An Emergency Scheduling Model for Oil Containment Boom in Dynamically Changing Marine Oil Spills: Integrating Economic and Ecological Considerations

Marine oil spills pose substantial risks to human society and ecosystems, resulting in significant economic and ecological consequences. Timely containment of oil films is a complex and urgent task, in which the efficient scheduling of oil containment booms plays a crucial role in reducing economic...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Systems (Basel) Ročník 13; číslo 8; s. 716
Hlavní autoři: Xu, Yuanyuan, Zhang, Linlin, Zheng, Pengjun, Liu, Guiyun, Zhao, Dan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2025
Témata:
ISSN:2079-8954, 2079-8954
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Marine oil spills pose substantial risks to human society and ecosystems, resulting in significant economic and ecological consequences. Timely containment of oil films is a complex and urgent task, in which the efficient scheduling of oil containment booms plays a crucial role in reducing economic and ecological losses caused by oil spills. However, due to dynamically changing marine oil spills, the length of boom required and the losses caused by oil spills are inherently uncertain. This study aims to optimize the containment of oil films, exploring the interrelationships among oil films, spill losses, and scheduling decisions for booms. By incorporating economic and ecological losses into decisions, this study proposes a scheduling model for oil containment booms to minimize spill-related losses while reducing scheduling time. Additionally, an improved Multi-Objective Grey Wolf Optimization algorithm is used to solve the problem. A hypothetical case study is then conducted in the Zhoushan sea area of the East China Sea. The proposed scheduling scheme achieves a containment time of 8.9781 h and reduces total spill losses to CNY 313.68 million. Compared with a scheme that does not consider spill losses, the proposed method achieves a nearly 24% reduction in losses while maintaining comparable efficiency.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-8954
2079-8954
DOI:10.3390/systems13080716