Second-order two-point boundary value problems using the variational iteration algorithm-II

In this paper, we introduce an improved variational iteration method (VIM) for nonlinear second-order boundary value problems. The main advantage of this modification is that it can avoid additional computation in determining the unknown parameters in initial approximation when solving boundary valu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of computer mathematics Ročník 88; číslo 6; s. 1201 - 1207
Hlavní autori: Wu, Boying, Li, Xiuying
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Abingdon Taylor & Francis 01.04.2011
Taylor & Francis Ltd
Predmet:
ISSN:0020-7160, 1029-0265
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we introduce an improved variational iteration method (VIM) for nonlinear second-order boundary value problems. The main advantage of this modification is that it can avoid additional computation in determining the unknown parameters in initial approximation when solving boundary value problems using the conventional VIM. Also, iterative sequences obtained using the improved VIM do satisfy the boundary conditions while iterative sequences obtained using conventional VIM may not, in general, satisfy the boundary conditions. Numerical results reveal that the improved method is accurate and efficient.
AbstractList In this paper, we introduce an improved variational iteration method (VIM) for nonlinear second-order boundary value problems. The main advantage of this modification is that it can avoid additional computation in determining the unknown parameters in initial approximation when solving boundary value problems using the conventional VIM. Also, iterative sequences obtained using the improved VIM do satisfy the boundary conditions while iterative sequences obtained using conventional VIM may not, in general, satisfy the boundary conditions. Numerical results reveal that the improved method is accurate and efficient.
In this paper, we introduce an improved variational iteration method (VIM) for nonlinear second-order boundary value problems. The main advantage of this modification is that it can avoid additional computation in determining the unknown parameters in initial approximation when solving boundary value problems using the conventional VIM. Also, iterative sequences obtained using the improved VIM do satisfy the boundary conditions while iterative sequences obtained using conventional VIM may not, in general, satisfy the boundary conditions. Numerical results reveal that the improved method is accurate and efficient. [PUBLICATION ABSTRACT]
Author Wu, Boying
Li, Xiuying
Author_xml – sequence: 1
  givenname: Boying
  surname: Wu
  fullname: Wu, Boying
  organization: Department of Mathematics , Harbin Institute of Technology
– sequence: 2
  givenname: Xiuying
  surname: Li
  fullname: Li, Xiuying
  email: xyli1112@sina.com
  organization: Department of Mathematics , Harbin Institute of Technology
BookMark eNqFkT9v1TAUxS1UJF4f_QYdIhZYUq7_xmFBqIL2SZU6ABOD5ThO68qxH7ZD1W-P0wdLh3ayZf_O0b3nHKOjEINF6BTDGQYJHwEIdFjAGYH6xHrBJH6FNhhI3wIR_AhtVqRdmTfoOOc7AJB9Jzbo13drYhjbmEabmnIf2310oTRDXMKo00PzR_vFNvsUB2_n3CzZhZum3Nr6kZwuLgbtG1dserw32t_E5Mrt3O52b9HrSftsT_6dW_Tz29cf55ft1fXF7vzLVWto35dWMxjYxDAdyMQnLDUZgHVylEJTYiSxvJNUdOOAZWeFMXxkxOCBC8axZNLSLXp_8K1T_l5sLmp22VjvdbBxyUqKXjLBBa3kh2dJLDpMKQXcVfTdE_QuLqkuW_14zyldyS36dIBMijknOynjymMQJWnnFQa1FqT-F6TWgtShoCpmT8T75Oaa-UuyzweZC1NMs76PyY-q6Acf05R0MC4r-qzDX3PKp-o
CitedBy_id crossref_primary_10_1016_j_aml_2012_01_004
crossref_primary_10_1186_s13661_018_0929_7
crossref_primary_10_1007_s40324_018_0147_3
crossref_primary_10_1016_j_apm_2016_02_024
Cites_doi 10.1016/j.chaos.2007.06.013
10.1515/IJNSNS.2007.8.2.203
10.1016/j.cam.2004.11.032
10.1016/j.chaos.2005.04.113
10.1016/j.camwa.2006.12.083
10.1515/IJNSNS.2006.7.1.27
10.1515/IJNSNS.2005.6.2.207
10.1515/IJNSNS.2007.8.1.121
10.1002/9783527617609
10.1142/S0217979206033796
10.1016/S0096-3003(01)00312-5
10.1515/IJNSNS.2006.7.4.411
10.1016/j.cam.2006.07.014
10.1515/IJNSNS.2007.8.2.153
10.1016/j.chaos.2005.03.006
10.1016/S1007-5704(97)90007-1
10.1016/S0020-7462(98)00048-1
10.1016/S0096-3003(99)00104-6
10.1016/j.cam.2006.07.009
10.1016/j.physleta.2005.10.005
10.1016/j.chaos.2005.10.100
10.1007/978-94-015-8289-6
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2011
Copyright Taylor & Francis Ltd. Apr 2011
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2011
– notice: Copyright Taylor & Francis Ltd. Apr 2011
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207160.2010.496481
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1029-0265
EndPage 1207
ExternalDocumentID 2308141221
10_1080_00207160_2010_496481
496481
Genre Feature
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABUFD
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACNCT
ACTCW
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGCQS
AGDLA
AGMYJ
AHDZW
AI.
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MK~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
TWF
UPT
UT5
UU3
VH1
WH7
ZGOLN
~S~
07G
1TA
AAIKQ
AAKBW
AAYJJ
AAYXX
ABEFU
ACAGQ
ACGEE
ACTIO
AEUMN
AFFNX
AGLEN
AGROQ
AHMOU
ALCKM
AMEWO
AMXXU
AQRUH
BCCOT
BPLKW
C06
CITATION
CRFIH
DMQIW
DWIFK
H~9
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TFMCV
TOXWX
UB9
UU8
V3K
V4Q
ZY4
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-a40b4f413b2f5f18a2b0478d86a32c82e578367db187e6cc5d42c1b56451848e3
IEDL.DBID TFW
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288118400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-7160
IngestDate Fri Sep 05 12:10:41 EDT 2025
Wed Oct 01 13:51:15 EDT 2025
Wed Aug 13 09:30:02 EDT 2025
Tue Nov 18 22:36:43 EST 2025
Sat Nov 29 02:21:32 EST 2025
Mon Oct 20 23:37:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-a40b4f413b2f5f18a2b0478d86a32c82e578367db187e6cc5d42c1b56451848e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
PQID 859533713
PQPubID 23500
PageCount 7
ParticipantIDs crossref_citationtrail_10_1080_00207160_2010_496481
proquest_journals_859533713
crossref_primary_10_1080_00207160_2010_496481
proquest_miscellaneous_869846563
informaworld_taylorfrancis_310_1080_00207160_2010_496481
proquest_miscellaneous_1671333017
PublicationCentury 2000
PublicationDate 2011-04-00
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-00
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of computer mathematics
PublicationYear 2011
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Adomian G. (CIT0002) 1994
CIT0010
CIT0012
CIT0011
Coke J. D. (CIT0003) 1968
He J. H. (CIT0018) 2010; 1
Lyapunov A. M. (CIT0021) 1992
CIT0014
CIT0013
CIT0016
CIT0015
CIT0017
CIT0020
CIT0001
CIT0023
CIT0022
Karmishin A. V. (CIT0019) 1990
CIT0025
CIT0024
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0013
– ident: CIT0027
  doi: 10.1016/j.chaos.2007.06.013
– ident: CIT0026
  doi: 10.1515/IJNSNS.2007.8.2.203
– ident: CIT0001
  doi: 10.1016/j.cam.2004.11.032
– ident: CIT0022
  doi: 10.1016/j.chaos.2005.04.113
– ident: CIT0017
  doi: 10.1016/j.camwa.2006.12.083
– ident: CIT0024
  doi: 10.1515/IJNSNS.2006.7.1.27
– ident: CIT0009
  doi: 10.1515/IJNSNS.2005.6.2.207
– ident: CIT0025
  doi: 10.1515/IJNSNS.2007.8.1.121
– ident: CIT0023
  doi: 10.1002/9783527617609
– ident: CIT0014
  doi: 10.1142/S0217979206033796
– ident: CIT0008
  doi: 10.1016/S0096-3003(01)00312-5
– ident: CIT0004
  doi: 10.1515/IJNSNS.2006.7.4.411
– ident: CIT0020
  doi: 10.1016/j.cam.2006.07.014
– ident: CIT0028
  doi: 10.1515/IJNSNS.2007.8.2.153
– ident: CIT0010
  doi: 10.1016/j.chaos.2005.03.006
– ident: CIT0005
  doi: 10.1016/S1007-5704(97)90007-1
– ident: CIT0011
  doi: 10.1142/S0217979206033796
– volume-title: Perturbation Methods in Applied Mathematics
  year: 1968
  ident: CIT0003
– ident: CIT0006
  doi: 10.1016/S0020-7462(98)00048-1
– ident: CIT0007
  doi: 10.1016/S0096-3003(99)00104-6
– volume: 1
  start-page: 1
  year: 2010
  ident: CIT0018
  publication-title: Nonlinear Sci. Lett. A
– ident: CIT0015
  doi: 10.1016/j.cam.2006.07.009
– ident: CIT0012
  doi: 10.1016/j.physleta.2005.10.005
– volume-title: Methods of Dynamics Calculation and Testing for Thin-walled Structures
  year: 1990
  ident: CIT0019
– volume-title: General Problem on Stability of Motion (English translation)
  year: 1992
  ident: CIT0021
– ident: CIT0016
  doi: 10.1016/j.chaos.2005.10.100
– volume-title: Solving Frontier Problems on Physics: The Decomposition Method
  year: 1994
  ident: CIT0002
  doi: 10.1007/978-94-015-8289-6
SSID ssj0008976
Score 1.8839345
Snippet In this paper, we introduce an improved variational iteration method (VIM) for nonlinear second-order boundary value problems. The main advantage of this...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1201
SubjectTerms Accuracy
Algorithms
Approximation
Boundary conditions
Boundary value problems
Computer simulation
improved variational iteration method
Iterative methods
Mathematical analysis
Mathematical models
Mathematical problems
nonlinear
Nonlinearity
Title Second-order two-point boundary value problems using the variational iteration algorithm-II
URI https://www.tandfonline.com/doi/abs/10.1080/00207160.2010.496481
https://www.proquest.com/docview/859533713
https://www.proquest.com/docview/1671333017
https://www.proquest.com/docview/869846563
Volume 88
WOSCitedRecordID wos000288118400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1029-0265
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008976
  issn: 0020-7160
  databaseCode: TFW
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS-UwEA8ie_CyrrrLPr-I4DXQj7RNjsuyD72IoKLgISRpog_cVtqq7H-_M0n7UBZdUOihkEwp0_nKdOY3hBxW3CIQFwgvuGPGfVIwmSSe6TopMbx2svBh2ER1ciKuruTpsy5-LKvEM7SPQBHBVqNya9NPFXHYwQ2OsUxiYRaXJQ-91-D5UTPP55dLUyxkmC6HBAwppt65Vx7ywje9QC79x1IH9zNf__iLfyGfx9CT_oiyskFWXLNJ1qexDnTU8i1yfYaH5JoFVE46PLXsvl00AzVhAlP3hyJAuKPjKJqeYun8DYVAEha6xZhcpBGuGe6pvrtpu8Vw-5sdH38lF_Nf5z-P2DiDgVkIXQameWK4B09nMl_4VOjMIJ5PLUqdZ1ZkrsA2kKo2qahcaW1R88ymBjFq4OwoXP6NrDZt474TmhmIPWyZSMNznnkPUiBrDRfYDZdIPSP5xH1lR4BynJNxp9Iljmnkn0L-qci_GWFLqvsI0PGf_eL5h1VDSIz4OMVE5W-T7kxCoEZN7xXiw-U5HPVn5GC5CiqK_11049qHXqUlZgLAklYzQl_ZI0opELou337_--2QtZjxxrqiXbI6dA9uj3yyj8Oi7_aDZvwFjU0ICw
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Za9wwEB5CGmhfcvSgm_RQoa8CH7ItPZbSJUvSJdAtDfRB2LKULqR2sJ2E_vvOWPLSUNJCKfjBII0x47k0nvkG4G0hDAFxofCiO-bCRRlXUeR4WUc5hddWZW4cNlEsl_L8XJ2FasI-lFXSGdp5oIjRVpNyUzJ6KomjFm70jHnkK7OEygU1Xz_I0NUSfP5q_mVjjKUa58sRBSeSqXvunqfc8U53sEt_s9WjA5rv_YdX34fdEH2yd15cDmDLNo9hb5rswIKiP4Gvn-icXPMRmJMNty2_atfNwKpxCFP3gxFGuGVhGk3PqHr-gmEsiQvdOuQXmUdsxntWXl603Xr49p0vFk_h8_zD6v0xD2MYuMHoZeCliCrh0NlVictcLMukIkifWuZlmhiZ2Iw6QYq6imVhc2OyWiQmrgimBo-P0qbPYLtpG_scWFJh-GHySFUiFYlzKAiqLvFC02EjVc4gndivTcAop1EZlzreQJl6_mnin_b8mwHfUF15jI6_7Je_flk9jLkR5weZ6PTPpEeTFOig7L0miLg0xdP-DN5sVlFL6ddL2dj2utdxTskANKbFDNg9e2SuJKHXpYf__n6v4eHx6uOpPl0sT47gkU-AU5nRC9geumv7EnbMzbDuu1ejmvwER7UMNQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEB9EpfSl1n7Q07ZuwdeFfGw2u4-l9uhROQQtFfqwJJtde2CTIxcr_vfOZJNDEVtoIQ-B3QlhMl87mfkNwGEuLAFxofCiO-bCRxnXUeR5UUWSwmunM98Pm8jnc3V-rk_udPFTWSWdoX0AiuhtNSn3svJjRRx1cKNjlFEozBJaCuq93sLIWZKMn02_r22x0v14OaLgRDI2zz3ylHvO6R506QNT3fuf6c7_v_lzeDbEnuxjEJZd2HD1C9gZ5zqwQc1fwo9TOiVXvIflZN11w5fNou5Y2Y9gam8YIYQ7NsyiWTGqnb9gGEniQrsYsoss4DXjPSsuL5p20f38xWezV_Bt-vns0xc-DGHgFmOXjhciKoVHV1cmPvOxKpKSAH0qJYs0sSpxGfWB5FUZq9xJa7NKJDYuCaQGD4_Kpa9hs25q9wZYUmLwYWWkS5GKxHsUA10VeKHhcJEuJpCO3Dd2QCinQRmXJl4DmQb-GeKfCfybAF9TLQNCx1_2q7sf1nR9ZsSHMSYm_TPp_igEZlD1lSGAuDTFs_4EPqxXUUfpx0tRu-ZqZWJJqQA0pfkE2CN7lNSKsOvSvX9_vwN4cnI0Ncez-dd9eBqy31Rj9BY2u_bKvYNt-7tbrNr3vZLcAgxtCuc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Second-order+two-point+boundary+value+problems+using+the+variational+iteration+algorithm-II&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Wu%2C+Boying&rft.au=Li%2C+Xiuying&rft.date=2011-04-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=88&rft.issue=6&rft.spage=1201&rft_id=info:doi/10.1080%2F00207160.2010.496481&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2308141221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon