Multichannel matching pursuit validation and clustering—A simulation and empirical study

▶ MMP accuracy decreases as the number of brain sources increases. ▶ MMP is robust to noise. ▶ We propose a modified K-means clustering to automate MMP analysis. Multichannel matching pursuit (MMP) is a relatively new method that can be applied to electroencephalogram (EEG) signals in combination wi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of neuroscience methods Ročník 196; číslo 1; s. 190 - 200
Hlavní autori: Lelic, Dina, Gratkowski, Maciej, Hennings, Kristian, Drewes, Asbjørn Mohr
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 15.03.2011
Predmet:
ISSN:0165-0270, 1872-678X, 1872-678X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ▶ MMP accuracy decreases as the number of brain sources increases. ▶ MMP is robust to noise. ▶ We propose a modified K-means clustering to automate MMP analysis. Multichannel matching pursuit (MMP) is a relatively new method that can be applied to electroencephalogram (EEG) signals in combination with inverse modelling. However, limitations of MMP have not been adequately tested. The aims of this study were to investigate how the accuracy of MMP algorithm is altered due to increased number of brain sources and increased noise level, and to implement and test a modified K-means clustering algorithm in order to group similar MMP atoms in time–frequency and space between subjects together. Four groups of 20 EEG signals were simulated. The groups consisted of simulations with 5, 10, 15, and 20 brain sources. The accuracy of MMP algorithm was first tested on increasing number of sources. Then, different levels of noise were added to the simulations and accuracy of the algorithm was tested on increasing noise level. K-means clustering algorithm was tested on 4 datasets (5, 10, 15, and 20 sources) of 10 similar phantom subjects. Finally, the clustering algorithm was tested on empirical somatosensory evoked potential and brainstem evoked potential data. The MMP accuracy decreased as the number of sources increased and MMP accuracy was robust to noise. Furthermore, we found that when applying the clustering method to a subject group's MMP data, the clustering method grouped the similar atoms between subjects correctly. The MMP and clustering method proved to be an efficient way to group similar brain activity and thus study differences in brain activation sequence to sensory stimulation between groups of subjects.
AbstractList ▶ MMP accuracy decreases as the number of brain sources increases. ▶ MMP is robust to noise. ▶ We propose a modified K-means clustering to automate MMP analysis. Multichannel matching pursuit (MMP) is a relatively new method that can be applied to electroencephalogram (EEG) signals in combination with inverse modelling. However, limitations of MMP have not been adequately tested. The aims of this study were to investigate how the accuracy of MMP algorithm is altered due to increased number of brain sources and increased noise level, and to implement and test a modified K-means clustering algorithm in order to group similar MMP atoms in time–frequency and space between subjects together. Four groups of 20 EEG signals were simulated. The groups consisted of simulations with 5, 10, 15, and 20 brain sources. The accuracy of MMP algorithm was first tested on increasing number of sources. Then, different levels of noise were added to the simulations and accuracy of the algorithm was tested on increasing noise level. K-means clustering algorithm was tested on 4 datasets (5, 10, 15, and 20 sources) of 10 similar phantom subjects. Finally, the clustering algorithm was tested on empirical somatosensory evoked potential and brainstem evoked potential data. The MMP accuracy decreased as the number of sources increased and MMP accuracy was robust to noise. Furthermore, we found that when applying the clustering method to a subject group's MMP data, the clustering method grouped the similar atoms between subjects correctly. The MMP and clustering method proved to be an efficient way to group similar brain activity and thus study differences in brain activation sequence to sensory stimulation between groups of subjects.
Multichannel matching pursuit (MMP) is a relatively new method that can be applied to electroencephalogram (EEG) signals in combination with inverse modelling. However, limitations of MMP have not been adequately tested. The aims of this study were to investigate how the accuracy of MMP algorithm is altered due to increased number of brain sources and increased noise level, and to implement and test a modified K-means clustering algorithm in order to group similar MMP atoms in time-frequency and space between subjects together. Methods: Four groups of 20 EEG signals were simulated. The groups consisted of simulations with 5, 10, 15, and 20 brain sources. The accuracy of MMP algorithm was first tested on increasing number of sources. Then, different levels of noise were added to the simulations and accuracy of the algorithm was tested on increasing noise level. K-means clustering algorithm was tested on 4 datasets (5, 10, 15, and 20 sources) of 10 similar phantom subjects. Finally, the clustering algorithm was tested on empirical somatosensory evoked potential and brainstem evoked potential data. Results: The MMP accuracy decreased as the number of sources increased and MMP accuracy was robust to noise. Furthermore, we found that when applying the clustering method to a subject group's MMP data, the clustering method grouped the similar atoms between subjects correctly. Conclusion: The MMP and clustering method proved to be an efficient way to group similar brain activity and thus study differences in brain activation sequence to sensory stimulation between groups of subjects.
Multichannel matching pursuit (MMP) is a relatively new method that can be applied to electroencephalogram (EEG) signals in combination with inverse modelling. However, limitations of MMP have not been adequately tested. The aims of this study were to investigate how the accuracy of MMP algorithm is altered due to increased number of brain sources and increased noise level, and to implement and test a modified K-means clustering algorithm in order to group similar MMP atoms in time-frequency and space between subjects together.INTRODUCTIONMultichannel matching pursuit (MMP) is a relatively new method that can be applied to electroencephalogram (EEG) signals in combination with inverse modelling. However, limitations of MMP have not been adequately tested. The aims of this study were to investigate how the accuracy of MMP algorithm is altered due to increased number of brain sources and increased noise level, and to implement and test a modified K-means clustering algorithm in order to group similar MMP atoms in time-frequency and space between subjects together.Four groups of 20 EEG signals were simulated. The groups consisted of simulations with 5, 10, 15, and 20 brain sources. The accuracy of MMP algorithm was first tested on increasing number of sources. Then, different levels of noise were added to the simulations and accuracy of the algorithm was tested on increasing noise level. K-means clustering algorithm was tested on 4 datasets (5, 10, 15, and 20 sources) of 10 similar phantom subjects. Finally, the clustering algorithm was tested on empirical somatosensory evoked potential and brainstem evoked potential data.METHODSFour groups of 20 EEG signals were simulated. The groups consisted of simulations with 5, 10, 15, and 20 brain sources. The accuracy of MMP algorithm was first tested on increasing number of sources. Then, different levels of noise were added to the simulations and accuracy of the algorithm was tested on increasing noise level. K-means clustering algorithm was tested on 4 datasets (5, 10, 15, and 20 sources) of 10 similar phantom subjects. Finally, the clustering algorithm was tested on empirical somatosensory evoked potential and brainstem evoked potential data.The MMP accuracy decreased as the number of sources increased and MMP accuracy was robust to noise. Furthermore, we found that when applying the clustering method to a subject group's MMP data, the clustering method grouped the similar atoms between subjects correctly.RESULTSThe MMP accuracy decreased as the number of sources increased and MMP accuracy was robust to noise. Furthermore, we found that when applying the clustering method to a subject group's MMP data, the clustering method grouped the similar atoms between subjects correctly.The MMP and clustering method proved to be an efficient way to group similar brain activity and thus study differences in brain activation sequence to sensory stimulation between groups of subjects.CONCLUSIONThe MMP and clustering method proved to be an efficient way to group similar brain activity and thus study differences in brain activation sequence to sensory stimulation between groups of subjects.
Multichannel matching pursuit (MMP) is a relatively new method that can be applied to electroencephalogram (EEG) signals in combination with inverse modelling. However, limitations of MMP have not been adequately tested. The aims of this study were to investigate how the accuracy of MMP algorithm is altered due to increased number of brain sources and increased noise level, and to implement and test a modified K-means clustering algorithm in order to group similar MMP atoms in time-frequency and space between subjects together. Four groups of 20 EEG signals were simulated. The groups consisted of simulations with 5, 10, 15, and 20 brain sources. The accuracy of MMP algorithm was first tested on increasing number of sources. Then, different levels of noise were added to the simulations and accuracy of the algorithm was tested on increasing noise level. K-means clustering algorithm was tested on 4 datasets (5, 10, 15, and 20 sources) of 10 similar phantom subjects. Finally, the clustering algorithm was tested on empirical somatosensory evoked potential and brainstem evoked potential data. The MMP accuracy decreased as the number of sources increased and MMP accuracy was robust to noise. Furthermore, we found that when applying the clustering method to a subject group's MMP data, the clustering method grouped the similar atoms between subjects correctly. The MMP and clustering method proved to be an efficient way to group similar brain activity and thus study differences in brain activation sequence to sensory stimulation between groups of subjects.
Author Hennings, Kristian
Drewes, Asbjørn Mohr
Lelic, Dina
Gratkowski, Maciej
Author_xml – sequence: 1
  givenname: Dina
  surname: Lelic
  fullname: Lelic, Dina
  organization: Mech-Sense, Department of Gastroenterology, Aalborg Hospital, Aarhus University, Denmark
– sequence: 2
  givenname: Maciej
  surname: Gratkowski
  fullname: Gratkowski, Maciej
  organization: Institute of Biomedical Engineering and Informatics, Computer Science and Automation Faculty, Ilmenau University of Technology, Ilmenau, Germany
– sequence: 3
  givenname: Kristian
  surname: Hennings
  fullname: Hennings, Kristian
  organization: Mech-Sense, Department of Gastroenterology, Aalborg Hospital, Aarhus University, Denmark
– sequence: 4
  givenname: Asbjørn Mohr
  surname: Drewes
  fullname: Drewes, Asbjørn Mohr
  email: amd@mech-sense.com
  organization: Mech-Sense, Department of Gastroenterology, Aalborg Hospital, Aarhus University, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21187116$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1uFDEQhS0URCaBK0S9Y9WD7e5xtyUWRBEJSEFsEgmxsartasYjt3vwT6TsOEROmJPgYRKQ2MyqpKrvPaneOyFHfvZIyBmjS0aZeLdZbjzmCdN6yeluyZeUsxdkwfqO16Lrvx2RRQFXNeUdPSYnMW4opa2k4hU55qxgjIkF-f4lu2T1GrxHV02Q9Nr6H9U2h5htqu7AWQPJzr4CbyrtckwYCvH46-G8inbK7t8Vp60NVoOrYsrm_jV5OYKL-OZpnpLby483F5_q669Xny_Or2vdSJlqA2PLx26QXcsAehwaygc5SF4eESMIMUALrW6E0S0TFEcKrZFDw4GZfgWiOSVv977bMP_MGJOabNToHHicc1SSdmzViYYeJPsVl4zTlhXy7InMw4RGbYOdINyr5-AKIPaADnOMAce_CKNq15DaqOeG1K4hxbgqDRXh-_-E2qY_GaYA1h2Wf9jLsSR6ZzGoqC16jcYG1EmZ2R6y-A0-sbOw
CitedBy_id crossref_primary_10_1111_bcp_13177
crossref_primary_10_1016_j_neuroimage_2011_12_002
crossref_primary_10_1016_j_neuropharm_2013_10_020
crossref_primary_10_1111_ejn_13443
crossref_primary_10_1007_s00422_016_0707_5
crossref_primary_10_1097_WNP_0b013e3182570fd3
crossref_primary_10_1016_j_neuroscience_2013_01_049
crossref_primary_10_1124_pr_111_005447
crossref_primary_10_3390_e20060419
crossref_primary_10_1159_000375310
crossref_primary_10_1111_nmo_12222
crossref_primary_10_1002_j_1532_2149_2013_00442_x
crossref_primary_10_1007_s00221_011_2913_7
Cites_doi 10.1007/s00221-006-0480-0
10.1016/j.bandl.2005.11.003
10.1186/1475-925X-2-14
10.1002/1097-4598(200103)24:3<325::AID-MUS1002>3.0.CO;2-0
10.1152/jn.1999.82.5.2545
10.1016/j.jneumeth.2005.04.001
10.1002/hbm.10073
10.1006/brcg.1995.1023
10.1109/78.258082
10.1097/00001756-199707280-00002
10.1016/S0168-5597(96)96660-5
10.1016/S0079-6123(06)59007-7
10.3109/00016489509139330
10.1002/1097-4598(200008)23:8<1194::AID-MUS6>3.0.CO;2-E
10.1006/nimg.1999.0507
10.1016/j.neuroimage.2007.10.036
10.1037/0033-2909.131.4.510
10.1155/2009/656092
10.1097/WNP.0b013e3181aed1a1
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright © 2011 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2011 Elsevier B.V.
– notice: Copyright © 2011 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1016/j.jneumeth.2010.12.021
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
Neurosciences Abstracts
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 200
ExternalDocumentID 21187116
10_1016_j_jneumeth_2010_12_021
S0165027010007090
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
WUQ
X7M
ZGI
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7TK
ID FETCH-LOGICAL-c399t-daf42f7b9741aa8eb302b9b928726fa66ba4a4c36dc4160ef0a4d9b32a1d85a63
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288479800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-0270
1872-678X
IngestDate Mon Sep 29 04:51:28 EDT 2025
Sun Sep 28 11:18:32 EDT 2025
Mon Jul 21 05:38:35 EDT 2025
Tue Nov 18 21:55:56 EST 2025
Sat Nov 29 07:24:27 EST 2025
Fri Feb 23 02:33:20 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords K-mean clustering
Source analysis
Multichannel matching pursuit
EEG
Language English
License Copyright © 2011 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-daf42f7b9741aa8eb302b9b928726fa66ba4a4c36dc4160ef0a4d9b32a1d85a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21187116
PQID 852912041
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_907157630
proquest_miscellaneous_852912041
pubmed_primary_21187116
crossref_primary_10_1016_j_jneumeth_2010_12_021
crossref_citationtrail_10_1016_j_jneumeth_2010_12_021
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2010_12_021
PublicationCentury 2000
PublicationDate 2011-03-15
PublicationDateYYYYMMDD 2011-03-15
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brown (bib0025) 1990
Teknomo K. Similarity Measurement. In 2006.
Mallat, Zhang (bib0060) 1993; 41
Huang, Jung, Delorme, Makeig (bib0050) 2008; 39
Young (bib0130) 1962
Valeriani, Restuccia, DiLazzaro, LePera, Scerrati, Tonali, Mauguiere (bib0110) 1997; 104
Whittingstall, Stroink, Gates, Connolly, Finley (bib0125) 2003; 2
Van Petten, Luka (bib0115) 2006; 97
Achim (bib0005) 1995; 27
Ahlfors, Simpson, Dale, Belliveau, Liu, Korvenoja, Virtanen, Huotilainen, Tootell, Aronen, Ilmoniemi (bib0010) 1999; 82
Ball, Schreiber, Feige, Wagner, Lucking, Kristeva-Feige (bib0020) 1999; 10
Nunez, Srinivasan (bib0080) 2006
Delorme A, Fernsler T, Serby H, Makeig S. EEGLab Tutorial. In 2006.
Wendel, Vaisanen, Malmivuo, Gencer, Vanrumste, Durka, Magjarevic, Supek, Pascu, Fontenelle, Grave de Peralta (bib0120) 2009
Lelic, Gratkowski, Valeriani, Arendt-Nielsen, Drewes (bib0055) 2009; 26
Moores, Clark, Hadfield, Brown, Taylor, Fitzgibbon, Lewis, Weber, Greenblatt (bib0070) 2003; 18
Onton, Makeig (bib0085) 2006; 159
Pratt, Geva, Feingold, Zeevi (bib0090) 1995; 115
Valeriani, Le Pera, Niddam, rendt-Nielsen, Chen (bib0100) 2000; 23
Valeriani, Le Pera, Tonali (bib0105) 2001; 24
Michael (bib0065) 1990
Durka, Matysiak, Montes, Sosa, Blinowska (bib0045) 2005; 148
Buchner, Gobbele, Wagner, Fuchs, Waberski, Beckmann (bib0030) 1997; 8
Drewes, Dimcevski, Sami, Funch-Jensen, Huynh, Le Pera, Arendt-Nielsen, Valeriani (bib0035) 2006; 174
Duda, Hart, Stork (bib0040) 2001
Nieuwenhuis, Aston-Jones, Cohen (bib0075) 2005; 131
Whittingstall (10.1016/j.jneumeth.2010.12.021_bib0125) 2003; 2
Mallat (10.1016/j.jneumeth.2010.12.021_bib0060) 1993; 41
Van Petten (10.1016/j.jneumeth.2010.12.021_bib0115) 2006; 97
Duda (10.1016/j.jneumeth.2010.12.021_bib0040) 2001
Lelic (10.1016/j.jneumeth.2010.12.021_bib0055) 2009; 26
Valeriani (10.1016/j.jneumeth.2010.12.021_bib0105) 2001; 24
Young (10.1016/j.jneumeth.2010.12.021_bib0130) 1962
Michael (10.1016/j.jneumeth.2010.12.021_bib0065) 1990
10.1016/j.jneumeth.2010.12.021_bib0015
Pratt (10.1016/j.jneumeth.2010.12.021_bib0090) 1995; 115
Ball (10.1016/j.jneumeth.2010.12.021_bib0020) 1999; 10
Achim (10.1016/j.jneumeth.2010.12.021_bib0005) 1995; 27
Buchner (10.1016/j.jneumeth.2010.12.021_bib0030) 1997; 8
Onton (10.1016/j.jneumeth.2010.12.021_bib0085) 2006; 159
Nunez (10.1016/j.jneumeth.2010.12.021_bib0080) 2006
Ahlfors (10.1016/j.jneumeth.2010.12.021_bib0010) 1999; 82
Brown (10.1016/j.jneumeth.2010.12.021_bib0025) 1990
Nieuwenhuis (10.1016/j.jneumeth.2010.12.021_bib0075) 2005; 131
Huang (10.1016/j.jneumeth.2010.12.021_bib0050) 2008; 39
Durka (10.1016/j.jneumeth.2010.12.021_bib0045) 2005; 148
10.1016/j.jneumeth.2010.12.021_bib0095
Valeriani (10.1016/j.jneumeth.2010.12.021_bib0110) 1997; 104
Moores (10.1016/j.jneumeth.2010.12.021_bib0070) 2003; 18
Wendel (10.1016/j.jneumeth.2010.12.021_bib0120) 2009
Drewes (10.1016/j.jneumeth.2010.12.021_bib0035) 2006; 174
Valeriani (10.1016/j.jneumeth.2010.12.021_bib0100) 2000; 23
References_xml – volume: 97
  start-page: 279
  year: 2006
  end-page: 293
  ident: bib0115
  article-title: Neural localization of semantic context effects in electromagnetic and hemodynamic studies
  publication-title: Brain Lang
– volume: 23
  start-page: 1194
  year: 2000
  end-page: 1203
  ident: bib0100
  article-title: Dipolar source modeling of somatosensory evoked potentials to painful and nonpainful median nerve stimulation
  publication-title: Muscle Nerve
– volume: 27
  start-page: 256
  year: 1995
  end-page: 287
  ident: bib0005
  article-title: Cerebral source localization paradigms – spatiotemporal source modeling
  publication-title: Brain Cogn
– start-page: 656092
  year: 2009
  ident: bib0120
  article-title: EEG/MEG source imaging: methods, challenges, and open issues
  publication-title: Comput Intell Neurosci
– volume: 39
  start-page: 1896
  year: 2008
  end-page: 1909
  ident: bib0050
  article-title: Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking
  publication-title: Neuroimage
– volume: 24
  start-page: 325
  year: 2001
  end-page: 339
  ident: bib0105
  article-title: Characterizing somatosensory evoked potential sources with dipole models: advantages and limitations
  publication-title: Muscle Nerve
– volume: 115
  start-page: 363
  year: 1995
  end-page: 366
  ident: bib0090
  article-title: Source estimation of auditory brain-stem evoked-potentials – comparison of 3clt and dipole localization
  publication-title: Acta Otolaryngol
– volume: 18
  start-page: 53
  year: 2003
  end-page: 77
  ident: bib0070
  article-title: Investigating the generators of the scalp recorded visuo-verbal P300 using cortically constrained source localization
  publication-title: Hum Brain Mapp
– reference: Teknomo K. Similarity Measurement. In 2006.
– volume: 26
  start-page: 227
  year: 2009
  end-page: 235
  ident: bib0055
  article-title: Inverse modeling on decomposed electroencephalographic data: a way forward?
  publication-title: J Clin Neurophysiol
– volume: 159
  start-page: 99
  year: 2006
  end-page: 120
  ident: bib0085
  article-title: Information-based modeling of event-related brain dynamics
  publication-title: Event-Related Dyn Brain Oscillations
– start-page: 40
  year: 1990
  end-page: 69
  ident: bib0065
  article-title: Fundamentals of dipole source analysis
  publication-title: Auditory magnetic fields and electric potentials
– volume: 174
  start-page: 443
  year: 2006
  end-page: 452
  ident: bib0035
  article-title: The “human visceral homunculus” to pain evoked in the oesophagus, stomach, duodenum and sigmoid colon
  publication-title: Exp Brain Res
– volume: 131
  start-page: 510
  year: 2005
  end-page: 532
  ident: bib0075
  article-title: Decision making, the p3, and the locus coeruleus-norepinephrine system
  publication-title: Psychol Bull
– year: 2006
  ident: bib0080
  article-title: Electric fields of the brain: the neurophysics of EEG
– volume: 82
  start-page: 2545
  year: 1999
  end-page: 2555
  ident: bib0010
  article-title: Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI
  publication-title: J Neurophysiol
– volume: 148
  start-page: 49
  year: 2005
  end-page: 59
  ident: bib0045
  article-title: Multichannel matching pursuit and EEG inverse solutions
  publication-title: J Neurosci Methods
– reference: Delorme A, Fernsler T, Serby H, Makeig S. EEGLab Tutorial. In 2006.
– volume: 10
  start-page: 682
  year: 1999
  end-page: 694
  ident: bib0020
  article-title: The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI
  publication-title: Neuroimage
– volume: 41
  start-page: 3397
  year: 1993
  end-page: 3415
  ident: bib0060
  article-title: Matching pursuits with time–frequency dictionaries
  publication-title: IEEE Trans Signal Process
– volume: 8
  start-page: 2419
  year: 1997
  end-page: 2422
  ident: bib0030
  article-title: Fast visual evoked potential input into human area V5
  publication-title: Neuroreport
– volume: 104
  start-page: 60
  year: 1997
  end-page: 67
  ident: bib0110
  article-title: Giant central N20-P22 with normal area 3b N20-P20: an argument in favour of an area 3a generator of early median nerve cortical SEPs?
  publication-title: Electroencephalogr Clin Neurophysiol
– year: 1990
  ident: bib0025
  publication-title: Handbook of neuropsychology, vol. 1
– year: 2001
  ident: bib0040
  article-title: Pattern classification
– volume: 2
  start-page: 14
  year: 2003
  ident: bib0125
  article-title: Effects of dipole position, orientation and noise on the accuracy of EEG source localization
  publication-title: Biomed Eng Online
– year: 1962
  ident: bib0130
  article-title: Statistical treatment of experimental data
– ident: 10.1016/j.jneumeth.2010.12.021_bib0095
– volume: 174
  start-page: 443
  year: 2006
  ident: 10.1016/j.jneumeth.2010.12.021_bib0035
  article-title: The “human visceral homunculus” to pain evoked in the oesophagus, stomach, duodenum and sigmoid colon
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-006-0480-0
– volume: 97
  start-page: 279
  year: 2006
  ident: 10.1016/j.jneumeth.2010.12.021_bib0115
  article-title: Neural localization of semantic context effects in electromagnetic and hemodynamic studies
  publication-title: Brain Lang
  doi: 10.1016/j.bandl.2005.11.003
– volume: 2
  start-page: 14
  year: 2003
  ident: 10.1016/j.jneumeth.2010.12.021_bib0125
  article-title: Effects of dipole position, orientation and noise on the accuracy of EEG source localization
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-2-14
– volume: 24
  start-page: 325
  year: 2001
  ident: 10.1016/j.jneumeth.2010.12.021_bib0105
  article-title: Characterizing somatosensory evoked potential sources with dipole models: advantages and limitations
  publication-title: Muscle Nerve
  doi: 10.1002/1097-4598(200103)24:3<325::AID-MUS1002>3.0.CO;2-0
– volume: 82
  start-page: 2545
  year: 1999
  ident: 10.1016/j.jneumeth.2010.12.021_bib0010
  article-title: Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.5.2545
– year: 1990
  ident: 10.1016/j.jneumeth.2010.12.021_bib0025
– volume: 148
  start-page: 49
  year: 2005
  ident: 10.1016/j.jneumeth.2010.12.021_bib0045
  article-title: Multichannel matching pursuit and EEG inverse solutions
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2005.04.001
– volume: 18
  start-page: 53
  year: 2003
  ident: 10.1016/j.jneumeth.2010.12.021_bib0070
  article-title: Investigating the generators of the scalp recorded visuo-verbal P300 using cortically constrained source localization
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10073
– volume: 27
  start-page: 256
  year: 1995
  ident: 10.1016/j.jneumeth.2010.12.021_bib0005
  article-title: Cerebral source localization paradigms – spatiotemporal source modeling
  publication-title: Brain Cogn
  doi: 10.1006/brcg.1995.1023
– volume: 41
  start-page: 3397
  year: 1993
  ident: 10.1016/j.jneumeth.2010.12.021_bib0060
  article-title: Matching pursuits with time–frequency dictionaries
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.258082
– volume: 8
  start-page: 2419
  year: 1997
  ident: 10.1016/j.jneumeth.2010.12.021_bib0030
  article-title: Fast visual evoked potential input into human area V5
  publication-title: Neuroreport
  doi: 10.1097/00001756-199707280-00002
– volume: 104
  start-page: 60
  year: 1997
  ident: 10.1016/j.jneumeth.2010.12.021_bib0110
  article-title: Giant central N20-P22 with normal area 3b N20-P20: an argument in favour of an area 3a generator of early median nerve cortical SEPs?
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/S0168-5597(96)96660-5
– volume: 159
  start-page: 99
  year: 2006
  ident: 10.1016/j.jneumeth.2010.12.021_bib0085
  article-title: Information-based modeling of event-related brain dynamics
  publication-title: Event-Related Dyn Brain Oscillations
  doi: 10.1016/S0079-6123(06)59007-7
– ident: 10.1016/j.jneumeth.2010.12.021_bib0015
– start-page: 40
  year: 1990
  ident: 10.1016/j.jneumeth.2010.12.021_bib0065
  article-title: Fundamentals of dipole source analysis
– volume: 115
  start-page: 363
  year: 1995
  ident: 10.1016/j.jneumeth.2010.12.021_bib0090
  article-title: Source estimation of auditory brain-stem evoked-potentials – comparison of 3clt and dipole localization
  publication-title: Acta Otolaryngol
  doi: 10.3109/00016489509139330
– year: 2006
  ident: 10.1016/j.jneumeth.2010.12.021_bib0080
– volume: 23
  start-page: 1194
  year: 2000
  ident: 10.1016/j.jneumeth.2010.12.021_bib0100
  article-title: Dipolar source modeling of somatosensory evoked potentials to painful and nonpainful median nerve stimulation
  publication-title: Muscle Nerve
  doi: 10.1002/1097-4598(200008)23:8<1194::AID-MUS6>3.0.CO;2-E
– volume: 10
  start-page: 682
  year: 1999
  ident: 10.1016/j.jneumeth.2010.12.021_bib0020
  article-title: The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI
  publication-title: Neuroimage
  doi: 10.1006/nimg.1999.0507
– volume: 39
  start-page: 1896
  year: 2008
  ident: 10.1016/j.jneumeth.2010.12.021_bib0050
  article-title: Tonic and phasic electroencephalographic dynamics during continuous compensatory tracking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.10.036
– volume: 131
  start-page: 510
  year: 2005
  ident: 10.1016/j.jneumeth.2010.12.021_bib0075
  article-title: Decision making, the p3, and the locus coeruleus-norepinephrine system
  publication-title: Psychol Bull
  doi: 10.1037/0033-2909.131.4.510
– start-page: 656092
  year: 2009
  ident: 10.1016/j.jneumeth.2010.12.021_bib0120
  article-title: EEG/MEG source imaging: methods, challenges, and open issues
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2009/656092
– year: 2001
  ident: 10.1016/j.jneumeth.2010.12.021_bib0040
– year: 1962
  ident: 10.1016/j.jneumeth.2010.12.021_bib0130
– volume: 26
  start-page: 227
  year: 2009
  ident: 10.1016/j.jneumeth.2010.12.021_bib0055
  article-title: Inverse modeling on decomposed electroencephalographic data: a way forward?
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0b013e3181aed1a1
SSID ssj0004906
Score 2.056246
Snippet ▶ MMP accuracy decreases as the number of brain sources increases. ▶ MMP is robust to noise. ▶ We propose a modified K-means clustering to automate MMP...
Multichannel matching pursuit (MMP) is a relatively new method that can be applied to electroencephalogram (EEG) signals in combination with inverse modelling....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 190
SubjectTerms Adult
Algorithms
Analysis of Variance
Brain - physiology
Brain Mapping
Computer Simulation
EEG
Electroencephalography
Evoked Potentials, Auditory, Brain Stem - physiology
Evoked Potentials, Somatosensory - physiology
Female
Humans
K-mean clustering
Magnetic Resonance Imaging
Male
Median Nerve - physiology
Models, Neurological
Multichannel matching pursuit
Physical Stimulation
Reaction Time
Reproducibility of Results
Signal Processing, Computer-Assisted
Source analysis
Young Adult
Title Multichannel matching pursuit validation and clustering—A simulation and empirical study
URI https://dx.doi.org/10.1016/j.jneumeth.2010.12.021
https://www.ncbi.nlm.nih.gov/pubmed/21187116
https://www.proquest.com/docview/852912041
https://www.proquest.com/docview/907157630
Volume 196
WOSCitedRecordID wos000288479800023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-678X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004906
  issn: 0165-0270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6lLUJcKmh5pEC1B8QlcrHXzz0GKALUVhwKCidr11mrNokT2U5bfgd_mNmHH6GEwoGLFXm9fuT7PDu7npkPoRdp4jlhxInleqlrySHAYm6aWGmUBpyQhDGlQ_blJDw7iyYT-mkw-NHkwlzOwqKIrq_p8r9CDfsAbJk6-w9wtyeFHfAbQIctwA7bvwJepdTKfN5CzEbgj-pgyeWqrFZZPYIrZVpGSWe0zVayUgIcYVlsVGVzo-alGsV8mekKIl0R2pt-bK8ipjCC1K2ffiJmmZJQf2tUuk1ydv1tcWUEs08ZdM27JVkloVT17U_ra5fiShu1ccVz-YX_dVQWYJUuyv7ahaOCt3T25pHQ9jYKiQXj5WTNIGuN2zXmafPqaGnRG2Zfr0DkRzk8snxQHbInl3l1-nUP9uVc4U6kzLrj_FKFW43rTdMW2iGhT8FU7ow_HE8-dum21A56yea_v6yqMq1PtMnl2TSlUa7N-X20a7DEY82lB2ggij20Py5YvZh_xy-xihJWn1_20N1TE4yxj772mYYbpmHDNNwxDQOZ8BrTcMc01dgyDSumPUSf3x2fv3lvGaUOKwEHt7amLPVIGnKYnDqMRYK7NuGUU5iOkyBlQcCZx7zEDaZgGgJbpDbzppS7hDnTyGeB-whtF4tCPEEYhhDuuxymLZxDD6mKlwoREC-UgvWUDpHf_JlxYsrYSzWVWdzEK-Zxg0cs8YgdEgMeQ_Sq7bfUhVxu7UEbrGLzFmk3Mwba3doXN-DGYK_lRzhWiMWqiiOfUIfY3h8OoeD2-zDu20P0WPOiveOGUgcbW56ie92b9gxt1-VKPEd3kss6q8pDtBVOokND6J-8v8vs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multichannel+matching+pursuit+validation+and+clustering--a+simulation+and+empirical+study&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Lelic%2C+Dina&rft.au=Gratkowski%2C+Maciej&rft.au=Hennings%2C+Kristian&rft.au=Drewes%2C+Asbj%C3%B8rn+Mohr&rft.date=2011-03-15&rft.eissn=1872-678X&rft.volume=196&rft.issue=1&rft.spage=190&rft_id=info:doi/10.1016%2Fj.jneumeth.2010.12.021&rft_id=info%3Apmid%2F21187116&rft.externalDocID=21187116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon