On the Complexity of Finding Internally Vertex-Disjoint Long Directed Paths

For two positive integers k and ℓ , a ( k × ℓ ) - spindle is the union of k pairwise internally vertex-disjoint directed paths with ℓ arcs each between two vertices u and v . We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contai...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Algorithmica Ročník 82; číslo 6; s. 1616 - 1639
Hlavní autori: Araújo, Júlio, Campos, Victor A., Maia, Ana Karolinna, Sau, Ignasi, Silva, Ana
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.06.2020
Springer Nature B.V
Springer Verlag
Predmet:
ISSN:0178-4617, 1432-0541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract For two positive integers k and ℓ , a ( k × ℓ ) - spindle is the union of k pairwise internally vertex-disjoint directed paths with ℓ arcs each between two vertices u and v . We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contains a subdivision of a spindle, which generalize both the Maximum Flow and Longest Path problems. We obtain the following complexity dichotomy: for a fixed ℓ ≥ 1 , finding the largest k such that an input digraph G contains a subdivision of a ( k × ℓ ) -spindle is polynomial-time solvable if ℓ ≤ 3 , and NP-hard otherwise. We place special emphasis on finding spindles with exactly two paths and present FPT algorithms that are asymptotically optimal under the ETH. These algorithms are based on the technique of representative families in matroids, and use also color-coding as a subroutine. Finally, we study the case where the input graph is acyclic, and present several algorithmic and hardness results.
AbstractList For two positive integers k and , a (k ×)-spindle is the union of k pairwise internally vertex-disjoint directed paths with arcs each between two vertices u and v. We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contains a subdivision of a spindle, which generalize both the Maximum Flow and Longest Path problems. We obtain the following complexity dichotomy: for a fixed ≥ 1, finding the largest k such that an input digraph G contains a subdivision of a (k ×)-spindle is polynomial-time solvable if ≤ 3, and NP-hard otherwise. We place special emphasis on finding spindles with exactly two paths and present FPT algorithms that are asymptotically optimal under the ETH. These algorithms are based on the technique of representative families in matroids, and use also color-coding as a subroutine. Finally, we study the case where the input graph is acyclic, and present several algorithmic and hardness results.
For two positive integers k and ℓ, a (k×ℓ)-spindle is the union of k pairwise internally vertex-disjoint directed paths with ℓ arcs each between two vertices u and v. We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contains a subdivision of a spindle, which generalize both the Maximum Flow and Longest Path problems. We obtain the following complexity dichotomy: for a fixed ℓ≥1, finding the largest k such that an input digraph G contains a subdivision of a (k×ℓ)-spindle is polynomial-time solvable if ℓ≤3, and NP-hard otherwise. We place special emphasis on finding spindles with exactly two paths and present FPT algorithms that are asymptotically optimal under the ETH. These algorithms are based on the technique of representative families in matroids, and use also color-coding as a subroutine. Finally, we study the case where the input graph is acyclic, and present several algorithmic and hardness results.
For two positive integers k and ℓ , a ( k × ℓ ) - spindle is the union of k pairwise internally vertex-disjoint directed paths with ℓ arcs each between two vertices u and v . We are interested in the (parameterized) complexity of several problems consisting in deciding whether a given digraph contains a subdivision of a spindle, which generalize both the Maximum Flow and Longest Path problems. We obtain the following complexity dichotomy: for a fixed ℓ ≥ 1 , finding the largest k such that an input digraph G contains a subdivision of a ( k × ℓ ) -spindle is polynomial-time solvable if ℓ ≤ 3 , and NP-hard otherwise. We place special emphasis on finding spindles with exactly two paths and present FPT algorithms that are asymptotically optimal under the ETH. These algorithms are based on the technique of representative families in matroids, and use also color-coding as a subroutine. Finally, we study the case where the input graph is acyclic, and present several algorithmic and hardness results.
Author Campos, Victor A.
