A discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 15 start-page: 35 year: 2016 ident: ref_49 article-title: Daily global solar radiation modelling using multi-layer perceptron neural networks in semi-arid region publication-title: Leonardo Electron. J. Pract. Technol. – volume: 40 start-page: 7407 year: 2013 ident: ref_55 article-title: Stream water temperature prediction based on Gaussian process regression publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.06.077 – volume: 146 start-page: 1999 year: 2020 ident: ref_43 article-title: The ERA5 global reanalysis publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 9 start-page: 71805 year: 2021 ident: ref_62 article-title: Comparison of Deep Learning Techniques for River Streamflow Forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3077703 – volume: 169 start-page: 105831 year: 2023 ident: ref_68 article-title: DeepGR4J: A deep learning hybridization approach for conceptual rainfall-runoff modelling publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2023.105831 – volume: 42 start-page: 513 year: 2012 ident: ref_50 article-title: Extreme learning machine for regression and multiclass classification publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern. doi: 10.1109/TSMCB.2011.2168604 – volume: 2 start-page: 150066 year: 2015 ident: ref_39 article-title: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes publication-title: Sci. Data doi: 10.1038/sdata.2015.66 – volume: 63 start-page: 1133 year: 2018 ident: ref_5 article-title: Evaluation of four hydrological models for operational flood forecasting in a Canadian Prairie watershed publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2018.1474219 – volume: 9 start-page: 1735 year: 1997 ident: ref_53 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 41 start-page: E517 year: 2020 ident: ref_28 article-title: Reliability of SM2RAIN precipitation datasets in comparison to gauge observations and hydrological modelling over arid regions publication-title: Int. J. Clim. – volume: 14 start-page: 1787 year: 2021 ident: ref_21 article-title: Ensemble data-driven rainfall-runoff modeling using multi-source satellite and gauge rainfall data input fusion publication-title: Earth Sci. Inform. doi: 10.1007/s12145-021-00615-4 – volume: 24 start-page: 16 year: 2021 ident: ref_23 article-title: Investigation of satellite rainfall-driven rainfall–runoff model using deep learning approaches in two different catchments in India publication-title: J. Hydroinform. doi: 10.2166/hydro.2021.067 – volume: 144 start-page: 27 year: 2018 ident: ref_33 article-title: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3313 – volume: 575 start-page: 704 year: 2019 ident: ref_10 article-title: Improving monthly streamflow forecasts through assimilation of observed streamflow for rainfall-dominated basins across the CONUS publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.071 – ident: ref_69 doi: 10.3390/rs12111801 – volume: 32 start-page: 383 year: 2017 ident: ref_11 article-title: Performance assessment of the linear, nonlinear and nonparametric data driven models in river flow forecasting publication-title: Water Resour. Manag. doi: 10.1007/s11269-017-1792-5 – volume: 598 start-page: 126433 year: 2021 ident: ref_70 article-title: Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: A nested hybrid rainfall-runoff modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126433 – ident: ref_64 doi: 10.3390/w10070927 – ident: ref_56 – volume: 20 start-page: 273 year: 1995 ident: ref_58 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 86 start-page: 44 year: 2019 ident: ref_7 article-title: Data-driven modeling for river flood forecasting based on a piecewise linear ARX system identification publication-title: J. Process. Control doi: 10.1016/j.jprocont.2019.12.007 – volume: 22 start-page: 6005 year: 2018 ident: ref_52 article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6005-2018 – volume: 68 start-page: 474 year: 2023 ident: ref_24 article-title: River runoff estimation with satellite rainfall in Morocco publication-title: Hydrol. Sci. J. doi: 10.1080/02626667.2023.2171295 – volume: 779 start-page: 146535 year: 2021 ident: ref_36 article-title: Spatiotemporal drought monitoring using bottom-up precipitation dataset (SM2RAIN-ASCAT) over different regions of Iran publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2021.146535 – volume: 2017 start-page: 3695285 year: 2017 ident: ref_29 article-title: Evaluation of Satellite Precipitation Products and Their Potential Influence on Hydrological Modeling over the Ganzi River Basin of the Tibetan Plateau publication-title: Adv. Meteorol. doi: 10.1155/2017/3695285 – volume: 279 start-page: 275 year: 2003 ident: ref_46 article-title: Improvement of a Parsimonious Model for Streamflow Simulation publication-title: J. Hydrol. doi: 10.1016/S0022-1694(03)00225-7 – volume: 10 start-page: 65 year: 2017 ident: ref_3 article-title: An emergency response-type rainfall-runoff-inundation simulation for 2011 Thailand floods publication-title: J. Flood Risk Manag. doi: 10.1111/jfr3.12147 – volume: 351 start-page: 318 year: 2008 ident: ref_63 article-title: Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.12.019 – volume: 27 start-page: 3803 year: 2013 ident: ref_57 article-title: Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS) publication-title: Water Resour. Manag. doi: 10.1007/s11269-013-0382-4 – volume: 608 start-page: 127553 year: 2022 ident: ref_17 article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.127553 – volume: 6 start-page: 1645 year: 2020 ident: ref_27 article-title: Streamflow forecasting by modeling the rainfall–streamflow relationship using artificial neural networks publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-020-00780-3 – volume: 8 start-page: e1533 year: 2021 ident: ref_12 article-title: Machine learning for hydrologic sciences: An introductory overview publication-title: WIREs Water doi: 10.1002/wat2.1533 – volume: 30 start-page: 3191 year: 2016 ident: ref_20 article-title: Artificial Neural Network Rainfall-Discharge Model Assessment Under Rating Curve Uncertainty and Monthly Discharge Volume Predictions publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1340-8 – volume: 96 start-page: 69 year: 2015 ident: ref_37 article-title: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-13-00068.1 – ident: ref_47 doi: 10.3390/w10101362 – volume: 70 start-page: 489 year: 2006 ident: ref_51 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 14 start-page: 1047 year: 2021 ident: ref_14 article-title: Modeling long-term rainfall-runoff time series through wavelet-weighted regularization extreme learning machine publication-title: Earth Sci. Inform. doi: 10.1007/s12145-021-00603-8 – volume: 630 start-page: 130678 year: 2024 ident: ref_67 article-title: Regional flood frequency analysis in North Africa publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2024.130678 – volume: 19 start-page: 5 year: 2020 ident: ref_44 article-title: Performance evaluation of eighteen models for estimating reference evapotranspiration under subhumid conditions of Mitidja, Algeria publication-title: Rech. Agron. – volume: 834 start-page: 155328 year: 2022 ident: ref_66 article-title: Multi-decadal analysis of water resources and agricultural change in a Mediterranean semiarid irrigated piedmont under water scarcity and human interaction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155328 – volume: 832 start-page: 1 year: 2014 ident: ref_40 article-title: A quasi-global precipitation time series for drought monitoring. US Geol publication-title: Surv. Data Ser. – volume: 22 start-page: 187 year: 2022 ident: ref_1 article-title: Development of operation policy for dry season reservoirs in tropical partially gauged river basins publication-title: Int. J. River Basin Manag. doi: 10.1080/15715124.2022.2118280 – volume: 11 start-page: 1583 year: 2019 ident: ref_34 article-title: SM2RAIN–ASCAT (2007–2018): Global daily satellite rainfall data from ASCAT soil moisture observations publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-11-1583-2019 – volume: 253 start-page: 113541 year: 2019 ident: ref_48 article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113541 – volume: 14 start-page: 1569 year: 2023 ident: ref_32 article-title: Evaluation of PERSIANN-CCS-CDR, ERA5, and SM2RAIN-ASCAT rainfall products for rainfall and drought assessment in a semi-arid watershed, Morocco publication-title: J. Water Clim. Change doi: 10.2166/wcc.2023.461 – volume: 20 start-page: 2591 year: 2020 ident: ref_2 article-title: Challenges in flood modeling over data-scarce regions: How to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-20-2591-2020 – volume: 20 start-page: 375 year: 2016 ident: ref_4 article-title: Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-375-2016 – volume: 44 start-page: 5873 year: 2024 ident: ref_30 article-title: Comparing Satellite, Reanalysis, Fused and Gridded (In Situ) Precipitation Products Over Türkiye publication-title: Int. J. Climatol. doi: 10.1002/joc.8671 – volume: 8 start-page: 157 year: 2021 ident: ref_38 article-title: PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies publication-title: Sci. Data doi: 10.1038/s41597-021-00940-9 – ident: ref_6 doi: 10.3390/w9100719 – volume: 377 start-page: 80 year: 2009 ident: ref_60 article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.08.003 – ident: ref_16 doi: 10.3390/w8030069 – volume: 6 start-page: 2153 year: 2020 ident: ref_8 article-title: Impact of training data size on the LSTM performances for rainfall–runoff modeling publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-020-00830-w – volume: 14 start-page: e12672 year: 2020 ident: ref_19 article-title: Comparison of conceptual rainfall–runoff models in semi-arid watersheds of eastern Algeria publication-title: J. Flood Risk Manag. doi: 10.1111/jfr3.12672 – ident: ref_31 doi: 10.3390/w14020147 – volume: 11 start-page: 129 year: 2017 ident: ref_45 article-title: Evaluation of twenty methods for estimating daily reference evapotranspiration in Burkina Faso publication-title: Physio-Géo doi: 10.4000/physio-geo.5369 – ident: ref_54 – volume: 57 start-page: e2020WR028091 year: 2021 ident: ref_13 article-title: What role does hydrological science play in the age of machine learning? publication-title: Water Resour. Res. doi: 10.1029/2020WR028091 – volume: 42 start-page: 101169 year: 2022 ident: ref_25 article-title: Hydrological performance of the ERA5 reanalysis for flood modeling in Tunisia with the LISFLOOD and GR4J models publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2022.101169 – volume: 159 start-page: 17 year: 2019 ident: ref_42 article-title: Global reanalysis: Goodbye ERA-Interim, hello ERA5 publication-title: ECMWF Newsl. – volume: 9 start-page: 161 year: 2021 ident: ref_22 article-title: Rainfall-runoff simulation using satellite rainfall in a scarce data catchment publication-title: J. Appl. Water Eng. Res. doi: 10.1080/23249676.2021.1884617 – ident: ref_15 – volume: 169 start-page: 459 year: 2016 ident: ref_41 article-title: Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.05.015 – volume: 25 start-page: 293 year: 2011 ident: ref_65 article-title: Traditional techniques for increasing the discharge from qanats in Algeria publication-title: Irrig. Drain. Syst. doi: 10.1007/s10795-012-9125-6 – volume: 63 start-page: 201 year: 2015 ident: ref_35 article-title: Rainfall estimation from in situ soil moisture observations at several sites in Europe: An evaluation of the SM2RAIN algorithm publication-title: J. Hydrol. Hydromech. doi: 10.1515/johh-2015-0016 – volume: 589 start-page: 125188 year: 2020 ident: ref_18 article-title: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125188 |
| SSID | ssj0000493234 |
| Score | 2.3316581 |
| Snippet | Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation... |
| SourceID | doaj hal proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 213 |
| SubjectTerms | Algeria Algorithms Artificial intelligence Basins Comparative analysis Computer Aided Engineering Computer Science Daily forecasts Daily runoff Dams Forecasts and trends Global precipitation Hydrologic data Hydrologic models Hydrology Learning algorithms Machine learning Meteorological satellites Neural networks Ocean, Atmosphere Precipitation Precipitation data Precipitation monitoring Rain Rain and rainfall Rainfall Rainfall data Rainfall-runoff modeling Rainfall-runoff relationships rainfall–runoff simulation River discharge River flow River runoff Rivers Runoff Runoff forecasting Runoff models satellite rainfall Sciences of the Universe Stream flow Surface water Surface water resources Water discharge Water management Water monitoring Water resources Water resources management Watersheds |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWg4sAFQQERKMiqUDlFdezEdo7LQtVDW1UIpN4sf7ZBaYKStBL_Ho-TrrpceukxVhRbfmP7jTPzBqHP0U4M9bLMnS5dXjpCcl14kdN4GvKqtFqGlCh8Is7O5MVFfX6v1BfEhM3ywPPEHVpHHdGMV8HT0ooAeua2Cs6xIkjOUh45EfU9Z-r3zHsZZeUsqsmiX3-op-t-LHhkR7RgW4dQ0urf7MhPryAg8r99OR02Ry_Ri4Ul4tU8ulfoie92UXYaCW4_pHtwfIDXbRPZZnp6jfr1pp4g7gM-TSGSHi_qqZd41V72QzNdXY84slT8TTftX_zjputDwFCd0-oR4p8xXMviuQ4Ahl8_QbctPp9VYUfcdPAhsNk36NfR95_r43yppZDbSEGm3HsTuJea2jpiZigThhqpi9pERiQIdcGyoInVwXOqi8CDsd4YYg0TgUaO8xbtdH3n3yFMDGDIuQ6VKIHfaVtXlfA6elaFdTZDB3eTq_7MkhkquhqAgtpCIUNfYeo3L4HSdWqI-KsFf_UQ_hn6AsApWI_ToK1e0griWEHZSq0krXldchm724_YbvV2vDpR0EYqEL4X8rbI0N4d9GpZzaOKHAtEcgSp3j_GkD-g5xSqCKfY7z20Mw03_iN6Zm-nZhw-JUP-B7pS-sw priority: 102 providerName: Directory of Open Access Journals |
| Title | Comparison of Machine Learning Algorithms for Daily Runoff Forecasting with Global Rainfall Products in Algeria |
| URI | https://www.proquest.com/docview/3170965705 https://hal.science/hal-05082278 https://doaj.org/article/cd2d0a365fe24c7f9155c5fdd31f8637 |
| Volume | 16 |
| WOSCitedRecordID | wos001430649300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: PCBAR dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2073-4433 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000493234 issn: 2073-4433 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVN0kMv_S5xmgZRSnoysSVbsk9ls01IIbssoYX0ZCRZ2iw4dmo7gfz7zsjeLdtDLz1aNpZgnkZPo9EbQj4BTjSzWRKWKinDpIyiUMVWhgxWQ5EmRmXOXxS-lPN5dn2dL8aAWzemVa59onfUZWMwRn4C6xwKlcgo_XL3K8SqUXi6OpbQ2CF7qFQGON87PZsvrjZRFuC_nPFkENfksL8_Uf1t08UCWBKL-dZi5DX7N5555wYTI__yz37ROX_xv8N9SZ6PdJNOBny8Ik9s_ZoEM2DKTesD6vSYTqsV0Fb_9IY0001hQto4OvO5lpaOMqxLOqmW0E1_c9tRoLv0q1pVj_Tqvm6co1jm06gOE6kpxnfpUFCA4hmSU1VFF4O8bEdXNf4Iwf-W_Dg_-z69CMeiDKEBLtOH1monbKaYycH4mnGpmc5UnGugVjJipTPcqcgoZwVTsRNOG6t1ZDSXjgFZekd266a2-4RGGsEghHKpTJAoKpOnqbQKtmixKU1AjtfWKe4G7Y0C9ixoxmLLjAE5RdttPkLJbN_QtMtinIGFKVkZKS5SZ1lipENhfJO6suSxywSXAfmMli9wYvetMmq8nwBjRYmsYpKxXOSJyKC7jwCOrd4uJpcFtkUpKujL7CEOyOEaGMXoFrriDyoO_v36PXnGsNCwTw8_JLt9e28_kKfmoV917dGI8iMfQICnxbfZ4udvlUIMXg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLa2Dgku_EYUBlgIximaYydOckCodEyt1k4VGtI4ebZjd5W6ZjTZ0P4p_kbeS9KicuC2A8c4kR0nn997tp-_j5B3gBPDXRoFuY7yIMoZC3TokoCDN5RxZHXq64PCo-T4OD09zSZb5NfqLAymVa5sYm2o88LiGvk--DkkKklY_OnyR4CqUbi7upLQaGBx5G5-wpSt_Dg8gP_7nvPDLyf9QdCqCgQWnHEVOGe8dKnmNoO3N1wkhptUh5mB2CBhPPdWeM2s9k5yHXrpjXXGMGtE4jl4e6h3m-xEAHbWITuT4Xjyfb2qA_G24CJqyDyFyNi-ri6KMpQQlfFQbDi_WiNg7Qm2zzER8y9_UDu5wwf_2-d5SO634TTtNfh_RLbc4jHpjmEmUCzrDQO6R_vzGYTl9dUTUvTXwou08HRc55I62tLMTmlvPoVuVecXJYVwnh7o2fyGfr1aFN5TlDG1usREcYrr17QRTKC4R-b1fE4nDX1uSWcLrAgH91Py7Vb6_4x0FsXCPSeUGQS7lNrHSYSBsLZZHCdOwxQ0tLntkr0VGtRlwy2iYE6GsFEbsOmSz4iV9UNICV4XFMupai2MsjnPmRYy9o5HNvFI_G9jn-ci9KkUSZd8QKQpNFzVUlvdnr-Ad0UKMNVLeSazSKbQ3FsA40Zrg95IYRmLUSEgSa_DLtldAVG1Zq9Uf1D44t-335C7g5PxSI2Gx0cvyT2Oosp1Kvwu6VTLK_eK3LHX1axcvm5HGCVnt43a37_ubHY |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLe2DiEufE8UBlgIxilqYid2ckCo66g2rauqCaTdjO3YXaWuGU02tH-Nv473krSoHLjtwDFOZMfJ733Zz-9HyHvAiWEujYNcx3kQ52EY6MjJgIE1FElsderrg8IjOR6n5-fZZIv8Wp2FwbTKlU6sFXVeWFwj74Gdw0IlMkx6vk2LmBwOP1_9CJBBCndaV3QaDURO3O1PCN_KT8eH8K8_MDb88nVwFLQMA4EFw1wFzhkvXKqZzWAmhnFpmEl1lBnwE2TIcm-516HV3gmmIy-8sc6Y0BouPQPLD_1uk51UiIx1yM5kcNA_W6_wgO_NGY-bwp6cZ2FPV5dFGQnw0FjENwxhzRewtgrbF5iU-ZdtqA3e8NH__Kkek4etm037jVw8IVtu8ZR0TyFCKJb1RgLdp4P5DNz1-uoZKQZrQkZaeHpa55g62pafndL-fArTqi4uSwpuPj3Us_ktPbteFN5TpDe1usQEcorr2rQhUqC4d-b1fE4nTVndks4W2BEK_XPy7U7mv0s6i2LhXhAaGhQCIbRPZIwOsrZZkkinITSNbG67ZH-FDHXV1BxREKshhNQGhLrkAHGzfghLhdcNxXKqWs2jbM7yUHOReMdiKz0SAtjE5zmPfCq47JKPiDqFCq1aaqvbcxnwrlgaTPVTloksFikM9w6AuTHaUX-ksC1MkDlApjdRl-ytQKladViqP4h8-e_bb8l9gKoaHY9PXpEHDLmW6wz5PdKpltfuNblnb6pZuXzTChsl3-8atL8BHpx09g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Machine+Learning+Algorithms+for+Daily+Runoff+Forecasting+with+Global+Rainfall+Products+in+Algeria&rft.jtitle=Atmosphere&rft.au=Bounab%2C+Rayane&rft.au=Boutaghane%2C+Hamouda&rft.au=Boulmaiz%2C+Tayeb&rft.au=Tramblay%2C+Yves&rft.date=2025-02-01&rft.issn=2073-4433&rft.eissn=2073-4433&rft.volume=16&rft.issue=2&rft.spage=213&rft_id=info:doi/10.3390%2Fatmos16020213&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_atmos16020213 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon |