Comparison of Machine Learning Algorithms for Daily Runoff Forecasting with Global Rainfall Products in Algeria

Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation for these models, notably in many African countries, although some recent global rainfall products can effectively monitor rainfall from spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmosphere Jg. 16; H. 2; S. 213
Hauptverfasser: Bounab, Rayane, Boutaghane, Hamouda, Boulmaiz, Tayeb, Tramblay, Yves
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.02.2025
MDPI
Schlagworte:
ISSN:2073-4433, 2073-4433
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation for these models, notably in many African countries, although some recent global rainfall products can effectively monitor rainfall from space. In Algeria, to identify a relevant modeling approach using this new source of rainfall information, the present research aims to (i) compare a conceptual model (GR4J) and seven machine learning algorithms (FFNN, ELM, LSTM, LSTM2, GRU, SVM, and GPR) and (ii) compare different types of precipitation inputs, including four satellite products (CHIRPS, SM2RAIN, GPM, and PERSIANN), one reanalysis product (ERA5), and observed precipitation, to assess which combination of models and precipitation data provides the optimal performance for river discharge simulation. The results show that the ELM, FFNN, and LSTM algorithms give the best performance (NSE > 0.6) for river runoff simulation and provide reliable alternatives compared to a conceptual hydrological model. The SM2RAIN-ASCAT and ERA5 rainfall products are as efficient as observed precipitation in this data-scarce context. Consequently, this work is the first step towards the implementation of these tools for the operational monitoring of surface water resources in Algeria.
AbstractList Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation for these models, notably in many African countries, although some recent global rainfall products can effectively monitor rainfall from space. In Algeria, to identify a relevant modeling approach using this new source of rainfall information, the present research aims to (i) compare a conceptual model (GR4J) and seven machine learning algorithms (FFNN, ELM, LSTM, LSTM2, GRU, SVM, and GPR) and (ii) compare different types of precipitation inputs, including four satellite products (CHIRPS, SM2RAIN, GPM, and PERSIANN), one reanalysis product (ERA5), and observed precipitation, to assess which combination of models and precipitation data provides the optimal performance for river discharge simulation. The results show that the ELM, FFNN, and LSTM algorithms give the best performance (NSE > 0.6) for river runoff simulation and provide reliable alternatives compared to a conceptual hydrological model. The SM2RAIN-ASCAT and ERA5 rainfall products are as efficient as observed precipitation in this data-scarce context. Consequently, this work is the first step towards the implementation of these tools for the operational monitoring of surface water resources in Algeria.
Audience Academic
Author Bounab, Rayane
Tramblay, Yves
Boulmaiz, Tayeb
Boutaghane, Hamouda
Author_xml – sequence: 1
  givenname: Rayane
  orcidid: 0009-0008-9768-5128
  surname: Bounab
  fullname: Bounab, Rayane
– sequence: 2
  givenname: Hamouda
  orcidid: 0000-0002-8260-0397
  surname: Boutaghane
  fullname: Boutaghane, Hamouda
– sequence: 3
  givenname: Tayeb
  surname: Boulmaiz
  fullname: Boulmaiz, Tayeb
– sequence: 4
  givenname: Yves
  orcidid: 0000-0003-0481-5330
  surname: Tramblay
  fullname: Tramblay, Yves
BackLink https://hal.science/hal-05082278$$DView record in HAL
BookMark eNpVkd2P1CAUxRuzJq7rPvpO4pMPXfloaXmcjO5HMkaz0WdyoTDDpOWO0NHsfy-1xrjwADn87uHCeV1dRIyuqt4yeiOEoh9gnjAzSTnlTLyoLjntRN00Qlz8t39VXed8pGU0SnDRXFa4xekEKWSMBD35DPYQoiM7BymGuCebcY8pzIcpE4-JfIQwPpHHc0TvyS0mZyHPC_erMORuRAMjeYQQPYwj-ZpwONs5kxAXI5cCvKlelqPsrv-uV9X320_ftvf17svdw3azq61Qaq6dM166HrhV1oLhojPc9MCU4bLpKB-8FR6oBe8kB-alN9YZQ60Rnee8E1fVw-o7IBz1KYUJ0pNGCPqPgGmvIc3Bjk7bgQ8UhGy9443tvGJta1s_DIL5XorF6_3qdYDxmdX9ZqcXjba0L5f2P1lh363sKeGPs8uzPuI5xfJULVhHlWw72hbqZqX2UBoov4VzAlvm4KZgS7A-FH3TcyVVI3tRCuq1wCbMOTn_rw9G9ZK_fpa_-A27lqYS
Cites_doi 10.3390/app11136238
10.1016/j.jhydrol.2012.01.011
10.1140/epjs/s11734-021-00017-z
10.1016/0022-1694(70)90255-6
10.1016/j.eswa.2013.06.077
10.1002/qj.3803
10.1109/ACCESS.2021.3077703
10.1016/j.envsoft.2023.105831
10.1109/TSMCB.2011.2168604
10.1038/sdata.2015.66
10.1080/02626667.2018.1474219
10.1162/neco.1997.9.8.1735
10.1007/s12145-021-00615-4
10.2166/hydro.2021.067
10.1002/qj.3313
10.1016/j.jhydrol.2019.05.071
10.3390/rs12111801
10.1007/s11269-017-1792-5
10.1016/j.jhydrol.2021.126433
10.3390/w10070927
10.1007/BF00994018
10.1016/j.jprocont.2019.12.007
10.5194/hess-22-6005-2018
10.1080/02626667.2023.2171295
10.1016/j.scitotenv.2021.146535
10.1155/2017/3695285
10.1016/S0022-1694(03)00225-7
10.1111/jfr3.12147
10.1016/j.jhydrol.2007.12.019
10.1007/s11269-013-0382-4
10.1016/j.jhydrol.2022.127553
10.1007/s40808-020-00780-3
10.1002/wat2.1533
10.1007/s11269-016-1340-8
10.1175/BAMS-D-13-00068.1
10.3390/w10101362
10.1016/j.neucom.2005.12.126
10.1007/s12145-021-00603-8
10.1016/j.jhydrol.2024.130678
10.1016/j.scitotenv.2022.155328
10.1080/15715124.2022.2118280
10.5194/essd-11-1583-2019
10.1016/j.apenergy.2019.113541
10.2166/wcc.2023.461
10.5194/nhess-20-2591-2020
10.5194/hess-20-375-2016
10.1002/joc.8671
10.1038/s41597-021-00940-9
10.3390/w9100719
10.1016/j.jhydrol.2009.08.003
10.3390/w8030069
10.1007/s40808-020-00830-w
10.1111/jfr3.12672
10.3390/w14020147
10.4000/physio-geo.5369
10.1029/2020WR028091
10.1016/j.ejrh.2022.101169
10.1080/23249676.2021.1884617
10.1016/j.atmosres.2015.05.015
10.1007/s10795-012-9125-6
10.1515/johh-2015-0016
10.1016/j.jhydrol.2020.125188
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
7QH
7ST
7TG
7TN
7UA
ABUWG
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
1XC
VOOES
DOA
DOI 10.3390/atmos16020213
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environment Abstracts
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Computer Science
EISSN 2073-4433
ExternalDocumentID oai_doaj_org_article_cd2d0a365fe24c7f9155c5fdd31f8637
oai:HAL:hal-05082278v1
A829694683
10_3390_atmos16020213
GeographicLocations Algeria
North Africa
GeographicLocations_xml – name: Algeria
– name: North Africa
GroupedDBID 2XV
5VS
8FE
8FH
AAFWJ
AAHBH
AAYXX
ADMLS
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1K
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6-
KQ8
MODMG
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
7QH
7ST
7TG
7TN
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
1XC
VOOES
ID FETCH-LOGICAL-c399t-eebf6e8a2c9ccab237b2b8a19b264702dfc3fa0cafe62a1f6fbcebb0cb37f2273
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001430649300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4433
IngestDate Tue Oct 14 19:06:28 EDT 2025
Sat Nov 29 15:04:25 EST 2025
Mon Jun 30 12:36:12 EDT 2025
Sat Nov 29 10:29:21 EST 2025
Sat Nov 29 07:11:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Rainfall–runoff simulation
Satellite rainfall
Algeria
Hydrologic models
Machine learning
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-eebf6e8a2c9ccab237b2b8a19b264702dfc3fa0cafe62a1f6fbcebb0cb37f2273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0481-5330
0000-0002-8260-0397
0009-0008-9768-5128
OpenAccessLink https://www.proquest.com/docview/3170965705?pq-origsite=%requestingapplication%
PQID 3170965705
PQPubID 2032431
ParticipantIDs doaj_primary_oai_doaj_org_article_cd2d0a365fe24c7f9155c5fdd31f8637
hal_primary_oai_HAL_hal_05082278v1
proquest_journals_3170965705
gale_infotracacademiconefile_A829694683
crossref_primary_10_3390_atmos16020213
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Atmosphere
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zahar (ref_63) 2008; 351
ref_56
Cortes (ref_58) 1995; 20
ref_54
Ozdemir (ref_30) 2024; 44
Ouassanouan (ref_66) 2022; 834
Sadeghi (ref_38) 2021; 8
Brocca (ref_35) 2015; 63
ref_16
ref_15
Hussain (ref_28) 2020; 41
Nash (ref_59) 1970; 10
Nourani (ref_21) 2021; 14
Gadhawe (ref_26) 2021; 230
Alazzy (ref_29) 2017; 2017
Kratzert (ref_52) 2018; 22
Tramblay (ref_24) 2023; 68
Brocca (ref_34) 2019; 11
Tramblay (ref_2) 2020; 20
Chen (ref_4) 2016; 20
Cantoni (ref_25) 2022; 42
ref_69
Funk (ref_39) 2015; 2
Gowda (ref_1) 2022; 22
Zeroual (ref_20) 2016; 30
ref_64
Kapoor (ref_68) 2023; 169
Kling (ref_61) 2012; 424–425
Remini (ref_65) 2011; 25
Hersbach (ref_42) 2019; 159
Unduche (ref_5) 2018; 63
Ashouri (ref_37) 2015; 96
Perrin (ref_46) 2003; 279
Hochreiter (ref_53) 1997; 9
Ahani (ref_11) 2017; 32
Alizadeh (ref_14) 2021; 14
Katsanos (ref_41) 2016; 169
Huang (ref_51) 2006; 70
Sayama (ref_3) 2017; 10
(ref_55) 2013; 40
Xu (ref_12) 2021; 8
Ndiaye (ref_45) 2017; 11
Abdi (ref_19) 2020; 14
Hadid (ref_7) 2019; 86
Xu (ref_17) 2022; 608
Parisouj (ref_22) 2021; 9
Okkan (ref_70) 2021; 598
ref_31
Yeditha (ref_23) 2021; 24
Najmi (ref_32) 2023; 14
Guermoui (ref_49) 2016; 15
Belkhiri (ref_44) 2020; 19
Huang (ref_50) 2012; 42
Hipni (ref_57) 2013; 27
Nearing (ref_13) 2021; 57
Kirschbaum (ref_33) 2018; 144
Hersbach (ref_43) 2020; 146
Funk (ref_40) 2014; 832
Ghimire (ref_48) 2019; 253
Gupta (ref_60) 2009; 377
Koohi (ref_36) 2021; 779
ref_47
Boulmaiz (ref_8) 2020; 6
Gao (ref_18) 2020; 589
Ali (ref_27) 2020; 6
ref_9
Mazrooei (ref_10) 2019; 575
Tramblay (ref_67) 2024; 630
Le (ref_62) 2021; 9
ref_6
References_xml – ident: ref_9
  doi: 10.3390/app11136238
– volume: 424–425
  start-page: 264
  year: 2012
  ident: ref_61
  article-title: Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.01.011
– volume: 230
  start-page: 3343
  year: 2021
  ident: ref_26
  article-title: Network-based exploration of basin precipitation based on satellite and observed data
  publication-title: Eur. Phys. J. Spéc. Top.
  doi: 10.1140/epjs/s11734-021-00017-z
– volume: 10
  start-page: 398
  year: 1970
  ident: ref_59
  article-title: River flow forecasting through conceptual models, I: A discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 15
  start-page: 35
  year: 2016
  ident: ref_49
  article-title: Daily global solar radiation modelling using multi-layer perceptron neural networks in semi-arid region
  publication-title: Leonardo Electron. J. Pract. Technol.
– volume: 40
  start-page: 7407
  year: 2013
  ident: ref_55
  article-title: Stream water temperature prediction based on Gaussian process regression
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.077
– volume: 146
  start-page: 1999
  year: 2020
  ident: ref_43
  article-title: The ERA5 global reanalysis
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 9
  start-page: 71805
  year: 2021
  ident: ref_62
  article-title: Comparison of Deep Learning Techniques for River Streamflow Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3077703
– volume: 169
  start-page: 105831
  year: 2023
  ident: ref_68
  article-title: DeepGR4J: A deep learning hybridization approach for conceptual rainfall-runoff modelling
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2023.105831
– volume: 42
  start-page: 513
  year: 2012
  ident: ref_50
  article-title: Extreme learning machine for regression and multiclass classification
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/TSMCB.2011.2168604
– volume: 2
  start-page: 150066
  year: 2015
  ident: ref_39
  article-title: The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.66
– volume: 63
  start-page: 1133
  year: 2018
  ident: ref_5
  article-title: Evaluation of four hydrological models for operational flood forecasting in a Canadian Prairie watershed
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2018.1474219
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_53
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 41
  start-page: E517
  year: 2020
  ident: ref_28
  article-title: Reliability of SM2RAIN precipitation datasets in comparison to gauge observations and hydrological modelling over arid regions
  publication-title: Int. J. Clim.
– volume: 14
  start-page: 1787
  year: 2021
  ident: ref_21
  article-title: Ensemble data-driven rainfall-runoff modeling using multi-source satellite and gauge rainfall data input fusion
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-021-00615-4
– volume: 24
  start-page: 16
  year: 2021
  ident: ref_23
  article-title: Investigation of satellite rainfall-driven rainfall–runoff model using deep learning approaches in two different catchments in India
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2021.067
– volume: 144
  start-page: 27
  year: 2018
  ident: ref_33
  article-title: The Global Precipitation Measurement (GPM) mission’s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3313
– volume: 575
  start-page: 704
  year: 2019
  ident: ref_10
  article-title: Improving monthly streamflow forecasts through assimilation of observed streamflow for rainfall-dominated basins across the CONUS
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.071
– ident: ref_69
  doi: 10.3390/rs12111801
– volume: 32
  start-page: 383
  year: 2017
  ident: ref_11
  article-title: Performance assessment of the linear, nonlinear and nonparametric data driven models in river flow forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-017-1792-5
– volume: 598
  start-page: 126433
  year: 2021
  ident: ref_70
  article-title: Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: A nested hybrid rainfall-runoff modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126433
– ident: ref_64
  doi: 10.3390/w10070927
– ident: ref_56
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_58
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 86
  start-page: 44
  year: 2019
  ident: ref_7
  article-title: Data-driven modeling for river flood forecasting based on a piecewise linear ARX system identification
  publication-title: J. Process. Control
  doi: 10.1016/j.jprocont.2019.12.007
– volume: 22
  start-page: 6005
  year: 2018
  ident: ref_52
  article-title: Rainfall–runoff modelling using long short-term memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 68
  start-page: 474
  year: 2023
  ident: ref_24
  article-title: River runoff estimation with satellite rainfall in Morocco
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667.2023.2171295
– volume: 779
  start-page: 146535
  year: 2021
  ident: ref_36
  article-title: Spatiotemporal drought monitoring using bottom-up precipitation dataset (SM2RAIN-ASCAT) over different regions of Iran
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2021.146535
– volume: 2017
  start-page: 3695285
  year: 2017
  ident: ref_29
  article-title: Evaluation of Satellite Precipitation Products and Their Potential Influence on Hydrological Modeling over the Ganzi River Basin of the Tibetan Plateau
  publication-title: Adv. Meteorol.
  doi: 10.1155/2017/3695285
– volume: 279
  start-page: 275
  year: 2003
  ident: ref_46
  article-title: Improvement of a Parsimonious Model for Streamflow Simulation
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(03)00225-7
– volume: 10
  start-page: 65
  year: 2017
  ident: ref_3
  article-title: An emergency response-type rainfall-runoff-inundation simulation for 2011 Thailand floods
  publication-title: J. Flood Risk Manag.
  doi: 10.1111/jfr3.12147
– volume: 351
  start-page: 318
  year: 2008
  ident: ref_63
  article-title: Impacts of large dams on downstream flow conditions of rivers: Aggradation and reduction of the Medjerda channel capacity downstream of the Sidi Salem dam (Tunisia)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.12.019
– volume: 27
  start-page: 3803
  year: 2013
  ident: ref_57
  article-title: Daily Forecasting of Dam Water Levels: Comparing a Support Vector Machine (SVM) Model With Adaptive Neuro Fuzzy Inference System (ANFIS)
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-013-0382-4
– volume: 608
  start-page: 127553
  year: 2022
  ident: ref_17
  article-title: Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.127553
– volume: 6
  start-page: 1645
  year: 2020
  ident: ref_27
  article-title: Streamflow forecasting by modeling the rainfall–streamflow relationship using artificial neural networks
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-020-00780-3
– volume: 8
  start-page: e1533
  year: 2021
  ident: ref_12
  article-title: Machine learning for hydrologic sciences: An introductory overview
  publication-title: WIREs Water
  doi: 10.1002/wat2.1533
– volume: 30
  start-page: 3191
  year: 2016
  ident: ref_20
  article-title: Artificial Neural Network Rainfall-Discharge Model Assessment Under Rating Curve Uncertainty and Monthly Discharge Volume Predictions
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1340-8
– volume: 96
  start-page: 69
  year: 2015
  ident: ref_37
  article-title: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-13-00068.1
– ident: ref_47
  doi: 10.3390/w10101362
– volume: 70
  start-page: 489
  year: 2006
  ident: ref_51
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 14
  start-page: 1047
  year: 2021
  ident: ref_14
  article-title: Modeling long-term rainfall-runoff time series through wavelet-weighted regularization extreme learning machine
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-021-00603-8
– volume: 630
  start-page: 130678
  year: 2024
  ident: ref_67
  article-title: Regional flood frequency analysis in North Africa
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2024.130678
– volume: 19
  start-page: 5
  year: 2020
  ident: ref_44
  article-title: Performance evaluation of eighteen models for estimating reference evapotranspiration under subhumid conditions of Mitidja, Algeria
  publication-title: Rech. Agron.
– volume: 834
  start-page: 155328
  year: 2022
  ident: ref_66
  article-title: Multi-decadal analysis of water resources and agricultural change in a Mediterranean semiarid irrigated piedmont under water scarcity and human interaction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.155328
– volume: 832
  start-page: 1
  year: 2014
  ident: ref_40
  article-title: A quasi-global precipitation time series for drought monitoring. US Geol
  publication-title: Surv. Data Ser.
– volume: 22
  start-page: 187
  year: 2022
  ident: ref_1
  article-title: Development of operation policy for dry season reservoirs in tropical partially gauged river basins
  publication-title: Int. J. River Basin Manag.
  doi: 10.1080/15715124.2022.2118280
– volume: 11
  start-page: 1583
  year: 2019
  ident: ref_34
  article-title: SM2RAIN–ASCAT (2007–2018): Global daily satellite rainfall data from ASCAT soil moisture observations
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-11-1583-2019
– volume: 253
  start-page: 113541
  year: 2019
  ident: ref_48
  article-title: Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113541
– volume: 14
  start-page: 1569
  year: 2023
  ident: ref_32
  article-title: Evaluation of PERSIANN-CCS-CDR, ERA5, and SM2RAIN-ASCAT rainfall products for rainfall and drought assessment in a semi-arid watershed, Morocco
  publication-title: J. Water Clim. Change
  doi: 10.2166/wcc.2023.461
– volume: 20
  start-page: 2591
  year: 2020
  ident: ref_2
  article-title: Challenges in flood modeling over data-scarce regions: How to exploit globally available soil moisture products to estimate antecedent soil wetness conditions in Morocco
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-20-2591-2020
– volume: 20
  start-page: 375
  year: 2016
  ident: ref_4
  article-title: Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-375-2016
– volume: 44
  start-page: 5873
  year: 2024
  ident: ref_30
  article-title: Comparing Satellite, Reanalysis, Fused and Gridded (In Situ) Precipitation Products Over Türkiye
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.8671
– volume: 8
  start-page: 157
  year: 2021
  ident: ref_38
  article-title: PERSIANN-CCS-CDR, a 3-hourly 0.04° global precipitation climate data record for heavy precipitation studies
  publication-title: Sci. Data
  doi: 10.1038/s41597-021-00940-9
– ident: ref_6
  doi: 10.3390/w9100719
– volume: 377
  start-page: 80
  year: 2009
  ident: ref_60
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: ref_16
  doi: 10.3390/w8030069
– volume: 6
  start-page: 2153
  year: 2020
  ident: ref_8
  article-title: Impact of training data size on the LSTM performances for rainfall–runoff modeling
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-020-00830-w
– volume: 14
  start-page: e12672
  year: 2020
  ident: ref_19
  article-title: Comparison of conceptual rainfall–runoff models in semi-arid watersheds of eastern Algeria
  publication-title: J. Flood Risk Manag.
  doi: 10.1111/jfr3.12672
– ident: ref_31
  doi: 10.3390/w14020147
– volume: 11
  start-page: 129
  year: 2017
  ident: ref_45
  article-title: Evaluation of twenty methods for estimating daily reference evapotranspiration in Burkina Faso
  publication-title: Physio-Géo
  doi: 10.4000/physio-geo.5369
– ident: ref_54
– volume: 57
  start-page: e2020WR028091
  year: 2021
  ident: ref_13
  article-title: What role does hydrological science play in the age of machine learning?
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR028091
– volume: 42
  start-page: 101169
  year: 2022
  ident: ref_25
  article-title: Hydrological performance of the ERA5 reanalysis for flood modeling in Tunisia with the LISFLOOD and GR4J models
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2022.101169
– volume: 159
  start-page: 17
  year: 2019
  ident: ref_42
  article-title: Global reanalysis: Goodbye ERA-Interim, hello ERA5
  publication-title: ECMWF Newsl.
– volume: 9
  start-page: 161
  year: 2021
  ident: ref_22
  article-title: Rainfall-runoff simulation using satellite rainfall in a scarce data catchment
  publication-title: J. Appl. Water Eng. Res.
  doi: 10.1080/23249676.2021.1884617
– ident: ref_15
– volume: 169
  start-page: 459
  year: 2016
  ident: ref_41
  article-title: Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.05.015
– volume: 25
  start-page: 293
  year: 2011
  ident: ref_65
  article-title: Traditional techniques for increasing the discharge from qanats in Algeria
  publication-title: Irrig. Drain. Syst.
  doi: 10.1007/s10795-012-9125-6
– volume: 63
  start-page: 201
  year: 2015
  ident: ref_35
  article-title: Rainfall estimation from in situ soil moisture observations at several sites in Europe: An evaluation of the SM2RAIN algorithm
  publication-title: J. Hydrol. Hydromech.
  doi: 10.1515/johh-2015-0016
– volume: 589
  start-page: 125188
  year: 2020
  ident: ref_18
  article-title: Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125188
SSID ssj0000493234
Score 2.3316581
Snippet Rainfall–runoff models are crucial tools for managing water resources. The absence of reliable rainfall data in many regions of the world is a major limitation...
SourceID doaj
hal
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 213
SubjectTerms Algeria
Algorithms
Artificial intelligence
Basins
Comparative analysis
Computer Aided Engineering
Computer Science
Daily forecasts
Daily runoff
Dams
Forecasts and trends
Global precipitation
Hydrologic data
Hydrologic models
Hydrology
Learning algorithms
Machine learning
Meteorological satellites
Neural networks
Ocean, Atmosphere
Precipitation
Precipitation data
Precipitation monitoring
Rain
Rain and rainfall
Rainfall
Rainfall data
Rainfall-runoff modeling
Rainfall-runoff relationships
rainfall–runoff simulation
River discharge
River flow
River runoff
Rivers
Runoff
Runoff forecasting
Runoff models
satellite rainfall
Sciences of the Universe
Stream flow
Surface water
Surface water resources
Water discharge
Water management
Water monitoring
Water resources
Water resources management
Watersheds
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWg4sAFQQERKMiqUDlFdezEdo7LQtVDW1UIpN4sf7ZBaYKStBL_Ho-TrrpceukxVhRbfmP7jTPzBqHP0U4M9bLMnS5dXjpCcl14kdN4GvKqtFqGlCh8Is7O5MVFfX6v1BfEhM3ywPPEHVpHHdGMV8HT0ooAeua2Cs6xIkjOUh45EfU9Z-r3zHsZZeUsqsmiX3-op-t-LHhkR7RgW4dQ0urf7MhPryAg8r99OR02Ry_Ri4Ul4tU8ulfoie92UXYaCW4_pHtwfIDXbRPZZnp6jfr1pp4g7gM-TSGSHi_qqZd41V72QzNdXY84slT8TTftX_zjputDwFCd0-oR4p8xXMviuQ4Ahl8_QbctPp9VYUfcdPAhsNk36NfR95_r43yppZDbSEGm3HsTuJea2jpiZigThhqpi9pERiQIdcGyoInVwXOqi8CDsd4YYg0TgUaO8xbtdH3n3yFMDGDIuQ6VKIHfaVtXlfA6elaFdTZDB3eTq_7MkhkquhqAgtpCIUNfYeo3L4HSdWqI-KsFf_UQ_hn6AsApWI_ToK1e0griWEHZSq0krXldchm724_YbvV2vDpR0EYqEL4X8rbI0N4d9GpZzaOKHAtEcgSp3j_GkD-g5xSqCKfY7z20Mw03_iN6Zm-nZhw-JUP-B7pS-sw
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparison of Machine Learning Algorithms for Daily Runoff Forecasting with Global Rainfall Products in Algeria
URI https://www.proquest.com/docview/3170965705
https://hal.science/hal-05082278
https://doaj.org/article/cd2d0a365fe24c7f9155c5fdd31f8637
Volume 16
WOSCitedRecordID wos001430649300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: PCBAR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4433
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000493234
  issn: 2073-4433
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEBVN0kMv_S5xmgZRSnoysSVbsk9ls01IIbssoYX0ZCRZ2iw4dmo7gfz7zsjeLdtDLz1aNpZgnkZPo9EbQj4BTjSzWRKWKinDpIyiUMVWhgxWQ5EmRmXOXxS-lPN5dn2dL8aAWzemVa59onfUZWMwRn4C6xwKlcgo_XL3K8SqUXi6OpbQ2CF7qFQGON87PZsvrjZRFuC_nPFkENfksL8_Uf1t08UCWBKL-dZi5DX7N5555wYTI__yz37ROX_xv8N9SZ6PdJNOBny8Ik9s_ZoEM2DKTesD6vSYTqsV0Fb_9IY0001hQto4OvO5lpaOMqxLOqmW0E1_c9tRoLv0q1pVj_Tqvm6co1jm06gOE6kpxnfpUFCA4hmSU1VFF4O8bEdXNf4Iwf-W_Dg_-z69CMeiDKEBLtOH1monbKaYycH4mnGpmc5UnGugVjJipTPcqcgoZwVTsRNOG6t1ZDSXjgFZekd266a2-4RGGsEghHKpTJAoKpOnqbQKtmixKU1AjtfWKe4G7Y0C9ixoxmLLjAE5RdttPkLJbN_QtMtinIGFKVkZKS5SZ1lipENhfJO6suSxywSXAfmMli9wYvetMmq8nwBjRYmsYpKxXOSJyKC7jwCOrd4uJpcFtkUpKujL7CEOyOEaGMXoFrriDyoO_v36PXnGsNCwTw8_JLt9e28_kKfmoV917dGI8iMfQICnxbfZ4udvlUIMXg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Pb9MwFLa2Dgku_EYUBlgIximaYydOckCodEyt1k4VGtI4ebZjd5W6ZjTZ0P4p_kbeS9KicuC2A8c4kR0nn997tp-_j5B3gBPDXRoFuY7yIMoZC3TokoCDN5RxZHXq64PCo-T4OD09zSZb5NfqLAymVa5sYm2o88LiGvk--DkkKklY_OnyR4CqUbi7upLQaGBx5G5-wpSt_Dg8gP_7nvPDLyf9QdCqCgQWnHEVOGe8dKnmNoO3N1wkhptUh5mB2CBhPPdWeM2s9k5yHXrpjXXGMGtE4jl4e6h3m-xEAHbWITuT4Xjyfb2qA_G24CJqyDyFyNi-ri6KMpQQlfFQbDi_WiNg7Qm2zzER8y9_UDu5wwf_2-d5SO634TTtNfh_RLbc4jHpjmEmUCzrDQO6R_vzGYTl9dUTUvTXwou08HRc55I62tLMTmlvPoVuVecXJYVwnh7o2fyGfr1aFN5TlDG1usREcYrr17QRTKC4R-b1fE4nDX1uSWcLrAgH91Py7Vb6_4x0FsXCPSeUGQS7lNrHSYSBsLZZHCdOwxQ0tLntkr0VGtRlwy2iYE6GsFEbsOmSz4iV9UNICV4XFMupai2MsjnPmRYy9o5HNvFI_G9jn-ci9KkUSZd8QKQpNFzVUlvdnr-Ad0UKMNVLeSazSKbQ3FsA40Zrg95IYRmLUSEgSa_DLtldAVG1Zq9Uf1D44t-335C7g5PxSI2Gx0cvyT2Oosp1Kvwu6VTLK_eK3LHX1axcvm5HGCVnt43a37_ubHY
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Nb9MwFLe2DiEufE8UBlgIxilqYid2ckCo66g2rauqCaTdjO3YXaWuGU02tH-Nv473krSoHLjtwDFOZMfJ733Zz-9HyHvAiWEujYNcx3kQ52EY6MjJgIE1FElsderrg8IjOR6n5-fZZIv8Wp2FwbTKlU6sFXVeWFwj74Gdw0IlMkx6vk2LmBwOP1_9CJBBCndaV3QaDURO3O1PCN_KT8eH8K8_MDb88nVwFLQMA4EFw1wFzhkvXKqZzWAmhnFpmEl1lBnwE2TIcm-516HV3gmmIy-8sc6Y0BouPQPLD_1uk51UiIx1yM5kcNA_W6_wgO_NGY-bwp6cZ2FPV5dFGQnw0FjENwxhzRewtgrbF5iU-ZdtqA3e8NH__Kkek4etm037jVw8IVtu8ZR0TyFCKJb1RgLdp4P5DNz1-uoZKQZrQkZaeHpa55g62pafndL-fArTqi4uSwpuPj3Us_ktPbteFN5TpDe1usQEcorr2rQhUqC4d-b1fE4nTVndks4W2BEK_XPy7U7mv0s6i2LhXhAaGhQCIbRPZIwOsrZZkkinITSNbG67ZH-FDHXV1BxREKshhNQGhLrkAHGzfghLhdcNxXKqWs2jbM7yUHOReMdiKz0SAtjE5zmPfCq47JKPiDqFCq1aaqvbcxnwrlgaTPVTloksFikM9w6AuTHaUX-ksC1MkDlApjdRl-ytQKladViqP4h8-e_bb8l9gKoaHY9PXpEHDLmW6wz5PdKpltfuNblnb6pZuXzTChsl3-8atL8BHpx09g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Machine+Learning+Algorithms+for+Daily+Runoff+Forecasting+with+Global+Rainfall+Products+in+Algeria&rft.jtitle=Atmosphere&rft.au=Bounab%2C+Rayane&rft.au=Boutaghane%2C+Hamouda&rft.au=Boulmaiz%2C+Tayeb&rft.au=Tramblay%2C+Yves&rft.date=2025-02-01&rft.issn=2073-4433&rft.eissn=2073-4433&rft.volume=16&rft.issue=2&rft.spage=213&rft_id=info:doi/10.3390%2Fatmos16020213&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_atmos16020213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4433&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4433&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4433&client=summon