Araújo, Júlio
Maia, Ana Karolinna
Sau, Ignasi
Silva, Ana
Author_xml – sequence: 1
  givenname: Júlio
  surname: Araújo
  fullname: Araújo, Júlio
  organization: Departamento de Matemática, ParGO Research Group, Universidade Federal do Ceará
– sequence: 2
  givenname: Victor A.
  surname: Campos
  fullname: Campos, Victor A.
  organization: Departamento de Computação, ParGO Research Group, Universidade Federal do Ceará
– sequence: 3
  givenname: Ana Karolinna
  surname: Maia
  fullname: Maia, Ana Karolinna
  organization: Departamento de Computação, ParGO Research Group, Universidade Federal do Ceará
– sequence: 4
  givenname: Ignasi
  orcidid: 0000-0002-8981-9287
  surname: Sau
  fullname: Sau, Ignasi
  email: ignasi.sau@lirmm.fr
  organization: Departamento de Matemática, ParGO Research Group, Universidade Federal do Ceará, CNRS, AlGCo Project Team, LIRMM, Université de Montpellier
– sequence: 5
  givenname: Ana
  surname: Silva
  fullname: Silva, Ana
  organization: Departamento de Matemática, ParGO Research Group, Universidade Federal do Ceará
BackLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-02989813$$DView record in HAL
BookMark eNp9kMtKAzEUhoMoWC8v4GrApURzmdyWUq2KBV2o25DJZGzKNKlJFPv2jo4iuHB1Fuf7Dv_598B2iMEBcITRKUZInGWEakYhwgoixJmCbAtMcE0JRKzG22CCsJCw5ljsgr2clwhhIhSfgNu7UJWFq6Zxte7duy-bKnbVzIfWh-fqJhSXgun7TfXkUnHv8MLnZfShVPM47C98cra4tro3ZZEPwE5n-uwOv-c-eJxdPkyv4fzu6mZ6PoeWKlVg2_COtoxbI4XAwtaEMdzajjSGE6okI10nmq5VrLacycYpomjDXc0ZEa6xdB-cjHcXptfr5FcmbXQ0Xl-fz3Xv02qlEVFSSUzf8EAfj_Q6xZdXl4textfPp7ImVEqKBUZ0oORI2RRzTq7T1hdTfAwlGd9rjPRn0XosWg9F66-iNRtU8kf9yfSvREcpD3B4duk31T_WB6-DkSE
CitedBy_id crossref_primary_10_1016_j_tcs_2024_115029
Cites_doi 10.1137/120880240
10.1016/j.tcs.2014.10.004
10.1007/978-1-4471-5559-1
10.1002/jgt.22232
10.1006/jctb.1993.1018
10.1006/jcss.2001.1774
10.1016/j.jctb.2005.03.001
10.1002/jgt.10126
10.1007/978-3-319-21275-3
10.1006/jctb.2000.2029
10.1145/210332.210337
10.1016/S0020-0190(96)00174-3
10.1137/070697781
10.1002/jgt.22360
10.1002/jgt.3190070413
10.1002/jgt.22174
10.1016/j.jcss.2015.11.008
10.1093/acprof:oso/9780198566076.001.0001
10.1002/net.3230120306
10.1145/2886094
10.1016/j.ipl.2016.02.005
10.1007/11917496_6
10.1007/978-3-540-27836-8_21
10.1145/1993636.1993700
10.1007/978-3-662-53536-3_6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Attribution
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
– notice: Attribution
DBID AAYXX
CITATION
JQ2
1XC
VOOES
DOI 10.1007/s00453-019-00659-5
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Mathematics
EISSN 1432-0541
EndPage 1639
ExternalDocumentID oai:HAL:lirmm-02989813v1
10_1007_s00453_019_00659_5
GrantInformation_xml – fundername: Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico
  grantid: FUNCAP-PRONEM PNE-0112-00061.01.00/16
  funderid: http://dx.doi.org/10.13039/501100005283
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 304576/2017-4 and 304478/2018-0, CNPq Universal Project 401519/2016-3
  funderid: http://dx.doi.org/10.13039/501100003593
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: CAPES-PRINT
  funderid: http://dx.doi.org/10.13039/501100002322
– fundername: Agence Nationale de la Recherche
  grantid: DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-0010)
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
VOOES
ID FETCH-LOGICAL-c399t-db6f3d56ca87717c42551dcf2ba6239852ff7bfd954c658be9293b6e46527ebc3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524956400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0178-4617
IngestDate Tue Oct 14 20:06:43 EDT 2025
Sun Nov 09 07:45:34 EST 2025
Sat Nov 29 02:20:29 EST 2025
Tue Nov 18 22:36:35 EST 2025
Fri Feb 21 02:43:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords G.2.2
Complexity dichotomy
Spindle
Representative family
FPT algorithm
Digraph subdivision
Parameterized complexity
F.2.2
parameterized complexity
complexity dichotomy
spindle
representative family
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-db6f3d56ca87717c42551dcf2ba6239852ff7bfd954c658be9293b6e46527ebc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8981-9287
0000-0002-1184-4909
0000-0001-7074-2753
0000-0002-9027-7948
OpenAccessLink https://hal-lirmm.ccsd.cnrs.fr/lirmm-02989813
PQID 2388317103
PQPubID 2043795
PageCount 24
ParticipantIDs hal_primary_oai_HAL_lirmm_02989813v1
proquest_journals_2388317103
crossref_citationtrail_10_1007_s00453_019_00659_5
crossref_primary_10_1007_s00453_019_00659_5
springer_journals_10_1007_s00453_019_00659_5
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Schrijver (CR27) 2001; 82
Metzlar (CR23) 1993; 57
CR16
Kriesell (CR22) 2005; 95
Bang-Jensen, Gutin (CR2) 2008
Garey, Johnson (CR15) 1979
Diestel (CR11) 2012
Alon, Yuster, Zwick (CR1) 1995; 42
Monien (CR24) 1985; 25
Bodlaender, Jansen, Kratsch (CR6) 2014; 28
Kim, Kim, Ma, Park (CR20) 2018; 88
Sedgewick, Wayne (CR28) 2011
Benhocine, Wojda (CR4) 1983; 7
Downey, Fellows (CR12) 2013
Bang-Jensen, Havet, Maia (CR3) 2015; 562
CR5
CR8
Shachnai, Zehavi (CR29) 2016; 82
Impagliazzo, Paturi, Zane (CR18) 2001; 63
Flum, Grohe (CR13) 2006
Havet, Maia, Mohar (CR17) 2018; 87
CR21
Oxley (CR26) 1992
Niedermeier (CR25) 2006
Slivkins (CR30) 2010; 24
Zehavi (CR32) 2016; 116
Brewster, Hell, Pantel, Rizzi, Yeo (CR7) 2003; 44
Cohen, Havet, Lochet, Nisse (CR9) 2018; 89
Venkatesan, Pandu Rangan (CR31) 1996; 60
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (CR10) 2015
Itai, Perl, Shiloach (CR19) 1982; 12
Fomin, Lokshtanov, Panolan, Saurabh (CR14) 2016; 63
RC Brewster (659_CR7) 2003; 44
H Shachnai (659_CR29) 2016; 82
J Bang-Jensen (659_CR3) 2015; 562
J Bang-Jensen (659_CR2) 2008
R Diestel (659_CR11) 2012
RG Downey (659_CR12) 2013
A Metzlar (659_CR23) 1993; 57
659_CR5
659_CR16
M Zehavi (659_CR32) 2016; 116
659_CR8
R Impagliazzo (659_CR18) 2001; 63
A Schrijver (659_CR27) 2001; 82
N Alon (659_CR1) 1995; 42
HL Bodlaender (659_CR6) 2014; 28
R Niedermeier (659_CR25) 2006
FV Fomin (659_CR14) 2016; 63
J Flum (659_CR13) 2006
JG Oxley (659_CR26) 1992
R Kim (659_CR20) 2018; 88
N Cohen (659_CR9) 2018; 89
MR Garey (659_CR15) 1979
G Venkatesan (659_CR31) 1996; 60
R Sedgewick (659_CR28) 2011
A Slivkins (659_CR30) 2010; 24
M Cygan (659_CR10) 2015
B Monien (659_CR24) 1985; 25
A Itai (659_CR19) 1982; 12
F Havet (659_CR17) 2018; 87
A Benhocine (659_CR4) 1983; 7
659_CR21
M Kriesell (659_CR22) 2005; 95
References_xml – year: 2006
  ident: CR13
  publication-title: Parameterized Complexity Theory
– volume: 28
  start-page: 277
  issue: 1
  year: 2014
  end-page: 305
  ident: CR6
  article-title: Kernelization lower bounds by cross-composition
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/120880240
– volume: 562
  start-page: 283
  year: 2015
  end-page: 303
  ident: CR3
  article-title: Finding a subdivision of a digraph
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2014.10.004
– year: 2012
  ident: CR11
  publication-title: Graph Theory, Graduate Texts in Mathematics
– year: 2013
  ident: CR12
  publication-title: Fundamentals of Parameterized Complexity
  doi: 10.1007/978-1-4471-5559-1
– volume: 88
  start-page: 592
  issue: 4
  year: 2018
  end-page: 605
  ident: CR20
  article-title: Cycles with two blocks in -chromatic digraphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22232
– volume: 57
  start-page: 228
  issue: 2
  year: 1993
  end-page: 238
  ident: CR23
  article-title: Disjoint paths in acyclic digraphs
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1006/jctb.1993.1018
– volume: 63
  start-page: 512
  issue: 4
  year: 2001
  end-page: 530
  ident: CR18
  article-title: Which problems have strongly exponential complexity?
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2001.1774
– ident: CR16
– volume: 95
  start-page: 168
  issue: 1
  year: 2005
  end-page: 2005
  ident: CR22
  article-title: Disjoint -paths in digraphs
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2005.03.001
– volume: 44
  start-page: 81
  issue: 2
  year: 2003
  end-page: 94
  ident: CR7
  article-title: Packing paths in digraphs
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.10126
– year: 2015
  ident: CR10
  publication-title: Parameterized Algorithms
  doi: 10.1007/978-3-319-21275-3
– volume: 82
  start-page: 319
  issue: 2
  year: 2001
  end-page: 321
  ident: CR27
  article-title: A short proof of Mader’s -paths theorem
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1006/jctb.2000.2029
– year: 2011
  ident: CR28
  publication-title: Algorithms
– volume: 42
  start-page: 844
  issue: 4
  year: 1995
  end-page: 856
  ident: CR1
  article-title: Color-coding
  publication-title: J. ACM
  doi: 10.1145/210332.210337
– volume: 60
  start-page: 249
  year: 1996
  end-page: 253
  ident: CR31
  article-title: Approximate triclique coloring for register allocation
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(96)00174-3
– volume: 24
  start-page: 146
  issue: 1
  year: 2010
  end-page: 157
  ident: CR30
  article-title: Parameterized tractability of edge-disjoint paths on directed acyclic graphs
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/070697781
– ident: CR8
– volume: 89
  start-page: 439
  issue: 4
  year: 2018
  end-page: 456
  ident: CR9
  article-title: Subdivisions of oriented cycles in digraphs with large chromatic number
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22360
– year: 1992
  ident: CR26
  publication-title: Matroid Theory
– year: 1979
  ident: CR15
  publication-title: Computers and Intractability. A guide to the Theory of NP-Completeness
– year: 2008
  ident: CR2
  publication-title: Digraphs: Theory, Algorithms and Applications
– volume: 7
  start-page: 469
  issue: 4
  year: 1983
  end-page: 473
  ident: CR4
  article-title: On the existence of specified cycles in a tournament
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190070413
– ident: CR21
– volume: 87
  start-page: 536
  issue: 4
  year: 2018
  end-page: 560
  ident: CR17
  article-title: Finding a subdivision of a prescribed digraph of order 4
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22174
– volume: 82
  start-page: 488
  issue: 3
  year: 2016
  end-page: 502
  ident: CR29
  article-title: Representative families: a unified tradeoff-based approach
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2015.11.008
– year: 2006
  ident: CR25
  publication-title: Invitation to Fixed-Parameter Algorithms
  doi: 10.1093/acprof:oso/9780198566076.001.0001
– volume: 25
  start-page: 239
  year: 1985
  end-page: 254
  ident: CR24
  article-title: How to find long paths efficiently
  publication-title: Ann. Discrete Math.
– volume: 12
  start-page: 277
  issue: 3
  year: 1982
  end-page: 286
  ident: CR19
  article-title: The complexity of finding maximum disjoint paths with length constraints
  publication-title: Networks
  doi: 10.1002/net.3230120306
– ident: CR5
– volume: 63
  start-page: 29:1
  issue: 4
  year: 2016
  end-page: 29:60
  ident: CR14
  article-title: Efficient computation of representative families with applications in parameterized and exact algorithms
  publication-title: J. ACM
  doi: 10.1145/2886094
– volume: 116
  start-page: 419
  issue: 6
  year: 2016
  end-page: 422
  ident: CR32
  article-title: A randomized algorithm for long directed cycle
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2016.02.005
– volume-title: Parameterized Complexity Theory
  year: 2006
  ident: 659_CR13
– volume-title: Invitation to Fixed-Parameter Algorithms
  year: 2006
  ident: 659_CR25
  doi: 10.1093/acprof:oso/9780198566076.001.0001
– volume: 7
  start-page: 469
  issue: 4
  year: 1983
  ident: 659_CR4
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.3190070413
– volume: 95
  start-page: 168
  issue: 1
  year: 2005
  ident: 659_CR22
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1016/j.jctb.2005.03.001
– volume-title: Fundamentals of Parameterized Complexity
  year: 2013
  ident: 659_CR12
  doi: 10.1007/978-1-4471-5559-1
– volume-title: Computers and Intractability. A guide to the Theory of NP-Completeness
  year: 1979
  ident: 659_CR15
– volume: 28
  start-page: 277
  issue: 1
  year: 2014
  ident: 659_CR6
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/120880240
– volume-title: Graph Theory, Graduate Texts in Mathematics
  year: 2012
  ident: 659_CR11
– ident: 659_CR21
  doi: 10.1007/11917496_6
– volume: 24
  start-page: 146
  issue: 1
  year: 2010
  ident: 659_CR30
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/070697781
– volume: 25
  start-page: 239
  year: 1985
  ident: 659_CR24
  publication-title: Ann. Discrete Math.
– volume: 42
  start-page: 844
  issue: 4
  year: 1995
  ident: 659_CR1
  publication-title: J. ACM
  doi: 10.1145/210332.210337
– volume-title: Matroid Theory
  year: 1992
  ident: 659_CR26
– volume: 57
  start-page: 228
  issue: 2
  year: 1993
  ident: 659_CR23
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1006/jctb.1993.1018
– volume: 82
  start-page: 488
  issue: 3
  year: 2016
  ident: 659_CR29
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/j.jcss.2015.11.008
– volume: 89
  start-page: 439
  issue: 4
  year: 2018
  ident: 659_CR9
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22360
– volume: 88
  start-page: 592
  issue: 4
  year: 2018
  ident: 659_CR20
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22232
– volume: 87
  start-page: 536
  issue: 4
  year: 2018
  ident: 659_CR17
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.22174
– volume: 82
  start-page: 319
  issue: 2
  year: 2001
  ident: 659_CR27
  publication-title: J. Comb. Theory, Ser. B
  doi: 10.1006/jctb.2000.2029
– ident: 659_CR5
  doi: 10.1007/978-3-540-27836-8_21
– ident: 659_CR16
  doi: 10.1145/1993636.1993700
– volume: 60
  start-page: 249
  year: 1996
  ident: 659_CR31
  publication-title: Inf. Process. Lett.
  doi: 10.1016/S0020-0190(96)00174-3
– volume: 63
  start-page: 512
  issue: 4
  year: 2001
  ident: 659_CR18
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.2001.1774
– volume: 63
  start-page: 29:1
  issue: 4
  year: 2016
  ident: 659_CR14
  publication-title: J. ACM
  doi: 10.1145/2886094
– volume-title: Algorithms
  year: 2011
  ident: 659_CR28
– volume: 44
  start-page: 81
  issue: 2
  year: 2003
  ident: 659_CR7
  publication-title: J. Graph Theory
  doi: 10.1002/jgt.10126
– ident: 659_CR8
  doi: 10.1007/978-3-662-53536-3_6
– volume-title: Digraphs: Theory, Algorithms and Applications
  year: 2008
  ident: 659_CR2
– volume: 116
  start-page: 419
  issue: 6
  year: 2016
  ident: 659_CR32
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2016.02.005
– volume: 562
  start-page: 283
  year: 2015
  ident: 659_CR3
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2014.10.004
– volume-title: Parameterized Algorithms
  year: 2015
  ident: 659_CR10
  doi: 10.1007/978-3-319-21275-3
– volume: 12
  start-page: 277
  issue: 3
  year: 1982
  ident: 659_CR19
  publication-title: Networks
  doi: 10.1002/net.3230120306
SSID ssj0012796
Score 2.259103
Snippet For two positive integers k and ℓ , a ( k × ℓ ) - spindle is the union of k pairwise internally vertex-disjoint directed paths with ℓ arcs each between two...
For two positive integers k and ℓ, a (k×ℓ)-spindle is the union of k pairwise internally vertex-disjoint directed paths with ℓ arcs each between two vertices u...
For two positive integers k and , a (k ×)-spindle is the union of k pairwise internally vertex-disjoint directed paths with arcs each between two vertices u...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1616
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Color coding
Complexity
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Information Theory
Graph theory
Mathematics
Mathematics of Computing
Polynomials
Spindles
Theory of Computation
Title On the Complexity of Finding Internally Vertex-Disjoint Long Directed Paths
URI https://link.springer.com/article/10.1007/s00453-019-00659-5
https://www.proquest.com/docview/2388317103
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02989813
Volume 82
WOSCitedRecordID wos000524956400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1B4cCFsoqyyQduYInGdZYjAiokKkBs4mbVjiOC2hQ1AcHfM-MmYREgwdnOohnb8-zxewOwg6DXIwFIHorE8k5sNNdaeNxPMDxHxJWMnbp-Lzg7C-_uoouSFJZXt92rlKRbqWuyG6EPuvsTcYqbEZfTMIPhLqSCDZdXt3XuwAtcVS6qO887GKBLqsz37_gUjqbv6TLkB6T5JTnqYk63-b-_XYD5EmOyg8mgWIQpmy1Bs6rfwMrpvAyn5xlD_MeohXQxi1c2Slg3dUQXVp4VDgav7NaOC_vCj9L8YZRmBeuNsH2yWNqYXSCIzFfgpnt8fXjCy-IK3CAmKTjR70QsfdMPA9zSGZy76BeTeLrvkyag9JIk0EkcyY5BlKIt4iihfdvxpRdYbcQqNLJRZteAaa2JwWoCqfuEbyIrdF-EUvqJF8l904J2ZWNlSuVxKoAxULVmsrOWQmspZy0lW7BbP_M40d34tfcOuq7uSJLZJwc9NUjHw6FyIvNhWzy3W7BZ-VaVUzVXiFlCBFHtfdGCvcqX780_f3T9b903YM6jvbo7wdmERjF-slswa56LNB9vuyH8BqQ_514
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkuillJfYFlofuFFLbBzncUS0q0WELQKKuFlrxxFBu9lqk6Ly75nxJikgQIKznYdmbM9nj79vAHYR9HokAMkjkVnup0ZzrYXHgwzDc0xcydSp6yfhYBBdXcWnNSmsbG67NylJt1K3ZDdCH3T3J-YUN2Mu52HRx4hFivln55dt7sALXVUuqjvPfQzQNVXm-Xc8Ckfz13QZ8gHSfJIcdTGnt_K-v_0EH2uMyQ5mg2IV5myxBitN_QZWT-d1OP5VMMR_jFpIF7O6Y5OM9XJHdGH1WeFodMcu7bSy__iPvLyZ5EXFkgm2zxZLm7JTBJHlBvzu_bw47PO6uAI3iEkqTvQ7kcrADKMQt3QG5y76xWSeHgakCSi9LAt1lsbSN4hStEUcJXRg_UB6odVGbMJCMSnsFjCtNTFYTSj1kPBNbIUeikjKIPNiuW860G1srEytPE4FMEaq1Ux21lJoLeWspWQH9tpn_sx0N17tvYuuazuSZHb_IFGjfDoeKycyH3XFbbcD241vVT1VS4WYJUIQ1d0XHfje-PJ_88sf_fy27t9guX9xkqjkaHD8BT54tG93pznbsFBN_9odWDK3VV5Ov7rhfA-Eq-pC
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BQYgLO6KsPnADCxrHWY4VUIGoSiUWcbNqxxZBJUVtQPD3eNwkLAIkxNmOE83YmWd73huAXQt6PRSApBEzmvqJklRK5tHA2PAcI1cycer67bDTiW5v4-4HFr_Ldi-vJMecBlRpyvKDx8QcVMQ3RCKYBxRTjKEx5ZMw5WMiPe7XL2-qewQvdBW6sAY99W2wLmgz34_xKTRN3mFi5AfU-eWi1MWf1vz_v3wB5grsSZrjybIIEzpbgvmyrgMplvkynF9kxOJCgi2ol5m_koEhrdQRYEhxhtjvv5IbPcz1Cz1OR_eDNMtJe2Dbxz9RnZCuBZejFbhunVwdndKi6AJVFqvkFGl5LOGB6kWh3eopu6atv5TxZC9ArUDuGRNKk8TcVxa9SG3xFZOB9gPuhVoqtgq1bJDpNSBSSmS2qpDLHuKeWDPZYxHngfFifqjq0CjtLVShSI6FMfqi0lJ21hLWWsJZS_A67FXPPI71OH7tvWvdWHVEKe3TZlv00-HDg3Di81GDPTfqsFn6WRRLeCQsloksuGocsjrsl359b_75pet_674DM93jlmifdc43YNbD7bw75NmEWj580lswrZ7zdDTcdjP7DT2j8yY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Complexity+of+Finding+Internally+Vertex-Disjoint+Long+Directed+Paths&rft.jtitle=Algorithmica&rft.au=Ara%C3%BAjo+J%C3%BAlio&rft.au=Campos%2C+Victor+A&rft.au=Maia+Ana+Karolinna&rft.au=Sau+Ignasi&rft.date=2020-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=82&rft.issue=6&rft.spage=1616&rft.epage=1639&rft_id=info:doi/10.1007%2Fs00453-019-00659-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon