Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air

We study federated machine learning (ML) at the wireless edge, where power- and bandwidth-limited wireless devices with local datasets carry out distributed stochastic gradient descent (DSGD) with the help of a parameter server (PS). Standard approaches assume separate computation and communication,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 68; s. 2155 - 2169
Hlavní autori: Mohammadi Amiri, Mohammad, Gunduz, Deniz
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study federated machine learning (ML) at the wireless edge, where power- and bandwidth-limited wireless devices with local datasets carry out distributed stochastic gradient descent (DSGD) with the help of a parameter server (PS). Standard approaches assume separate computation and communication, where local gradient estimates are compressed and transmitted to the PS over orthogonal links. Following this digital approach, we introduce D-DSGD, in which the wireless devices employ gradient quantization and error accumulation, and transmit their gradient estimates to the PS over a multiple access channel (MAC). We then introduce a novel analog scheme, called A-DSGD, which exploits the additive nature of the wireless MAC for over-the-air gradient computation, and provide convergence analysis for this approach. In A-DSGD, the devices first sparsify their gradient estimates, and then project them to a lower dimensional space imposed by the available channel bandwidth. These projections are sent directly over the MAC without employing any digital code. Numerical results show that A-DSGD converges faster than D-DSGD thanks to its more efficient use of the limited bandwidth and the natural alignment of the gradient estimates over the channel. The improvement is particularly compelling at low power and low bandwidth regimes. We also illustrate for a classification problem that, A-DSGD is more robust to bias in data distribution across devices, while D-DSGD significantly outperforms other digital schemes in the literature. We also observe that both D-DSGD and A-DSGD perform better with the number of devices, showing their ability in harnessing the computation power of edge devices.
AbstractList We study federated machine learning (ML) at the wireless edge, where power- and bandwidth-limited wireless devices with local datasets carry out distributed stochastic gradient descent (DSGD) with the help of a parameter server (PS). Standard approaches assume separate computation and communication, where local gradient estimates are compressed and transmitted to the PS over orthogonal links. Following this digital approach, we introduce D-DSGD, in which the wireless devices employ gradient quantization and error accumulation, and transmit their gradient estimates to the PS over a multiple access channel (MAC). We then introduce a novel analog scheme, called A-DSGD, which exploits the additive nature of the wireless MAC for over-the-air gradient computation, and provide convergence analysis for this approach. In A-DSGD, the devices first sparsify their gradient estimates, and then project them to a lower dimensional space imposed by the available channel bandwidth. These projections are sent directly over the MAC without employing any digital code. Numerical results show that A-DSGD converges faster than D-DSGD thanks to its more efficient use of the limited bandwidth and the natural alignment of the gradient estimates over the channel. The improvement is particularly compelling at low power and low bandwidth regimes. We also illustrate for a classification problem that, A-DSGD is more robust to bias in data distribution across devices, while D-DSGD significantly outperforms other digital schemes in the literature. We also observe that both D-DSGD and A-DSGD perform better with the number of devices, showing their ability in harnessing the computation power of edge devices.
Author Gunduz, Deniz
Mohammadi Amiri, Mohammad
Author_xml – sequence: 1
  givenname: Mohammad
  orcidid: 0000-0002-7343-6628
  surname: Mohammadi Amiri
  fullname: Mohammadi Amiri, Mohammad
  email: mamiri@princeton.edu
  organization: Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
– sequence: 2
  givenname: Deniz
  orcidid: 0000-0002-7725-395X
  surname: Gunduz
  fullname: Gunduz, Deniz
  email: d.gunduz@imperial.ac.uk
  organization: Department of Electrical and Electronic Engineering, Imperial College London, London, U.K
BookMark eNp9kE1Lw0AQhhepYK3eBS8LnlP3Kx_rrbS1CpUKrSh4CJvJpN1Sk7q7Ffz3prR48ODpHZj3mYHnnHTqpkZCrjjrc8707WL-3BdMsL7QGddMnZAu14pHTKVJp51ZLKM4S9_OyLn3a8a4UjrpkvcnAytbI52icbWtl9QEGlZIX63DDXpPx-US7-jI-uBssQtY0nloYGV8sEAnzpQW60BH6GGfsy90UctHA-suyGllNh4vj9kjL_fjxfAhms4mj8PBNAKpdYhKyExWSc2SCiqRGog5SAZGg8QChSpSpRQwSE1cZYAaS5MpSBVLihKNQNkjN4e7W9d87tCHfN3sXN2-zIXUMU_iJFZtix1a4BrvHVb51tkP475zzvK9wrxVmO8V5keFLZL8QcAGE2xTB2fs5j_w-gBaRPz9026EjIX8AcW6gR4
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_JSAC_2022_3143217
crossref_primary_10_1109_JSAC_2024_3431572
crossref_primary_10_1109_TSP_2024_3351469
crossref_primary_10_1109_TSP_2025_3536023
crossref_primary_10_1109_TWC_2024_3457591
crossref_primary_10_1109_JSAC_2023_3242710
crossref_primary_10_1109_TWC_2023_3291877
crossref_primary_10_1007_s13369_021_06210_5
crossref_primary_10_1109_TITS_2022_3221388
crossref_primary_10_1002_ett_4458
crossref_primary_10_1016_j_micpro_2022_104596
crossref_primary_10_1109_ACCESS_2024_3474300
crossref_primary_10_1109_LWC_2022_3149783
crossref_primary_10_1109_TWC_2020_3038407
crossref_primary_10_1109_ACCESS_2023_3266297
crossref_primary_10_1109_COMST_2023_3264649
crossref_primary_10_1109_TWC_2020_3043787
crossref_primary_10_1109_JIOT_2023_3349176
crossref_primary_10_1109_LCOMM_2023_3272844
crossref_primary_10_1109_TCOMM_2022_3175175
crossref_primary_10_1109_JSAC_2023_3242722
crossref_primary_10_1109_JIOT_2022_3164914
crossref_primary_10_1109_TSP_2022_3186526
crossref_primary_10_1007_s11280_021_00903_5
crossref_primary_10_1109_JSAC_2022_3229428
crossref_primary_10_1109_ACCESS_2020_3001752
crossref_primary_10_1109_JSAC_2023_3242727
crossref_primary_10_1109_MCOM_101_2100138
crossref_primary_10_1109_TWC_2022_3185156
crossref_primary_10_1109_TIT_2025_3542673
crossref_primary_10_1109_TVT_2021_3135541
crossref_primary_10_1109_TWC_2023_3268742
crossref_primary_10_1109_TMC_2021_3123195
crossref_primary_10_1109_ACCESS_2023_3291023
crossref_primary_10_1109_JIOT_2024_3376821
crossref_primary_10_1080_03610926_2025_2474629
crossref_primary_10_1109_TNNLS_2022_3170944
crossref_primary_10_1109_TVT_2022_3161099
crossref_primary_10_1109_TGCN_2022_3186538
crossref_primary_10_1109_TWC_2023_3313968
crossref_primary_10_1109_TWC_2020_3000241
crossref_primary_10_1109_COMST_2023_3302474
crossref_primary_10_1109_JIOT_2023_3340014
crossref_primary_10_1109_TCOMM_2021_3081746
crossref_primary_10_1109_TWC_2024_3432758
crossref_primary_10_1166_jmihi_2021_3684
crossref_primary_10_1109_TWC_2023_3288122
crossref_primary_10_1109_TWC_2024_3501297
crossref_primary_10_1109_TCC_2025_3530681
crossref_primary_10_1109_TSP_2021_3090323
crossref_primary_10_1109_JSAC_2022_3223661
crossref_primary_10_1109_TWC_2021_3086116
crossref_primary_10_1109_TNNLS_2024_3394861
crossref_primary_10_1109_JIOT_2022_3164339
crossref_primary_10_1109_TCCN_2021_3074908
crossref_primary_10_1109_TWC_2023_3316788
crossref_primary_10_1016_j_ins_2022_11_157
crossref_primary_10_1007_s11432_020_3251_9
crossref_primary_10_1109_JIOT_2021_3111624
crossref_primary_10_1109_MSP_2021_3125282
crossref_primary_10_1007_s10489_022_03401_x
crossref_primary_10_1109_TKDE_2023_3332770
crossref_primary_10_1109_JSAC_2022_3180799
crossref_primary_10_1109_LWC_2021_3075029
crossref_primary_10_1016_j_jfranklin_2025_107510
crossref_primary_10_1002_ett_4661
crossref_primary_10_1007_s10773_021_04867_0
crossref_primary_10_3390_s21134586
crossref_primary_10_1109_TSP_2023_3290327
crossref_primary_10_1109_JIOT_2021_3132031
crossref_primary_10_1109_ACCESS_2022_3195056
crossref_primary_10_1007_s00521_025_11248_9
crossref_primary_10_1109_LWC_2021_3099136
crossref_primary_10_1109_TWC_2024_3366547
crossref_primary_10_1080_09540091_2021_1936455
crossref_primary_10_1109_COMST_2020_3007787
crossref_primary_10_1109_TCCN_2024_3419039
crossref_primary_10_1109_TWC_2021_3099505
crossref_primary_10_3390_s23010040
crossref_primary_10_1002_int_23056
crossref_primary_10_1109_TNET_2023_3318474
crossref_primary_10_3390_jmse10060743
crossref_primary_10_1109_TWC_2021_3103874
crossref_primary_10_1109_LCOMM_2020_3019312
crossref_primary_10_1109_TWC_2022_3173262
crossref_primary_10_1109_JSAC_2022_3223408
crossref_primary_10_1109_TWC_2022_3188502
crossref_primary_10_1109_TSP_2025_3592678
crossref_primary_10_1109_JIOT_2022_3188544
crossref_primary_10_1109_JIOT_2023_3285868
crossref_primary_10_1109_TCOMM_2021_3124961
crossref_primary_10_1109_TVT_2022_3210335
crossref_primary_10_1007_s10994_023_06332_x
crossref_primary_10_1109_TSP_2023_3284381
crossref_primary_10_1109_TGCN_2021_3125232
crossref_primary_10_1109_LSP_2023_3321561
crossref_primary_10_1109_TWC_2022_3231088
crossref_primary_10_1109_LCOMM_2025_3567387
crossref_primary_10_1109_TWC_2021_3104834
crossref_primary_10_1109_COMST_2021_3086014
crossref_primary_10_1109_TGCN_2022_3173420
crossref_primary_10_1109_TSP_2023_3284376
crossref_primary_10_1109_JIOT_2021_3131407
crossref_primary_10_1109_JIOT_2022_3168066
crossref_primary_10_1109_TWC_2023_3263148
crossref_primary_10_1109_TCOMM_2022_3162576
crossref_primary_10_1109_TMC_2024_3427709
crossref_primary_10_1109_TSP_2022_3185897
crossref_primary_10_1109_TGCN_2021_3126795
crossref_primary_10_1109_TSP_2025_3585002
crossref_primary_10_1080_0954898X_2025_2513690
crossref_primary_10_1109_TWC_2024_3368197
crossref_primary_10_1109_TWC_2024_3407822
crossref_primary_10_1109_LCOMM_2022_3203581
crossref_primary_10_1109_TWC_2023_3347697
crossref_primary_10_1109_JIOT_2022_3218008
crossref_primary_10_1109_TPDS_2022_3149787
crossref_primary_10_1109_TWC_2022_3209190
crossref_primary_10_1109_TMC_2023_3292898
crossref_primary_10_1109_TWC_2022_3181214
crossref_primary_10_1109_TWC_2021_3052681
crossref_primary_10_1109_JSEN_2020_3023661
crossref_primary_10_1109_TCCN_2022_3181032
crossref_primary_10_3390_s23187840
crossref_primary_10_1109_TWC_2020_3039309
crossref_primary_10_1109_JSAC_2021_3118353
crossref_primary_10_3390_s21155124
crossref_primary_10_1109_TWC_2023_3329375
crossref_primary_10_1109_TWC_2021_3138394
crossref_primary_10_1109_JSAC_2024_3413988
crossref_primary_10_1109_TSP_2024_3454986
crossref_primary_10_1109_TWC_2024_3453392
crossref_primary_10_1109_ACCESS_2022_3231039
crossref_primary_10_1109_JIOT_2021_3096570
crossref_primary_10_1109_TCOMM_2023_3283790
crossref_primary_10_1109_ACCESS_2022_3141913
crossref_primary_10_1109_TNSE_2022_3196463
crossref_primary_10_1109_TWC_2021_3065920
crossref_primary_10_1109_TWC_2023_3235894
crossref_primary_10_1109_TWC_2021_3092075
crossref_primary_10_1109_TWC_2023_3262350
crossref_primary_10_1109_ACCESS_2025_3564484
crossref_primary_10_1109_JSAC_2021_3118348
crossref_primary_10_1109_LSP_2024_3400916
crossref_primary_10_1109_JIOT_2023_3285937
crossref_primary_10_1109_TII_2022_3170900
crossref_primary_10_1109_JSAC_2021_3118346
crossref_primary_10_1109_JSTSP_2024_3463505
crossref_primary_10_1109_TWC_2021_3088910
crossref_primary_10_1109_TWC_2022_3201207
crossref_primary_10_3390_electronics12143021
crossref_primary_10_1190_geo2023_0751_1
crossref_primary_10_3390_electronics11152464
crossref_primary_10_1016_j_future_2021_07_010
crossref_primary_10_1109_TSP_2022_3214122
crossref_primary_10_1109_TWC_2022_3208198
crossref_primary_10_1016_j_future_2022_01_013
crossref_primary_10_1109_TWC_2023_3326438
crossref_primary_10_1109_LSP_2022_3154653
crossref_primary_10_1109_TSP_2023_3329974
crossref_primary_10_1109_JIOT_2024_3523947
crossref_primary_10_1109_TGCN_2023_3239373
crossref_primary_10_1109_JIOT_2022_3230452
crossref_primary_10_1109_TNET_2024_3444602
crossref_primary_10_1109_TWC_2023_3317129
crossref_primary_10_1109_JSAC_2021_3126076
crossref_primary_10_1109_TCCN_2022_3140788
crossref_primary_10_1109_TWC_2022_3192550
crossref_primary_10_1109_JSAC_2021_3126078
crossref_primary_10_1109_COMST_2021_3058573
crossref_primary_10_1109_JSTSP_2022_3156756
crossref_primary_10_1016_j_image_2024_117199
crossref_primary_10_1109_LWC_2023_3256006
crossref_primary_10_3390_su151813951
crossref_primary_10_1109_OJCOMS_2024_3521651
crossref_primary_10_1109_TWC_2021_3098716
crossref_primary_10_1109_ACCESS_2025_3543441
crossref_primary_10_1109_JSAC_2020_3041379
crossref_primary_10_1109_JIOT_2022_3165268
crossref_primary_10_1109_TGCN_2023_3310569
crossref_primary_10_1109_TWC_2025_3540455
crossref_primary_10_1109_TCOMM_2023_3277882
crossref_primary_10_1109_MCOM_001_2000394
crossref_primary_10_1109_JIOT_2024_3360190
crossref_primary_10_1631_FITEE_2100538
crossref_primary_10_1109_TCOMM_2021_3114791
crossref_primary_10_1109_TMC_2024_3411295
crossref_primary_10_1109_JIOT_2024_3376771
crossref_primary_10_1016_j_eswa_2025_126474
crossref_primary_10_1109_JIOT_2022_3170449
crossref_primary_10_1109_TSP_2025_3534685
crossref_primary_10_1109_TNSE_2025_3528982
crossref_primary_10_1109_TWC_2021_3125798
crossref_primary_10_1109_TWC_2021_3087594
crossref_primary_10_1109_TVT_2025_3533576
crossref_primary_10_1109_TSP_2024_3358615
crossref_primary_10_1016_j_phycom_2023_102201
crossref_primary_10_1109_TGCN_2022_3186439
crossref_primary_10_1109_TWC_2021_3130111
crossref_primary_10_1016_j_sysarc_2022_102673
crossref_primary_10_1109_JIOT_2024_3391923
crossref_primary_10_1109_TCOMM_2021_3051397
crossref_primary_10_1109_TWC_2023_3315962
crossref_primary_10_1109_JSAC_2021_3118428
crossref_primary_10_1109_JSAC_2021_3126060
crossref_primary_10_1109_TMC_2021_3137017
crossref_primary_10_1109_MCOM_001_2200962
crossref_primary_10_1109_TCOMM_2022_3198433
crossref_primary_10_1109_TWC_2022_3185074
crossref_primary_10_1109_TMC_2025_3547148
crossref_primary_10_3390_a17020052
crossref_primary_10_1016_j_cag_2023_10_016
crossref_primary_10_1109_LWC_2021_3095169
crossref_primary_10_1109_JIOT_2024_3438082
crossref_primary_10_1109_TCOMM_2022_3153488
crossref_primary_10_1109_TBDATA_2024_3403381
crossref_primary_10_1109_TWC_2024_3425732
crossref_primary_10_1109_TSP_2021_3106115
crossref_primary_10_1109_TWC_2021_3128392
crossref_primary_10_1109_JIOT_2024_3352280
crossref_primary_10_1109_JSAC_2021_3118436
crossref_primary_10_1109_TII_2024_3431100
crossref_primary_10_1109_COMST_2022_3218527
crossref_primary_10_1109_TWC_2020_3008091
crossref_primary_10_1109_TWC_2024_3487986
crossref_primary_10_1109_JIOT_2020_3002925
crossref_primary_10_1007_s00371_023_03043_1
crossref_primary_10_1109_LWC_2020_2996194
crossref_primary_10_1109_TII_2022_3145010
crossref_primary_10_1109_TSP_2021_3079808
crossref_primary_10_1109_JSAC_2021_3118408
crossref_primary_10_1109_JSAC_2021_3118406
crossref_primary_10_1109_JSAC_2021_3118402
crossref_primary_10_1109_JSTSP_2021_3139231
crossref_primary_10_3390_rs16163070
crossref_primary_10_1109_TMC_2022_3216837
crossref_primary_10_1109_LSP_2024_3384077
crossref_primary_10_1109_TSP_2024_3460690
crossref_primary_10_1109_JSAC_2020_3036948
crossref_primary_10_1109_TSP_2025_3540655
crossref_primary_10_1109_TNNLS_2024_3362974
crossref_primary_10_1109_TCOMM_2025_3535878
crossref_primary_10_1109_MWC_011_2000501
crossref_primary_10_1109_JIOT_2023_3296493
crossref_primary_10_1109_TWC_2022_3225812
crossref_primary_10_1109_TMC_2023_3304652
crossref_primary_10_1109_JSAC_2021_3118412
crossref_primary_10_1109_MBITS_2023_3322667
crossref_primary_10_1109_JSAC_2021_3118410
crossref_primary_10_1109_MWC_005_2300016
Cites_doi 10.1073/pnas.0909892106
10.1109/TWC.2020.2974748
10.18653/v1/D17-1045
10.1109/TIT.2017.2649460
10.1109/IJCNN.2019.8852172
10.1109/PIMRC.2019.8904164
10.1109/ISIT.2019.8849334
10.1109/TWC.2019.2961673
10.3389/fams.2018.00062
10.1109/LCOMM.2018.2877316
10.1109/TIT.2010.2094817
10.1214/aop/1176989118
10.1109/GlobalSIP45357.2019.8969185
10.1109/ASPDAC.2018.8297378
10.1109/TWC.2019.2946245
10.1109/TCOMM.2013.072913.120815
10.1145/3295500.3356222
10.1109/TIT.2018.2882177
10.1109/TIT.2009.2025566
10.1109/SPAWC.2019.8815402
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2020.2981904
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) Online
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 2169
ExternalDocumentID 10_1109_TSP_2020_2981904
9042352
Genre orig-research
GrantInformation_xml – fundername: BEACON
  grantid: 677854
– fundername: European Research Council
  funderid: 10.13039/501100000781
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-dc8a8f3906fcf27ac51c30ca9c3ebe24b7444c0c7a5f8ce9eda84c7406bdea2e3
IEDL.DBID RIE
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000489100301105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:19:05 EDT 2025
Sat Nov 29 04:10:51 EST 2025
Tue Nov 18 20:53:12 EST 2025
Wed Aug 27 02:42:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-dc8a8f3906fcf27ac51c30ca9c3ebe24b7444c0c7a5f8ce9eda84c7406bdea2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7343-6628
0000-0002-7725-395X
OpenAccessLink http://hdl.handle.net/11380/1217809
PQID 2395165654
PQPubID 85478
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TSP_2020_2981904
proquest_journals_2395165654
crossref_primary_10_1109_TSP_2020_2981904
ieee_primary_9042352
PublicationCentury 2000
PublicationDate 2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
samarakoon (ref12) 2018
ref37
ref36
ref31
wang (ref15) 2018
alistarh (ref23) 2018
ref30
ref33
ref32
nishio (ref11) 2018
zhou (ref14) 2018
alistarh (ref2) 2017
ref18
strom (ref19) 2015
johnson (ref39) 0
park (ref1) 2018
strom (ref38) 0
konecny (ref5) 2016
lecun (ref45) 1998
konecny (ref10) 2015
mcmahan (ref7) 2017
ref47
wen (ref13) 2017
ref20
ref42
ref41
smith (ref8) 2017
ref22
ref21
seide (ref4) 0
tsuzuku (ref24) 2018
stich (ref25) 2018
ref28
ref27
ref29
sa (ref44) 0
ref9
lin (ref26) 2018
mood (ref43) 1974
wu (ref17) 2018; 80
lin (ref3) 2018
ref40
kingma (ref46) 2017
bernstein (ref16) 2018; 80
mcmahan (ref6) 0
References_xml – year: 2018
  ident: ref11
  article-title: Client selection for federated learning with heterogeneous resources in mobile edge
– year: 2016
  ident: ref5
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: Proc NIPS Workshop Private Multi-Party Mach Learn
– year: 2017
  ident: ref7
  article-title: Federated learning: Collaborative machine learning without centralized training data
– ident: ref31
  doi: 10.1073/pnas.0909892106
– ident: ref34
  doi: 10.1109/TWC.2020.2974748
– start-page: 315
  year: 0
  ident: ref39
  article-title: Accelerating stochastic gradient descent using predictive variance reduction
  publication-title: Proc Int Conf Neural Inf Process
– year: 2018
  ident: ref3
  article-title: Deep gradient compression: Reducing the communication bandwidth for distributed training
  publication-title: Proc Int Conf Learn Representations
– ident: ref20
  doi: 10.18653/v1/D17-1045
– start-page: 2674
  year: 0
  ident: ref44
  article-title: Taming the wild: A unified analysis of hogwild-style algorithms
  publication-title: Proc Int Conf Neural Inf Process
– year: 0
  ident: ref6
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– year: 2017
  ident: ref46
  article-title: Adam: A method for stochastic optimization
– year: 2017
  ident: ref13
  article-title: TernGrad: Ternary gradients to reduce communication in distributed deep learning
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref41
  doi: 10.1109/TIT.2017.2649460
– ident: ref21
  doi: 10.1109/IJCNN.2019.8852172
– year: 2015
  ident: ref10
  article-title: Federated optimization: Distributed optimization beyond the datacenter
– ident: ref36
  doi: 10.1109/PIMRC.2019.8904164
– ident: ref29
  doi: 10.1109/ISIT.2019.8849334
– ident: ref33
  doi: 10.1109/TWC.2019.2961673
– year: 2018
  ident: ref23
  article-title: The convergence of sparsified gradient methods
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref9
  doi: 10.3389/fams.2018.00062
– ident: ref30
  doi: 10.1109/LCOMM.2018.2877316
– ident: ref40
  doi: 10.1109/TIT.2010.2094817
– year: 1998
  ident: ref45
  article-title: The MNIST database of handwritten digits
– ident: ref47
  doi: 10.1214/aop/1176989118
– ident: ref37
  doi: 10.1109/GlobalSIP45357.2019.8969185
– ident: ref18
  doi: 10.1109/ASPDAC.2018.8297378
– year: 1974
  ident: ref43
  publication-title: Introduction to the Theory of Statistics
– year: 2018
  ident: ref26
  article-title: Don't use large mini-batches, use local SGD
– volume: 80
  start-page: 5325
  year: 2018
  ident: ref17
  article-title: Error compensated quantized SGD and its applications to large-scale distributed optimization
  publication-title: Proc Int Conf Mach Learn
– year: 2015
  ident: ref19
  article-title: Scalable distributed DNN training using commodity gpu cloud computing
  publication-title: Proc Conf Int Speech Commun Assoc (INTERSPEECH)
– year: 2017
  ident: ref2
  article-title: QSGD: Communication-efficient SGD via gradient quantization and encoding
  publication-title: Proc Conf Neural Inf Process Syst
– year: 2018
  ident: ref12
  article-title: Distributed federated learning for ultra-reliable low-latency vehicular communications
– start-page: 1488
  year: 0
  ident: ref38
  article-title: Scalable distributed DNN training using commodity GPU cloud computing
  publication-title: Proc INTERSPEECH
– ident: ref32
  doi: 10.1109/TWC.2019.2946245
– year: 2018
  ident: ref15
  article-title: ATOMO: Communication-efficient learning via atomic sparsification
  publication-title: Proc Conf Neural Inf Process Syst
– year: 2018
  ident: ref24
  article-title: Variance-based gradient compression for efficient distributed deep learning
– ident: ref28
  doi: 10.1109/TCOMM.2013.072913.120815
– ident: ref22
  doi: 10.1145/3295500.3356222
– volume: 80
  start-page: 560
  year: 2018
  ident: ref16
  article-title: signSGD: Compressed optimisation for non-convex problems
  publication-title: Proc Int Conf Mach Learn
– ident: ref42
  doi: 10.1109/TIT.2018.2882177
– year: 2018
  ident: ref25
  article-title: Local SGD converges fast and communicates little
– year: 2018
  ident: ref1
  article-title: Wireless network intelligence at the edge
– year: 2018
  ident: ref14
  article-title: DoReFa-Net: Training low bitwidth convolutional neural networks with low bitwidth gradients
– start-page: 1058
  year: 0
  ident: ref4
  article-title: 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs
  publication-title: Proc INTERSPEECH
– ident: ref27
  doi: 10.1109/TIT.2009.2025566
– year: 2017
  ident: ref8
  article-title: Federated multi-task learning
  publication-title: Proc Conf Neural Inf Process Syst
– ident: ref35
  doi: 10.1109/SPAWC.2019.8815402
SSID ssj0014496
Score 2.7162306
Snippet We study federated machine learning (ML) at the wireless edge, where power- and bandwidth-limited wireless devices with local datasets carry out distributed...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2155
SubjectTerms Approximate message passing (AMP)
Bandwidth
Bandwidths
Channel estimation
Computation
Convergence
Electronic devices
Estimates
federated learning (FL)
Machine learning
Machine learning algorithms
over-the-air computation
Performance evaluation
Power management
Quantization (signal)
Robustness (mathematics)
stochastic gradient descent (SGD)
Wireless communication
Wireless sensor networks
Title Machine Learning at the Wireless Edge: Distributed Stochastic Gradient Descent Over-the-Air
URI https://ieeexplore.ieee.org/document/9042352
https://www.proquest.com/docview/2395165654
Volume 68
WOSCitedRecordID wos000489100301105&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6QeNCDv9CIounBi4mF0XVr642I6EGRBDQkHpby1iEJATOGf79tN4hGY-Jth3ZZ3te999r3-n0IXVABngqFJE2pBGFJkBAB3Cc6UYGQILhwKhEvD7zbFcOh7JXQ1foujNbaNZ_pun10tfx4Dkt7VNaQtokjMA53g_Mwv6u1rhgw5rS4TLrgk0Dw4aok6cnGoN8zG0Hq1am08Y99C0FOU-WHI3bRpbP7v-_aQztFFolbOez7qKRnB2j7C7dgBb0-ujZJjQsG1TFWGTbZHrb9rlPj3_BtPNbXuG2Zc63olY5xP5vDm7LMzfgudb1gGW7nfE_4yax5YuaT1iQ9RM-d28HNPSmUFAiYBCQjMQglEl96YQIJ5QqCJvgeKAm-AZGyEWeMgQdcBYkALXWsBANugv0o1opq_wiVZ_OZPkY4TEJhOfy0DCWDpq88wajlPeMGcxhBFTVWxo2goBm3ahfTyG03PBkZOCILR1TAUUWX6xnvOcXGH2Mr1vzrcYXlq6i2wi8q_sFFRH2TPZp0NWAnv886RVv23fmBSg2Vs3Spz9AmfGSTRXrultcnoZvM1Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgW1yfOXgRjJtN0ybxJr5xXQVXWfBQstNUBdmVtfr7TdLuoiiCtx4SWuZLZyaZyfcB7HCFzCRK04Y2ioo8zqlCGVGbm1hpVFIFlYj7pmy1VKejb8Zgb3QXxlobms_svn8Mtfysj-_-qKyufRNH7BzuRCwEZ-VtrVHNQIigxuUShojGSnaGRUmm6-3bG7cV5Gyfax8BxbcgFFRVfrjiEF9O5_73ZfMwW-WR5LAEfgHGbG8RZr6wCy7Bw1VolLSk4lB9JKYgLt8jvuP1xXk4cpI92gNy7LlzveyVzcht0ccn47mbydkgdIMV5LhkfCLXbtVTN58ePg-W4e70pH10TistBYouBSlohsqoPNIsyTHn0mDcwIih0Rg5GLnoSiEEMpQmzhVabTOjBEoX7ruZNdxGKzDe6_fsKpAkT5Rn8bM60QIbkWFKcM98Jh3q2MUa1IfGTbEiGvd6Fy9p2HAwnTo4Ug9HWsFRg93RjNeSZOOPsUve_KNxleVrsDHEL63-wreURy5_dAlrLNZ-n7UNU-ftq2bavGhdrsO0f095vLIB48Xg3W7CJH4Uz2-DrbDUPgFyzdAc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+at+the+Wireless+Edge%3A+Distributed+Stochastic+Gradient+Descent+Over-the-Air&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Mohammadi+Amiri%2C+Mohammad&rft.au=Gunduz%2C+Deniz&rft.date=2020&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=68&rft.spage=2155&rft.epage=2169&rft_id=info:doi/10.1109%2FTSP.2020.2981904&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2020_2981904
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon