Energy-Efficient Edge Computing Service Provisioning for Vehicular Networks: A Consensus ADMM Approach

In vehicular networks, in-vehicle user equipment (UE) with limited battery capacity can achieve opportunistic energy saving by offloading energy-hungry workloads to vehicular edge computing nodes via vehicle-to-infrastructure links. However, how to determine the optimal portion of workload to be off...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on vehicular technology Ročník 68; číslo 5; s. 5087 - 5099
Hlavní autoři: Zhou, Zhenyu, Feng, Junhao, Chang, Zheng, Shen, Xuemin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9545, 1939-9359
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In vehicular networks, in-vehicle user equipment (UE) with limited battery capacity can achieve opportunistic energy saving by offloading energy-hungry workloads to vehicular edge computing nodes via vehicle-to-infrastructure links. However, how to determine the optimal portion of workload to be offloaded based on the dynamic states of energy consumption and latency in local computing, data transmission, workload execution and handover, is still an open issue. In this paper, we study the energy-efficient workload offloading problem and propose a low-complexity distributed solution based on consensus alternating direction method of multipliers. By incorporating a set of local variables for each UE, the original problem, in which the optimization variables of UEs are coupled together, is transformed into an equivalent general consensus problem with separable objectives and constraints. The consensus problem can be further decomposed into a bunch of subproblems, which are distributed across UEs and solved in parallel simultaneously. Finally, the proposed solution is validated based on a realistic road topology of Beijing, China. Simulation results have demonstrated that significant energy saving gain can be achieved by the proposed algorithm.
AbstractList In vehicular networks, in-vehicle user equipment (UE) with limited battery capacity can achieve opportunistic energy saving by offloading energy-hungry workloads to vehicular edge computing nodes via vehicle-to-infrastructure links. However, how to determine the optimal portion of workload to be offloaded based on the dynamic states of energy consumption and latency in local computing, data transmission, workload execution and handover, is still an open issue. In this paper, we study the energy-efficient workload offloading problem and propose a low-complexity distributed solution based on consensus alternating direction method of multipliers. By incorporating a set of local variables for each UE, the original problem, in which the optimization variables of UEs are coupled together, is transformed into an equivalent general consensus problem with separable objectives and constraints. The consensus problem can be further decomposed into a bunch of subproblems, which are distributed across UEs and solved in parallel simultaneously. Finally, the proposed solution is validated based on a realistic road topology of Beijing, China. Simulation results have demonstrated that significant energy saving gain can be achieved by the proposed algorithm.
Author Zhou, Zhenyu
Chang, Zheng
Feng, Junhao
Shen, Xuemin
Author_xml – sequence: 1
  givenname: Zhenyu
  orcidid: 0000-0002-3344-4463
  surname: Zhou
  fullname: Zhou, Zhenyu
  email: zhenyu_zhou@ncepu.edu.cn
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China
– sequence: 2
  givenname: Junhao
  orcidid: 0000-0002-3655-2275
  surname: Feng
  fullname: Feng, Junhao
  email: junhao_feng@ncepu.edu.cn
  organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China
– sequence: 3
  givenname: Zheng
  orcidid: 0000-0003-3766-820X
  surname: Chang
  fullname: Chang, Zheng
  email: zheng.chang@jyu.fi
  organization: Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
– sequence: 4
  givenname: Xuemin
  orcidid: 0000-0002-4140-287X
  surname: Shen
  fullname: Shen, Xuemin
  email: xshen@bbcr.uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
BookMark eNp9kEtLAzEURoMoWKt7wU3A9dQ8mpmJu1LrA6wK1m6HmLlpU9ukJjNK_70pLS5cSCDhhu_cD84JOnTeAULnlPQoJfJqMp30GKGyxyQRfc4OUIdKLjPJhTxEHUJomUnRF8foJMZFGvt9STvIjByE2SYbGWO1BdfgUT0DPPSrddtYN8OvEL6sBvwS_JeN1rvtp_EBT2FudbtUAT9B8-3DR7zGgwS6CC62EQ9uxmM8WK-DV3p-io6MWkY4279d9HY7mgzvs8fnu4fh4DHTXMomk4bXtCSG1blSrC6LIn9XnElWCm64qIEwqKUQOdPpMlrT0qRDSlDG1AR4F13u9qbazxZiUy18G1yqrBjjrCiEIDSlyC6lg48xgKnWwa5U2FSUVFubVbJZbW1We5sJyf8g2jaqST6aoOzyP_BiB1oA-O0p87zIJec_vQiEZw
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_JIOT_2025_3566952
crossref_primary_10_1109_TASE_2020_3000946
crossref_primary_10_1109_ACCESS_2020_3033883
crossref_primary_10_1109_TITS_2021_3094215
crossref_primary_10_1016_j_adhoc_2023_103098
crossref_primary_10_1109_TMC_2020_3025286
crossref_primary_10_1109_JIOT_2021_3065429
crossref_primary_10_1109_TVT_2021_3089418
crossref_primary_10_1109_ACCESS_2019_2934111
crossref_primary_10_1109_TVT_2021_3110192
crossref_primary_10_1109_TITS_2024_3393529
crossref_primary_10_1109_TVT_2022_3197627
crossref_primary_10_1007_s12083_021_01141_2
crossref_primary_10_1109_JIOT_2020_3015702
crossref_primary_10_1016_j_comnet_2021_108426
crossref_primary_10_1109_JIOT_2019_2933445
crossref_primary_10_1109_TII_2020_3001355
crossref_primary_10_1109_TSC_2019_2947914
crossref_primary_10_1109_ACCESS_2019_2931354
crossref_primary_10_1109_JIOT_2020_3043749
crossref_primary_10_3390_s24103001
crossref_primary_10_1109_JIOT_2022_3150472
crossref_primary_10_1109_TVT_2024_3360959
crossref_primary_10_3390_math10183328
crossref_primary_10_1109_TITS_2020_2971343
crossref_primary_10_1109_TMC_2023_3239339
crossref_primary_10_1109_ACCESS_2020_3037717
crossref_primary_10_1109_JSEN_2023_3283413
crossref_primary_10_1109_TCOMM_2024_3493816
crossref_primary_10_1109_TVT_2020_2983445
crossref_primary_10_1109_TVT_2021_3049862
crossref_primary_10_1109_JIOT_2021_3121796
crossref_primary_10_1109_TVT_2024_3362841
crossref_primary_10_1109_TNSE_2019_2955474
crossref_primary_10_1109_TSC_2022_3142265
crossref_primary_10_1109_TITS_2020_3017172
crossref_primary_10_1109_TITS_2024_3460876
crossref_primary_10_1109_JSYST_2023_3293808
crossref_primary_10_1109_TIV_2023_3346506
crossref_primary_10_1109_TNET_2021_3133022
crossref_primary_10_1016_j_phycom_2020_101254
crossref_primary_10_1109_ACCESS_2020_3033828
crossref_primary_10_1109_TVT_2021_3136364
crossref_primary_10_1109_TVT_2020_2967882
crossref_primary_10_1109_TNSE_2024_3508847
crossref_primary_10_1109_ACCESS_2020_3015289
crossref_primary_10_3390_s20226622
crossref_primary_10_1109_TGCN_2022_3189413
crossref_primary_10_1109_TVT_2023_3241286
crossref_primary_10_1109_JIOT_2019_2952647
crossref_primary_10_1109_TVT_2020_2992766
crossref_primary_10_1109_TETCI_2024_3386622
crossref_primary_10_1109_TVT_2022_3149937
crossref_primary_10_1109_TVT_2024_3355119
crossref_primary_10_1109_ACCESS_2020_3001572
crossref_primary_10_1109_ACCESS_2020_3029169
crossref_primary_10_1109_TVT_2021_3086179
crossref_primary_10_1109_ACCESS_2021_3138219
crossref_primary_10_1109_ACCESS_2020_2993246
crossref_primary_10_1109_TVT_2020_3041929
crossref_primary_10_3390_electronics11142130
crossref_primary_10_1016_j_trc_2023_104274
crossref_primary_10_1109_ACCESS_2020_2975310
crossref_primary_10_1109_ACCESS_2020_2981130
crossref_primary_10_1109_COMST_2021_3106401
crossref_primary_10_1002_dac_4446
crossref_primary_10_1007_s11276_024_03775_5
crossref_primary_10_1109_ACCESS_2020_3043762
crossref_primary_10_1016_j_cose_2020_101886
crossref_primary_10_1109_ACCESS_2020_2985731
crossref_primary_10_1109_TVT_2023_3312142
crossref_primary_10_1109_ACCESS_2019_2931443
crossref_primary_10_1109_JIOT_2024_3488193
crossref_primary_10_1109_ACCESS_2020_3018166
crossref_primary_10_1109_TVT_2024_3454771
crossref_primary_10_1109_LWC_2023_3318632
crossref_primary_10_3390_s22030746
crossref_primary_10_1109_TCE_2023_3344514
crossref_primary_10_3390_s22239340
crossref_primary_10_1002_ett_3844
crossref_primary_10_1002_ett_4930
crossref_primary_10_1109_TVT_2021_3135332
crossref_primary_10_1109_ACCESS_2019_2953529
crossref_primary_10_1109_TITS_2022_3226198
crossref_primary_10_1109_TMC_2025_3544311
crossref_primary_10_1109_TSMC_2021_3097005
crossref_primary_10_1109_ACCESS_2020_2978094
crossref_primary_10_1109_JIOT_2021_3065970
crossref_primary_10_1109_TCOMM_2022_3151064
crossref_primary_10_1109_TVT_2021_3056127
crossref_primary_10_1016_j_vehcom_2020_100252
crossref_primary_10_1109_TVT_2023_3321806
crossref_primary_10_1109_TVT_2024_3485017
crossref_primary_10_1109_TSC_2024_3451243
crossref_primary_10_1109_TVT_2021_3090179
crossref_primary_10_1109_TVT_2020_3021478
crossref_primary_10_1109_JIOT_2019_2941897
crossref_primary_10_1109_ACCESS_2020_3032469
crossref_primary_10_1109_TWC_2022_3141094
crossref_primary_10_1016_j_neunet_2024_106621
crossref_primary_10_1109_ACCESS_2023_3323022
crossref_primary_10_1109_LWC_2020_2978482
crossref_primary_10_1007_s12083_023_01522_9
crossref_primary_10_1109_ACCESS_2019_2938586
crossref_primary_10_1109_JIOT_2022_3213993
crossref_primary_10_1016_j_scs_2021_102938
crossref_primary_10_1016_j_comcom_2020_01_004
crossref_primary_10_1145_3560265
crossref_primary_10_1016_j_vehcom_2021_100349
crossref_primary_10_1007_s11227_021_03781_w
crossref_primary_10_1109_ACCESS_2024_3349587
crossref_primary_10_1109_JIOT_2020_2984088
crossref_primary_10_1109_TVT_2020_3029109
crossref_primary_10_1109_TGCN_2022_3187674
crossref_primary_10_1016_j_jpdc_2022_09_006
crossref_primary_10_1109_ACCESS_2019_2942052
crossref_primary_10_1109_TMC_2021_3068902
crossref_primary_10_1109_TVT_2021_3125334
crossref_primary_10_3390_electronics11193032
crossref_primary_10_1109_TVT_2020_2991641
crossref_primary_10_1007_s10586_025_05166_7
crossref_primary_10_1109_TVT_2024_3395893
crossref_primary_10_1109_TGCN_2021_3127923
crossref_primary_10_1016_j_jnca_2022_103366
crossref_primary_10_1016_j_tra_2020_08_005
crossref_primary_10_1109_JIOT_2022_3188849
crossref_primary_10_1016_j_comcom_2022_05_014
crossref_primary_10_1109_ACCESS_2020_2990292
crossref_primary_10_1109_TVT_2020_3040596
crossref_primary_10_1142_S0218126625502706
crossref_primary_10_1109_TVT_2020_2973705
crossref_primary_10_1109_JIOT_2021_3055510
crossref_primary_10_1016_j_comnet_2024_111026
Cites_doi 10.1109/TVT.2018.2870167
10.1109/MNET.2018.1700442
10.1109/ICC.2017.7996724
10.1109/JIOT.2016.2565516
10.1109/MCOM.2017.1600249CM
10.1109/TMC.2015.2405539
10.1109/MCOM.2018.1701008
10.1109/WCNCW.2018.8368975
10.1109/TVT.2016.2615718
10.1109/ICC.2017.7996496
10.1109/GLOCOM.2017.8254207
10.1109/MWC.2017.1700244
10.1109/TVT.2016.2563980
10.1109/JSAC.2016.2611964
10.1109/TNET.2015.2487344
10.1109/MWC.2016.7422402
10.1561/2200000016
10.1109/LWC.2014.2338318
10.1287/mnsc.13.7.492
10.1109/TITS.2015.2504122
10.1109/TVT.2017.2714704
10.1109/TAC.2011.2112477
10.1002/0470011815.b2a07042
10.1109/TCOMM.2018.2857461
10.1109/TITS.2016.2529000
10.1109/TCOMM.2015.2502941
10.1109/TVT.2017.2729346
10.1109/TCC.2015.2449834
10.1109/TSG.2016.2532467
10.1109/TVT.2017.2723430
10.1109/JSAC.2017.2760160
10.1109/TWC.2016.2633522
10.1109/TVT.2016.2530716
10.1109/MVT.2017.2668838
10.1109/MCOM.2017.1601156
10.1109/TITS.2017.2771519
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2019.2905432
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 5099
ExternalDocumentID 10_1109_TVT_2019_2905432
8667693
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2017MS001
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61601181
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
RIG
ID FETCH-LOGICAL-c399t-9f3d180f2d6aa2d8776ba3292853f35de02ed95562c556fcc18f8f808eaffd0e3
IEDL.DBID RIE
ISICitedReferencesCount 162
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470017500080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 10:13:02 EDT 2025
Sat Nov 29 02:18:33 EST 2025
Tue Nov 18 22:22:54 EST 2025
Wed Aug 27 02:46:56 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-9f3d180f2d6aa2d8776ba3292853f35de02ed95562c556fcc18f8f808eaffd0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3655-2275
0000-0003-3766-820X
0000-0002-4140-287X
0000-0002-3344-4463
OpenAccessLink http://urn.fi/URN:NBN:fi:jyu-201906052972
PQID 2232775501
PQPubID 85454
PageCount 13
ParticipantIDs proquest_journals_2232775501
crossref_primary_10_1109_TVT_2019_2905432
crossref_citationtrail_10_1109_TVT_2019_2905432
ieee_primary_8667693
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
hadjiantoni (ref36) 2017
kleinrock (ref33) 1972
ref24
ref23
ref26
ref25
ref20
wang (ref37) 0
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/TVT.2018.2870167
– ident: ref17
  doi: 10.1109/MNET.2018.1700442
– ident: ref19
  doi: 10.1109/ICC.2017.7996724
– ident: ref12
  doi: 10.1109/JIOT.2016.2565516
– ident: ref18
  doi: 10.1109/MCOM.2017.1600249CM
– ident: ref27
  doi: 10.1109/TMC.2015.2405539
– year: 2017
  ident: ref36
  article-title: A numerical method for the estimation of time-varying parameter models in large dimensions
– ident: ref8
  doi: 10.1109/MCOM.2018.1701008
– ident: ref1
  doi: 10.1109/WCNCW.2018.8368975
– ident: ref35
  doi: 10.1109/TVT.2016.2615718
– ident: ref15
  doi: 10.1109/ICC.2017.7996496
– ident: ref11
  doi: 10.1109/GLOCOM.2017.8254207
– ident: ref5
  doi: 10.1109/MWC.2017.1700244
– ident: ref28
  doi: 10.1109/TVT.2016.2563980
– start-page: 494
  year: 0
  ident: ref37
  article-title: A nested two stage game-based optimization framework in mobile cloud computing system
  publication-title: Proc IEEE Int Symp Service-Oriented Syst Eng
– ident: ref13
  doi: 10.1109/JSAC.2016.2611964
– ident: ref39
  doi: 10.1109/TNET.2015.2487344
– ident: ref26
  doi: 10.1109/MWC.2016.7422402
– ident: ref16
  doi: 10.1561/2200000016
– year: 1972
  ident: ref33
  publication-title: Queueing Systems Volume I Theory
– ident: ref30
  doi: 10.1109/LWC.2014.2338318
– ident: ref34
  doi: 10.1287/mnsc.13.7.492
– ident: ref25
  doi: 10.1109/TITS.2015.2504122
– ident: ref7
  doi: 10.1109/TVT.2017.2714704
– ident: ref21
  doi: 10.1109/TAC.2011.2112477
– ident: ref32
  doi: 10.1002/0470011815.b2a07042
– ident: ref9
  doi: 10.1109/TCOMM.2018.2857461
– ident: ref31
  doi: 10.1109/TITS.2016.2529000
– ident: ref20
  doi: 10.1109/TCOMM.2015.2502941
– ident: ref6
  doi: 10.1109/TVT.2017.2729346
– ident: ref29
  doi: 10.1109/TCC.2015.2449834
– ident: ref23
  doi: 10.1109/TSG.2016.2532467
– ident: ref4
  doi: 10.1109/TVT.2017.2723430
– ident: ref38
  doi: 10.1109/JSAC.2017.2760160
– ident: ref14
  doi: 10.1109/TWC.2016.2633522
– ident: ref22
  doi: 10.1109/TVT.2016.2530716
– ident: ref10
  doi: 10.1109/MVT.2017.2668838
– ident: ref24
  doi: 10.1109/MCOM.2017.1601156
– ident: ref2
  doi: 10.1109/TITS.2017.2771519
SSID ssj0014491
Score 2.639713
Snippet In vehicular networks, in-vehicle user equipment (UE) with limited battery capacity can achieve opportunistic energy saving by offloading energy-hungry...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5087
SubjectTerms Ad hoc networks
Algorithms
Batteries
Computer simulation
consensus ADMM
Convex functions
Data transmission
Edge computing
Energy
Energy conservation
Energy consumption
energy efficiency
Energy transmission
Handover
Optimization
Provisioning
Topology
Vehicle-to-infrastructure
vehicular edge computing
vehicular networks
Workload
workload offloading
Workloads
Title Energy-Efficient Edge Computing Service Provisioning for Vehicular Networks: A Consensus ADMM Approach
URI https://ieeexplore.ieee.org/document/8667693
https://www.proquest.com/docview/2232775501
Volume 68
WOSCitedRecordID wos000470017500080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH5s4kEP_pri_EUOXgS7tU3XNN6GdnjQscMUb6VtXnQgU-z07_clzYqiCFIoLSQl5Gvyvry8vA_glBhAbMSsvEIEhReFqLy80PTKMUYu_HygbZ7ZGzEeJw8PctKC8-YsDCLa4DPsmUe7l69eynfjKusntXRfG9pCxPVZrWbHIIqcOl5AA5howXJL0pf96f3UxHDJXiiJoPDwmwmymio_JmJrXUab_2vXFmw4FsmGNezb0ML5Dqx_yS3YAZ3aU31eanNEUH2WqkdktYoDlWBulmAT41SoarcsIwrL7vFpZqNT2biOEa8u2JAZZU8ji1Gx4dXtLRu6XOS7cDdKp5fXnhNV8EriIgtPaq6CxNehivM8VAn1ZJHzUIZktzUfKPQJLzkgWlTSTZdlkGi6_ARzrZWPfA9W5i9z3Aem4wgF5ypWQR4hikLkWmglySoGMfpRF_rLfs5Kl3HcCF88Z3bl4cuMkMkMMplDpgtnTY3XOtvGH2U7BommnAOhC0dLKDM3HKuMOFAoBC3GgoPfax3Cmvl2Hcl4BCuLt3c8htXyYzGr3k7sn_YJq67Rjg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6VMQl4AMZAlA3wAy9IZHXsJI73VkGmItqqD121tyiJz6zS1KKl4_dzdtyICYSEIkWJdFaifLHvs313H8AHYgCZE7OKahXXUSLQRFVt6VZihlLxKrW-zuxUzef51ZVeDOBTnwuDiD74DM_cpd_LN9vmzi2VjfJOuu8BPEyTRPAuW6vfM0iSoI8XUxcmYrDflOR6tFwtXRSXPhOaKIoU95yQV1X5Yyj2_uXi2f-92XN4GngkG3fAH8EANy_gyW_VBY_BFj6vLyp8lQhqzwrzHVmn40AWLIwTbOGWFdpuYZYRiWUrvF77-FQ276LE23M2Zk7b0wljtGz8ZTZj41CN_CVcXhTLz5MoyCpEDbGRXaStNHHOrTBZVQmTK5XVlRRakOe2MjXICTGdEjFq6GSbJs4tHTzHylrDUb6Cg812g6-B2SxBJaXJTFwliKpWlVXWaPKLcYY8GcJo_53LJtQcd9IXN6Wfe3BdEjKlQ6YMyAzhY9_iR1dv4x-2xw6J3i6AMITTPZRl6JBtSSxIKEXTsfjN31u9h0eT5WxaTr_Ov53AY_ecLq7xFA52t3f4Fg6bn7t1e_vO_3W_ALmj1NU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+Edge+Computing+Service+Provisioning+for+Vehicular+Networks%3A+A+Consensus+ADMM+Approach&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhou%2C+Zhenyu&rft.au=Feng%2C+Junhao&rft.au=Chang%2C+Zheng&rft.au=Shen%2C+Xuemin&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=68&rft.issue=5&rft.spage=5087&rft_id=info:doi/10.1109%2FTVT.2019.2905432&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon