A multi-objective optimisation algorithm for the hot rolling batch scheduling problem

The hot rolling batch scheduling problem is a hard problem in the steel industry. In this paper, the problem is formulated as a multi-objective prize collecting vehicle routing problem (PCVRP) model. In order to avoid the selection of weight coefficients encountered in single objective optimisation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research Jg. 51; H. 3; S. 667 - 681
Hauptverfasser: Jia, S.J., Yi, J., Yang, G.K., Du, B., Zhu, J.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Taylor & Francis Group 01.02.2013
Taylor & Francis LLC
Schlagworte:
ISSN:0020-7543, 1366-588X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The hot rolling batch scheduling problem is a hard problem in the steel industry. In this paper, the problem is formulated as a multi-objective prize collecting vehicle routing problem (PCVRP) model. In order to avoid the selection of weight coefficients encountered in single objective optimisation, a multi-objective optimisation algorithm based on Pareto-dominance is used to solve this model. Firstly, the Pareto ℳ -ℳℐ Ant System (P-ℳℳAS), which is a brand new multi-objective ant colony optimisation algorithm, is proposed to minimise the penalties caused by jumps between adjacent slabs, and simultaneously maximise the prizes collected. Then a multi-objective decision-making approach based on TOPSIS is used to select a final rolling batch from the Pareto-optimal solutions provided by P-ℳℳAS. The experimental results using practical production data from Shanghai Baoshan Iron & Steel Co., Ltd. have indicated that the proposed model and algorithm are effective and efficient.
AbstractList The hot rolling batch scheduling problem is a hard problem in the steel industry. In this paper, the problem is formulated as a multi-objective prize collecting vehicle routing problem (PCVRP) model. In order to avoid the selection of weight coefficients encountered in single objective optimisation, a multi-objective optimisation algorithm based on Pareto-dominance is used to solve this model. Firstly, the Pareto ℳ -ℳℐ Ant System (P-ℳℳAS), which is a brand new multi-objective ant colony optimisation algorithm, is proposed to minimise the penalties caused by jumps between adjacent slabs, and simultaneously maximise the prizes collected. Then a multi-objective decision-making approach based on TOPSIS is used to select a final rolling batch from the Pareto-optimal solutions provided by P-ℳℳAS. The experimental results using practical production data from Shanghai Baoshan Iron & Steel Co., Ltd. have indicated that the proposed model and algorithm are effective and efficient.
The hot rolling batch scheduling problem is a hard problem in the steel industry. In this paper, the problem is formulated as a multi-objective prize collecting vehicle routing problem (PCVRP) model. In order to avoid the selection of weight coefficients encountered in single objective optimisation, a multi-objective optimisation algorithm based on Pareto-dominance is used to solve this model. Firstly, the Pareto ...-... Ant System (P-...AS), which is a brand new multi-objective ant colony optimisation algorithm, is proposed to minimise the penalties caused by jumps between adjacent slabs, and simultaneously maximise the prizes collected. Then a multi-objective decision-making approach based on TOPSIS is used to select a final rolling batch from the Pareto-optimal solutions provided by P-...AS. The experimental results using practical production data from Shanghai Baoshan Iron & Steel Co., Ltd. have indicated that the proposed model and algorithm are effective and efficient. (ProQuest: ... denotes formulae/symbols omitted.)
The hot rolling batch scheduling problem is a hard problem in the steel industry. In this paper, the problem is formulated as a multi-objective prize collecting vehicle routing problem (PCVRP) model. In order to avoid the selection of weight coefficients encountered in single objective optimisation, a multi-objective optimisation algorithm based on Pareto-dominance is used to solve this model. Firstly, the Pareto [phmmat]AX-[phmmat][ScriptN Ant System (P-[phmmat][phmmat]AS), which is a brand new multi-objective ant colony optimisation algorithm, is proposed to minimise the penalties caused by jumps between adjacent slabs, and simultaneously maximise the prizes collected. Then a multi-objective decision-making approach based on TOPSIS is used to select a final rolling batch from the Pareto-optimal solutions provided by P-[phmmat][phmmat]AS. The experimental results using practical production data from Shanghai Baoshan Iron & Steel Co., Ltd. have indicated that the proposed model and algorithm are effective and efficient.
Author Zhu, J.
Yi, J.
Jia, S.J.
Yang, G.K.
Du, B.
Author_xml – sequence: 1
  givenname: S.J.
  surname: Jia
  fullname: Jia, S.J.
  email: jiashujin_1@163.com
  organization: Department of Automation , Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China
– sequence: 2
  givenname: J.
  surname: Yi
  fullname: Yi, J.
  organization: Research Institute of Automation, Academy of Baoshan Iron & Steel Co., Ltd
– sequence: 3
  givenname: G.K.
  surname: Yang
  fullname: Yang, G.K.
  organization: Department of Automation , Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China
– sequence: 4
  givenname: B.
  surname: Du
  fullname: Du, B.
  organization: Research Institute of Automation, Academy of Baoshan Iron & Steel Co., Ltd
– sequence: 5
  givenname: J.
  surname: Zhu
  fullname: Zhu, J.
  organization: Research Institute of Automation, Academy of Baoshan Iron & Steel Co., Ltd
BookMark eNqFkMFO3DAQhi1EJRbKG3Cw1AuXbO3Yydq9IITaUgmJC0jcLNsZE6-ceLEdEG_fhIULh3YuI42-f2b0HaPDMY6A0Bkla0oE-U5ITTYNZ-uaULpuG06ZOEArytq2aoR4OESrBakW5ggd57wlczWCr9D9JR6mUHwVzRZs8c-A4674wWddfByxDo8x-dIP2MWESw-4jwWnGIIfH7HRxfY42x666W2wS9EEGL6iL06HDKfv_QTd__p5d3Vd3dz-_nN1eVNZJmWpgDqioXPSdEICl510rrEWhNVMG2YYJ4Lzutl0UJuuts2GmpqDdcS02oBkJ-h8v3e--zRBLmp-3EIIeoQ4ZUVrwdqmZXxBv31Ct3FK4_zdTNVEilbIzUzxPWVTzDmBU7vkB51eFSVqca0-XKvFtdq7nmM_PsWsL28CS9I-_C98sQ_7cXY86JeYQqeKfg0xuaRH67Ni_9zwF8hZmq8
CitedBy_id crossref_primary_10_1371_journal_pone_0241077
crossref_primary_10_1007_s12613_021_2273_7
crossref_primary_10_1155_2020_6902934
crossref_primary_10_1109_TASE_2025_3540042
crossref_primary_10_1016_j_cie_2017_12_013
crossref_primary_10_1016_j_eswa_2020_113563
crossref_primary_10_1007_s10951_017_0545_x
crossref_primary_10_3390_su13147753
crossref_primary_10_1016_j_ins_2018_11_006
crossref_primary_10_1080_00207543_2019_1579932
crossref_primary_10_1016_j_cie_2020_106606
crossref_primary_10_1155_2018_1919438
crossref_primary_10_4028_www_scientific_net_AMR_941_944_2317
crossref_primary_10_1109_TCYB_2021_3135539
crossref_primary_10_1007_s12667_021_00477_1
crossref_primary_10_1080_0305215X_2021_2019249
crossref_primary_10_1016_j_apm_2019_04_006
crossref_primary_10_1016_j_engappai_2024_108477
crossref_primary_10_1016_j_ifacol_2019_11_431
crossref_primary_10_3390_su13147708
crossref_primary_10_1080_00207543_2023_2220826
crossref_primary_10_1080_00207543_2014_919418
crossref_primary_10_1016_j_cie_2022_108120
crossref_primary_10_1016_j_swevo_2025_101851
crossref_primary_10_1016_j_cie_2022_108561
crossref_primary_10_1016_j_knosys_2021_107257
crossref_primary_10_1109_TII_2019_2944247
crossref_primary_10_1109_TASE_2023_3244331
crossref_primary_10_1016_j_apm_2017_03_067
crossref_primary_10_1080_00207543_2021_1887534
crossref_primary_10_1177_03019233241310713
crossref_primary_10_1016_j_asoc_2023_110665
crossref_primary_10_1109_TII_2024_3413335
crossref_primary_10_1016_j_swevo_2020_100712
crossref_primary_10_1016_j_cie_2018_12_061
crossref_primary_10_1155_2017_1048081
crossref_primary_10_1002_srin_202200407
Cites_doi 10.1007/978-3-642-48318-9
10.1007/s00170-005-0014-0
10.1016/0166-3615(92)90069-Y
10.1007/b99492
10.1016/j.conengprac.2008.10.014
10.1016/S0305-0548(98)00018-5
10.1080/00207540600988048
10.1162/106365600568202
10.1016/j.cie.2008.05.001
10.1023/B:ANOR.0000039513.99038.c6
10.1016/j.ejor.2006.03.041
10.1016/S0167-739X(00)00043-1
10.1016/S0377-2217(99)00380-X
10.1109/4235.585892
10.1080/00207540902791801
10.1109/3477.484436
10.1007/s00170-006-0904-9
10.1016/S0377-2217(97)00277-4
10.1016/S0360-8352(03)00038-X
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2013
Copyright Taylor & Francis Group 2013
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2013
– notice: Copyright Taylor & Francis Group 2013
DBID AAYXX
CITATION
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/00207543.2011.654138
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-588X
EndPage 681
ExternalDocumentID 2829180351
10_1080_00207543_2011_654138
654138
Genre Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
8VB
A8Z
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AEMOZ
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AHQJS
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBD
EBE
EBO
EBR
EBS
EBU
EJD
EMK
EPL
ESTFP
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~9
H~P
I-F
IPNFZ
J.P
K1G
KYCEM
M4Z
ML~
NA5
NX~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TH9
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
07I
1OL
1TA
4B5
AAYXX
ABDPE
ABRLO
ACKIV
ACTTO
ADUMR
ADXEU
AEHZU
AEZBV
AFBWG
AFFNX
AFION
AGBKS
AGBLW
AGVKY
AGWUF
AGYFW
AI.
AKHJE
AKMBP
ALRRR
ALXIB
BGSSV
BWMZZ
C0-
C5H
CAG
CITATION
COF
CYRSC
DAOYK
DEXXA
FETWF
IFELN
L8C
LJTGL
NUSFT
OPCYK
RNS
TAJZE
TAP
UB6
VH1
ZCG
ZY4
7SC
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-e1f0aedf9bd89e49d9ff5cce8ca3ab3b340844257de2bd2c571b24ecf0b6abe93
IEDL.DBID TFW
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000313036700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7543
IngestDate Thu Oct 02 10:50:31 EDT 2025
Mon Nov 10 02:59:47 EST 2025
Sat Nov 29 05:36:04 EST 2025
Tue Nov 18 22:16:39 EST 2025
Mon Oct 20 23:46:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-e1f0aedf9bd89e49d9ff5cce8ca3ab3b340844257de2bd2c571b24ecf0b6abe93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 1220986897
PQPubID 30924
PageCount 15
ParticipantIDs crossref_citationtrail_10_1080_00207543_2011_654138
proquest_miscellaneous_1283656349
proquest_journals_1220986897
crossref_primary_10_1080_00207543_2011_654138
informaworld_taylorfrancis_310_1080_00207543_2011_654138
PublicationCentury 2000
PublicationDate 2013-02-01
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle International journal of production research
PublicationYear 2013
Publisher Taylor & Francis Group
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis LLC
References Cowling P (CIT0005) 1995
Dorigo M (CIT0008) 1997; 1
Pan CC (CIT0018) 2009; 56
Liu SX (CIT0016) 2010; 21
CIT0001
Gambardella LM (CIT0011) 1999
Kim BI (CIT0014) 2010; 48
Zitzler E (CIT0023) 2000; 8
Cowling P (CIT0006) 2003; 45
Doerner K (CIT0007) 2004; 131
Dorigo M (CIT0009) 1996; 26
Chen YW (CIT0004) 2008; 36
Tang LX (CIT0020) 2000; 124
Stützle T (CIT0019) 2000; 16
Chen X (CIT0003) 1998; 25
Tang LX (CIT0021) 2006; 29
Chen AL (CIT0002) 2008; 46
Dorigo M (CIT0010) 2004
Zhao J (CIT0022) 2009; 17
García-Martínez C (CIT0012) 2007; 180
Kosiba ED (CIT0015) 1992; 19
Lopez L (CIT0017) 1998; 106
Hwang CL (CIT0013) 1981
References_xml – volume-title: Multiple attribute decision making: methods and applications
  year: 1981
  ident: CIT0013
  doi: 10.1007/978-3-642-48318-9
– start-page: 63
  volume-title: New ideas in optimization
  year: 1999
  ident: CIT0011
– volume: 29
  start-page: 1246
  issue: 11
  year: 2006
  ident: CIT0021
  publication-title: International Journal of Advanced Manufaturing Technology
  doi: 10.1007/s00170-005-0014-0
– volume: 19
  start-page: 317
  issue: 2
  year: 1992
  ident: CIT0015
  publication-title: Computers in Industry
  doi: 10.1016/0166-3615(92)90069-Y
– volume: 21
  start-page: 247
  issue: 3
  year: 2010
  ident: CIT0016
  publication-title: International Journal of Information and Management Sciences
– volume-title: Ant colony optimiztion
  year: 2004
  ident: CIT0010
  doi: 10.1007/b99492
– volume: 17
  start-page: 629
  issue: 6
  year: 2009
  ident: CIT0022
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2008.10.014
– volume: 25
  start-page: 1127
  issue: 12
  year: 1998
  ident: CIT0003
  publication-title: Computers and Operations Research
  doi: 10.1016/S0305-0548(98)00018-5
– volume: 46
  start-page: 1955
  issue: 7
  year: 2008
  ident: CIT0002
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540600988048
– volume: 8
  start-page: 173
  issue: 2
  year: 2000
  ident: CIT0023
  publication-title: Evolutionary Computation
  doi: 10.1162/106365600568202
– volume: 56
  start-page: 165
  issue: 1
  year: 2009
  ident: CIT0018
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2008.05.001
– volume: 131
  start-page: 79
  issue: 1
  year: 2004
  ident: CIT0007
  publication-title: Annals of Operations Research
  doi: 10.1023/B:ANOR.0000039513.99038.c6
– ident: CIT0001
– volume: 180
  start-page: 116
  issue: 1
  year: 2007
  ident: CIT0012
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.03.041
– volume: 16
  start-page: 889
  issue: 8
  year: 2000
  ident: CIT0019
  publication-title: Future Generation Computer System
  doi: 10.1016/S0167-739X(00)00043-1
– volume: 124
  start-page: 267
  issue: 2
  year: 2000
  ident: CIT0020
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(99)00380-X
– volume-title: Optimization in steel hot rolling. Optimization in industry 3
  year: 1995
  ident: CIT0005
– volume: 1
  start-page: 53
  issue: 1
  year: 1997
  ident: CIT0008
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.585892
– volume: 48
  start-page: 2165
  issue: 7
  year: 2010
  ident: CIT0014
  publication-title: International Journal of Production Research
  doi: 10.1080/00207540902791801
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: CIT0009
  publication-title: IEEE Transactions on System, Man and Cybernetics – Part B
  doi: 10.1109/3477.484436
– volume: 36
  start-page: 959
  issue: 9
  year: 2008
  ident: CIT0004
  publication-title: International Journal of Advanced Manufaturing Technology
  doi: 10.1007/s00170-006-0904-9
– volume: 106
  start-page: 317
  issue: 2
  year: 1998
  ident: CIT0017
  publication-title: European Journal of Operational Research
  doi: 10.1016/S0377-2217(97)00277-4
– volume: 45
  start-page: 307
  issue: 2
  year: 2003
  ident: CIT0006
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/S0360-8352(03)00038-X
SSID ssj0000584
Score 2.2382605
Snippet The hot rolling batch scheduling problem is a hard problem in the steel industry. In this paper, the problem is formulated as a multi-objective prize...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 667
SubjectTerms Algorithms
ant colony optimisation
Decision making models
Effectiveness studies
Hot rolling
hot rolling batch scheduling
Iron and steel industry
Mathematical models
Mathematical problems
multi-objective optimisation
Optimization
Optimization algorithms
Pareto optimality
Pareto optimisation
Pareto optimum
Production scheduling
Scheduling
Structural steels
Title A multi-objective optimisation algorithm for the hot rolling batch scheduling problem
URI https://www.tandfonline.com/doi/abs/10.1080/00207543.2011.654138
https://www.proquest.com/docview/1220986897
https://www.proquest.com/docview/1283656349
Volume 51
WOSCitedRecordID wos000313036700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis (UCD Library purchased years)
  customDbUrl:
  eissn: 1366-588X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000584
  issn: 0020-7543
  databaseCode: TFW
  dateStart: 19610101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8MgFCZm8aAHfxun02DilaSFjsJxMS4ezOJh090aoOBmttZ0nX-_UNq5xaiJXltoyQPe-2jf-z4Abqh2hIBMI2yYQJGkARIqxSgNZGyo1NRUKgpPD_FgwMZj_rhWxe_SKt0Z2niiiMpXu80t5KLJiHMV3DbQRcQTcDoha-KqfS2wdzl9w_7zpyvuspqGOUCuR1M7981DNmLTBnPpF09dhZ_-_v8HfgD2augJe36tHIItnR2B3TVCwmMw6sEqwxDl8tV7QphbnzKvc36gmL3kxbSczKEdNLTYEU7yEhae2BtK69Yn0B6XbfiqLtRqNSdg1L8b3t6jWngBKYtXSqRDEwidGi5TxnXEU25MVynNlCBCEkmigEVus6cayxSrbhxKHGllAkmF1JycglaWZ_oMQBppiykt6pFSOTJ7LnEaE4szqFE0xqwNSGPyRNWs5E4cY5aEK_JSb7TEGS3xRmsDtOr15lk5fmnP1mczKauvIcZLlyTk566dZuaTensvkhDjgDPKeNwG16vbdjLc3xaR6Xzp2jBiwTKJ-Pnf334BdnClv-HyZzqgVRZLfQm21Xs5XRRX1WL_ALXv-yU
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bTyMhFD5xq4n6sF5WY10vmPhKMoUpA4_GbKOxNj7UyxsZGNjWaMe0U3-_MNCqMauJ2dcZmCEHOOcDDt8HcMyMJwTkBhPLc5wqluBcFwQXicosU4bZWkXhppv1evzuTlzFbMJJTKv0a2gbiCJqX-0nt9-MnqXE-SvcLtKlNDBweiVryn_Aohen8-uvfuf21Rm3eSRiTrCvMrs994-vvItO77hLP_jqOgB11v5D09fhZ0Sf6CQMlw1YMKNNWH3DSfgLrk9QnWSIS3UfnCEqnVt5jGk_KH_4W46H1eARuVYjBx_RoKzQOHB7I-U8-wC5FbOLYPWDKFizBdedP_3TMxy1F7B2kKXCpmWT3BRWqIILk4pCWNvW2nCd01xRRdOEp36-F4aoguh21lIkNdomiuXKCLoNjVE5MjuAWGocrHTARynt-eyFIkVGHdRgVrOM8CbQmc2ljsTkXh_jQbbm_KXBaNIbTQajNQHPaz0FYo4vyvO33SmrekPEBvUSST-vujfrehln-ES2CEkEZ1xkTTiav3ad4Q9c8pEpp74Mpw4v01Tsfv_vh7B81r_syu557-I3rJBajsOn0-xBoxpPzT4s6edqOBkf1CP_BYyi_0g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCcGBHVFWI3G1lNqpYx8RUIFAFQe2mxVvtAgaVALfjx2npQgBElwTT2KN7ZnnZPwewAGzgRCQW0wcz3GqWIJzbQg2icocU5a5SkXh5iLrdPjdnbgcO8UfyirDHtpFoogqVofF_WzcsCIunOD2iS6lkYAzCFlTPgnTHjm3wry-at9-xOIWr3mYExxMhofnvnnKp-T0ibr0S6iu8k978f89X4KFGnuiwzhZlmHC9ldgfoyRcBWuD1FVYogL9RBDISp8UHmqi35Q_nhfDHpl9wn5TiMPHlG3KNEgMnsj5eN6F_n9ss9f1YVarmYNrtsnV0enuFZewNoDlhLbpktya5xQhgubCiOca2ltuc5prqiiacLTsNqNJcoQ3cqaiqRWu0SxXFlB12GqX_TtBiCWWg8qPexRSgc2e6GIyagHGsxplhHeADp0udQ1LXlQx3iUzRF7aXSaDE6T0WkNwCOr50jL8Ut7Pj6asqw-h7ioXSLpz6bbw5GX9fp-kU1CEsEZF1kD9ke3_WCE3y153xavoQ2nHi3TVGz-_e17MHt53JYXZ53zLZgjlRZHqKXZhqly8Gp3YEa_lb2XwW41798Bhkz9-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-objective+optimisation+algorithm+for+the+hot+rolling+batch+scheduling+problem&rft.jtitle=International+journal+of+production+research&rft.au=Jia%2C+S.J.&rft.au=Yi%2C+J.&rft.au=Yang%2C+G.K.&rft.au=Du%2C+B.&rft.date=2013-02-01&rft.issn=0020-7543&rft.eissn=1366-588X&rft.volume=51&rft.issue=3&rft.spage=667&rft.epage=681&rft_id=info:doi/10.1080%2F00207543.2011.654138&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207543_2011_654138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7543&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7543&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7543&client=summon