Towards Generalization in Target-Driven Visual Navigation by Using Deep Reinforcement Learning

Among the main challenges in robotics, target-driven visual navigation has gained increasing interest in recent years. In this task, an agent has to navigate in an environment to reach a user specified target, only through vision. Recent fruitful approaches rely on deep reinforcement learning, which...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on robotics Vol. 36; no. 5; pp. 1546 - 1561
Main Authors: Devo, Alessandro, Mezzetti, Giacomo, Costante, Gabriele, Fravolini, Mario L., Valigi, Paolo
Format: Journal Article
Language:English
Published: New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1552-3098, 1941-0468
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Among the main challenges in robotics, target-driven visual navigation has gained increasing interest in recent years. In this task, an agent has to navigate in an environment to reach a user specified target, only through vision. Recent fruitful approaches rely on deep reinforcement learning, which has proven to be an effective framework to learn navigation policies. However, current state-of-the-art methods require to retrain, or at least fine-tune, the model for every new environment and object. In real scenarios, this operation can be extremely challenging or even dangerous. For these reasons, we address generalization in target-driven visual navigation by proposing a novel architecture composed of two networks, both exclusively trained in simulation. The first one has the objective of exploring the environment, while the other one of locating the target. They are specifically designed to work together, while separately trained to help generalization. In this article, we test our agent in both simulated and real scenarios, and validate its generalization capabilities through extensive experiments with previously unseen goals and unknown mazes, even much larger than the ones used for training.
AbstractList Among the main challenges in robotics, target-driven visual navigation has gained increasing interest in recent years. In this task, an agent has to navigate in an environment to reach a user specified target, only through vision. Recent fruitful approaches rely on deep reinforcement learning, which has proven to be an effective framework to learn navigation policies. However, current state-of-the-art methods require to retrain, or at least fine-tune, the model for every new environment and object. In real scenarios, this operation can be extremely challenging or even dangerous. For these reasons, we address generalization in target-driven visual navigation by proposing a novel architecture composed of two networks, both exclusively trained in simulation. The first one has the objective of exploring the environment, while the other one of locating the target. They are specifically designed to work together, while separately trained to help generalization. In this article, we test our agent in both simulated and real scenarios, and validate its generalization capabilities through extensive experiments with previously unseen goals and unknown mazes, even much larger than the ones used for training.
Author Devo, Alessandro
Mezzetti, Giacomo
Costante, Gabriele
Fravolini, Mario L.
Valigi, Paolo
Author_xml – sequence: 1
  givenname: Alessandro
  orcidid: 0000-0001-7522-6264
  surname: Devo
  fullname: Devo, Alessandro
  email: alessandro.devo@studenti.unipg.it
  organization: Department of Engineering, University of Perugia, Perugia, Italy
– sequence: 2
  givenname: Giacomo
  surname: Mezzetti
  fullname: Mezzetti, Giacomo
  email: giacomomezzet@gmail.com
  organization: Department of Engineering, University of Perugia, Perugia, Italy
– sequence: 3
  givenname: Gabriele
  orcidid: 0000-0002-8417-9372
  surname: Costante
  fullname: Costante, Gabriele
  email: gabriele.costante@unipg.it
  organization: Department of Engineering, University of Perugia, Perugia, Italy
– sequence: 4
  givenname: Mario L.
  surname: Fravolini
  fullname: Fravolini, Mario L.
  email: mario.fravolini@unipg.it
  organization: Department of Engineering, University of Perugia, Perugia, Italy
– sequence: 5
  givenname: Paolo
  orcidid: 0000-0002-0486-7678
  surname: Valigi
  fullname: Valigi, Paolo
  email: paolo.valigi@unipg.it
  organization: Department of Engineering, University of Perugia, Perugia, Italy
BookMark eNp9kM1LAzEQxYNUsFbvgpeA56352o8cpdUqFAtl69EluzspKW22JttK_etN3eLBg6cZeL83j3mXqGcbCwjdUDKklMj7fD4bMsLIkEkpCGFnqE-loBERSdYLexyziBOZXaBL71cBEJLwPnrPm0_lao8nYMGptflSrWksNhbnyi2hjcbO7MHiN-N3ao1f1d4sO6Q84IU3donHAFs8B2N14yrYgG3xFJSzQbtC51qtPVyf5gAtnh7z0XM0nU1eRg_TqOJStpHiZcKAiSyjwLKMyLRSVOoakjrVcalrEcuYx1BrTWQSyyrlQpcySSpaUgDBB-iuu7t1zccOfFusmp2zIbJgQmRCpDzjgSIdVbnGewe62DqzUe5QUFIcWyxCi8WxxeLUYrAkfyyVaX_-b50y6_-Mt53RAMBvjqRBSij_BnPSgbQ
CODEN ITREAE
CitedBy_id crossref_primary_10_1007_s13198_021_01570_5
crossref_primary_10_1109_LRA_2024_3412638
crossref_primary_10_1109_ACCESS_2024_3413864
crossref_primary_10_1038_s41598_022_07264_7
crossref_primary_10_1109_LRA_2024_3511437
crossref_primary_10_1109_LRA_2024_3438588
crossref_primary_10_1109_TIE_2022_3203761
crossref_primary_10_1007_s11063_023_11190_8
crossref_primary_10_1109_LRA_2022_3154019
crossref_primary_10_1109_TPAMI_2024_3511936
crossref_primary_10_1016_j_neubiorev_2025_106282
crossref_primary_10_1109_LRA_2022_3178788
crossref_primary_10_1109_ACCESS_2023_3323801
crossref_primary_10_1109_TIM_2022_3158384
crossref_primary_10_1016_j_autcon_2023_105253
crossref_primary_10_1109_TIV_2024_3419846
crossref_primary_10_1016_j_robot_2022_104081
crossref_primary_10_1109_ACCESS_2025_3556894
crossref_primary_10_1007_s00521_024_09758_z
crossref_primary_10_1109_LRA_2024_3455898
crossref_primary_10_1016_j_eij_2025_100680
crossref_primary_10_1177_17298806241292893
crossref_primary_10_1109_LRA_2024_3385700
crossref_primary_10_3389_frobt_2023_1255696
crossref_primary_10_1109_TITS_2024_3376579
crossref_primary_10_3390_s25113394
crossref_primary_10_1109_LRA_2020_3036597
crossref_primary_10_1007_s10489_022_03317_6
crossref_primary_10_1007_s12555_024_0045_7
crossref_primary_10_1109_JIOT_2025_3532164
crossref_primary_10_1016_j_aei_2023_101889
crossref_primary_10_1109_TNNLS_2021_3057424
crossref_primary_10_1109_LRA_2022_3150866
crossref_primary_10_1109_ACCESS_2024_3440183
crossref_primary_10_3390_photonics11070666
crossref_primary_10_1016_j_neucom_2024_129215
crossref_primary_10_1007_s00521_023_08991_2
crossref_primary_10_3390_s22218101
crossref_primary_10_1109_TRO_2025_3554252
crossref_primary_10_1109_LRA_2021_3133591
crossref_primary_10_1007_s10846_022_01646_9
crossref_primary_10_1007_s11063_022_10796_8
crossref_primary_10_1109_TIE_2024_3454534
crossref_primary_10_1109_LRA_2022_3140795
crossref_primary_10_1177_17298806241288669
crossref_primary_10_1088_1742_6596_2593_1_012003
crossref_primary_10_1109_TIP_2024_3459800
crossref_primary_10_3390_e25071007
crossref_primary_10_1007_s10846_024_02167_3
crossref_primary_10_1109_TASE_2023_3278740
crossref_primary_10_1109_TRO_2022_3207619
crossref_primary_10_1016_j_neunet_2023_06_007
crossref_primary_10_1016_j_neucom_2025_130191
crossref_primary_10_1109_TIE_2023_3337547
crossref_primary_10_1109_LRA_2022_3178810
crossref_primary_10_1109_TRO_2022_3191745
crossref_primary_10_1016_j_robot_2021_103799
crossref_primary_10_1109_LRA_2025_3547647
crossref_primary_10_1108_RIA_10_2023_0146
crossref_primary_10_1109_TRO_2024_3400932
crossref_primary_10_1109_ACCESS_2024_3493755
crossref_primary_10_1007_s12065_023_00817_3
crossref_primary_10_1109_LRA_2021_3068106
Cites_doi 10.1109/LRA.2019.2930426
10.1023/A:1008824626321
10.1109/IROS.2018.8593720
10.1109/ICRA.2017.7989385
10.1109/ICRA.2017.7989381
10.1109/IROS.2017.8202133
10.1109/CVPR.2016.91
10.1109/IROS.2018.8594249
10.1109/ICRA.2018.8460528
10.1109/ROBOT.1995.525695
10.1007/s10462-012-9365-8
10.1038/nature16961
10.1162/neco.1997.9.8.1735
10.1109/ICCV.2017.60
10.1109/CVPR.2017.769
10.1007/s11263-015-0816-y
10.1109/70.88137
10.1145/203330.203343
10.1109/ICRA.2018.8460655
10.1023/A:1007634325138
10.1109/WACV.2018.00097
10.1109/TRO.2018.2878318
10.1109/21.44033
10.1109/CVPR.2016.90
10.1177/0278364913495721
10.1109/LRA.2020.2965857
10.1109/ICRA.2019.8793493
10.1177/0278364919887447
10.1109/TRO.2017.2705103
10.1109/ICRA.2018.8460934
10.1038/nature14236
10.1109/70.938381
10.1007/978-3-319-46466-4_15
10.1109/TRO.2016.2624754
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2020.2994002
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 1561
ExternalDocumentID 10_1109_TRO_2020_2994002
9102361
Genre orig-research
GrantInformation_xml – fundername: Università degli Studi di Perugia; University of Perugia
  grantid: RICBA17MRF; RICBA18MF
  funderid: 10.13039/501100010607
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-a3b62e24881e288097ca19fde6d7f5bfd459535edff09659c734fb966c1b1ee43
IEDL.DBID RIE
ISICitedReferencesCount 81
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576260400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Sun Jun 29 16:02:01 EDT 2025
Sat Nov 29 01:47:27 EST 2025
Tue Nov 18 20:53:11 EST 2025
Wed Aug 27 02:31:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-a3b62e24881e288097ca19fde6d7f5bfd459535edff09659c734fb966c1b1ee43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8417-9372
0000-0002-0486-7678
0000-0001-7522-6264
OpenAccessLink https://doi.org/10.5281/zenodo.4785793
PQID 2448447383
PQPubID 27625
PageCount 16
ParticipantIDs proquest_journals_2448447383
crossref_primary_10_1109_TRO_2020_2994002
ieee_primary_9102361
crossref_citationtrail_10_1109_TRO_2020_2994002
PublicationCentury 2000
PublicationDate 2020-Oct.
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References silver (ref28) 2016; 529
ref12
ref15
anderson (ref52) 2018
wang (ref48) 2016
ref11
ref10
mirowski (ref14) 2016
sutton (ref25) 2018
ref17
ref16
sadeghi (ref31) 2016
ref19
kipf (ref40) 2016
bruce (ref35) 2017
packer (ref24) 2018
ref51
ref50
greydanus (ref53) 0
ref46
ref45
farebrother (ref23) 2018
ref47
clemente (ref42) 2017
ref49
ref8
rupprecht (ref54) 2019
ref7
ref9
ref4
ref3
ref6
ref5
mnih (ref34) 0
ref37
ref36
mnih (ref29) 2015; 518
ref30
ref33
ref2
ref1
ref38
mnih (ref41) 2013
espeholt (ref44) 2018
babaeizadeh (ref43) 2016
kalashnikov (ref18) 0
ref26
ref20
ref22
ref21
ref27
levine (ref32) 2016; 17
jaderberg (ref13) 2016
yang (ref39) 2018
References_xml – ident: ref36
  doi: 10.1109/LRA.2019.2930426
– ident: ref3
  doi: 10.1023/A:1008824626321
– year: 2017
  ident: ref42
  article-title: Efficient parallel methods for deep reinforcement learning
– start-page: 1407
  year: 2018
  ident: ref44
  article-title: Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures
  publication-title: Int Conf Mach Learn
– start-page: 1787
  year: 0
  ident: ref53
  article-title: Visualizing and understanding Atari agents
  publication-title: Proc Int Conf Mach Learn
– ident: ref22
  doi: 10.1109/IROS.2018.8593720
– start-page: 1928
  year: 0
  ident: ref34
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Mach Learn
– year: 2018
  ident: ref52
  article-title: On evaluation of embodied navigation agents
– ident: ref17
  doi: 10.1109/ICRA.2017.7989385
– year: 2019
  ident: ref54
  article-title: Finding and visualizing weaknesses of deep reinforcement learning agents
– ident: ref21
  doi: 10.1109/ICRA.2017.7989381
– year: 2018
  ident: ref23
  article-title: Generalization and regularization in DQN
– year: 2016
  ident: ref31
  article-title: Cad2rl: Real single-image flight without a single real image
– ident: ref49
  doi: 10.1109/IROS.2017.8202133
– ident: ref9
  doi: 10.1109/CVPR.2016.91
– ident: ref30
  doi: 10.1109/IROS.2018.8594249
– year: 2018
  ident: ref25
  publication-title: Reinforcement Learning An Introduction
– start-page: 651
  year: 0
  ident: ref18
  article-title: Scalable deep reinforcement learning for vision-based robotic manipulation
  publication-title: Proc Conf Robot Learn
– ident: ref50
  doi: 10.1109/ICRA.2018.8460528
– ident: ref4
  doi: 10.1109/ROBOT.1995.525695
– ident: ref7
  doi: 10.1007/s10462-012-9365-8
– volume: 529
  start-page: 484
  year: 2016
  ident: ref28
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– year: 2016
  ident: ref14
  article-title: Learning to navigate in complex environments
– volume: 17
  start-page: 1334
  year: 2016
  ident: ref32
  article-title: End-to-end training of deep visuomotor policies
  publication-title: J Mach Learn Res
– ident: ref46
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref38
  doi: 10.1109/ICCV.2017.60
– ident: ref12
  doi: 10.1109/CVPR.2017.769
– ident: ref45
  doi: 10.1007/s11263-015-0816-y
– ident: ref2
  doi: 10.1109/70.88137
– year: 2018
  ident: ref24
  article-title: Assessing generalization in deep reinforcement learning
– ident: ref26
  doi: 10.1145/203330.203343
– year: 2016
  ident: ref13
  article-title: Reinforcement learning with unsupervised auxiliary tasks
– ident: ref11
  doi: 10.1109/ICRA.2018.8460655
– year: 2016
  ident: ref40
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref27
  doi: 10.1023/A:1007634325138
– ident: ref51
  doi: 10.1109/WACV.2018.00097
– year: 2013
  ident: ref41
  article-title: Playing atari with deep reinforcement learning
– ident: ref19
  doi: 10.1109/TRO.2018.2878318
– year: 2018
  ident: ref39
  article-title: Visual semantic navigation using scene priors
– ident: ref1
  doi: 10.1109/21.44033
– ident: ref10
  doi: 10.1109/CVPR.2016.90
– ident: ref16
  doi: 10.1177/0278364913495721
– ident: ref15
  doi: 10.1109/LRA.2020.2965857
– year: 2017
  ident: ref35
  article-title: One-shot reinforcement learning for robot navigation with interactive replay
– ident: ref37
  doi: 10.1109/ICRA.2019.8793493
– ident: ref20
  doi: 10.1177/0278364919887447
– ident: ref5
  doi: 10.1109/TRO.2017.2705103
– ident: ref33
  doi: 10.1109/ICRA.2018.8460934
– volume: 518
  start-page: 529
  year: 2015
  ident: ref29
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref6
  doi: 10.1109/70.938381
– ident: ref47
  doi: 10.1007/978-3-319-46466-4_15
– ident: ref8
  doi: 10.1109/TRO.2016.2624754
– year: 2016
  ident: ref48
  article-title: Sample efficient actor-critic with experience replay
– year: 2016
  ident: ref43
  article-title: Ga3c: GPU-based a3c for deep reinforcement learning
SSID ssj0024903
Score 2.610255
Snippet Among the main challenges in robotics, target-driven visual navigation has gained increasing interest in recent years. In this task, an agent has to navigate...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1546
SubjectTerms Computer simulation
Deep learning
Deep learning in robotics and automation
Machine learning
Navigation
Robotics
Simultaneous localization and mapping
target-driven visual navigation
Task analysis
Training
visual learning
visual-based navigation
Visualization
Title Towards Generalization in Target-Driven Visual Navigation by Using Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9102361
https://www.proquest.com/docview/2448447383
Volume 36
WOSCitedRecordID wos000576260400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4nZKDF8FsS5s2zVGc4kGmjCo7Wdr0RQbSjXUb-N-bpOkUFMFbDy-h5Mt7eS9573sIXQCnwCSNSMrCkLBIUJLyUBEFCnwlPYioLRR-4MNhNB6Lpwa6WtfCAIBNPoOu-bRv-flULs1VWU8YngET62xwHla1Wl-8esJ2QTaMYsTvi6h-kuyLXjx61IGg1-9q08vqC5T6CLI9VX4YYnu63O3-77_20I7zIvF1Bfs-akBxgLa_cQu20GtsE2JL7IilXb0lnhQ4ttnfZDA3lg6_TMqlnmuYrizbhhbJPrDNJMADgBkegSVXlfYeETs-1rdD9Hx3G9_cE9dMgUjtgyxI6mehB57WVwqeVlrBZUqFyiHMuQoylbNABH4AuVKGEEZI7jOV6WBI0owCMP8INYtpAccI51mUg0q18yUp0zvRMOinMgxkGkkdf2Vt1KvXN5GOadw0vHhPbMTRF4lGJDGIJA6RNrpcj5hVLBt_yLYMAms5t_ht1KkhTJwalon2XSLGuI7CT34fdYq2zNxVdl4HNRfzJZyhTblaTMr5ud1hnx7Zz5I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kCurBt1itmoMXwbTNbvaRo6hFsVaRVXpy2c1OpCBt6UPw35uk2Soogrc9THaXTGYyXzLzDcAJRgy5ZDHNeBhSHgtGsyhUVKFCX0kPY2YLhdtRpxN3u-JhAc7mtTCIaJPPsG4e7V1-MZBTc1TWEIZnwGCdRdM5y1VrfTHrCdsH2XCKUb8p4vJSsikayeO9hoJes66dLy-PUMpNyHZV-eGK7f7SWv_fn23AmosjyflM8ZuwgP0tWP3GLrgNL4lNiR0TRy3tKi5Jr08Sm_9NL0fG15Hn3niq39XJ3i3fhhbJP4jNJSCXiEPyiJZeVdqTROIYWV934Kl1lVxcU9dOgUodhUxo5uehh562WIaeNlsRyYwJVWBYRCrIVcEDEfgBFkoZShghI5-rXMMhyXKGyP1dqPQHfdwDUuRxgSrT4ZdkXK9Fw6GfyTCQWSw1Asur0CjnN5WOa9y0vHhLLeZoilRrJDUaSZ1GqnA6HzGc8Wz8IbttNDCXc5NfhVqpwtQZ4jjV0UvMeaRx-P7vo45h-Tq5a6ftm87tAayY78xy9WpQmYymeAhL8n3SG4-O7Gr7BBg_0ts
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Generalization+in+Target-Driven+Visual+Navigation+by+Using+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Devo%2C+Alessandro&rft.au=Mezzetti%2C+Giacomo&rft.au=Costante%2C+Gabriele&rft.au=Fravolini%2C+Mario+L.&rft.date=2020-10-01&rft.pub=IEEE&rft.issn=1552-3098&rft.volume=36&rft.issue=5&rft.spage=1546&rft.epage=1561&rft_id=info:doi/10.1109%2FTRO.2020.2994002&rft.externalDocID=9102361
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon