Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia

Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Radiology Ročník 296; číslo 2; s. E86
Hlavní autoři: Colombi, Davide, Bodini, Flavio C, Petrini, Marcello, Maffi, Gabriele, Morelli, Nicola, Milanese, Gianluca, Silva, Mario, Sverzellati, Nicola, Michieletti, Emanuele
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.08.2020
Témata:
ISSN:1527-1315, 1527-1315
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine prognosis in patients with COVID-19 pneumonia. Materials and Methods Imaging of patients admitted at the emergency department between February 17 and March 10, 2020 who underwent chest CT were retrospectively analyzed. Patients with negative results of reverse-transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 at nasal-pharyngeal swabbing, negative chest CT findings, and incomplete clinical data were excluded. CT images were analyzed for quantification of WAL visually (%V-WAL), with open-source software (%S-WAL), and with absolute volume (VOL-WAL). Clinical parameters included patient characteristics, comorbidities, symptom type and duration, oxygen saturation, and laboratory values. Logistic regression was used to evaluate the relationship between clinical parameters and CT metrics versus patient outcome (intensive care unit [ICU] admission or death vs no ICU admission or death). The area under the receiver operating characteristic curve (AUC) was calculated to determine model performance. Results The study included 236 patients (59 of 123 [25%] were female; median age, 68 years). A %V-WAL less than 73% (odds ratio [OR], 5.4; 95% confidence interval [CI]: 2.7, 10.8; < .001), %S-WAL less than 71% (OR, 3.8; 95% CI: 1.9, 7.5; < .001), and VOL-WAL less than 2.9 L (OR, 2.6; 95% CI: 1.2, 5.8; < .01) were predictors of ICU admission or death. In comparison with clinical models containing only clinical parameters (AUC = 0.83), all three quantitative models showed better diagnostic performance (AUC = 0.86 for all models). The models containing %V-WAL less than 73% and VOL-WAL less than 2.9 L were superior in terms of performance as compared with the models containing only clinical parameters ( = .04 for both models). Conclusion In patients with confirmed coronavirus disease 2019 pneumonia, visual or software quantification of the extent of CT lung abnormality were predictors of intensive care unit admission or death. ©  RSNA, 2020
AbstractList Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine prognosis in patients with COVID-19 pneumonia. Materials and Methods Imaging of patients admitted at the emergency department between February 17 and March 10, 2020 who underwent chest CT were retrospectively analyzed. Patients with negative results of reverse-transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 at nasal-pharyngeal swabbing, negative chest CT findings, and incomplete clinical data were excluded. CT images were analyzed for quantification of WAL visually (%V-WAL), with open-source software (%S-WAL), and with absolute volume (VOL-WAL). Clinical parameters included patient characteristics, comorbidities, symptom type and duration, oxygen saturation, and laboratory values. Logistic regression was used to evaluate the relationship between clinical parameters and CT metrics versus patient outcome (intensive care unit [ICU] admission or death vs no ICU admission or death). The area under the receiver operating characteristic curve (AUC) was calculated to determine model performance. Results The study included 236 patients (59 of 123 [25%] were female; median age, 68 years). A %V-WAL less than 73% (odds ratio [OR], 5.4; 95% confidence interval [CI]: 2.7, 10.8; < .001), %S-WAL less than 71% (OR, 3.8; 95% CI: 1.9, 7.5; < .001), and VOL-WAL less than 2.9 L (OR, 2.6; 95% CI: 1.2, 5.8; < .01) were predictors of ICU admission or death. In comparison with clinical models containing only clinical parameters (AUC = 0.83), all three quantitative models showed better diagnostic performance (AUC = 0.86 for all models). The models containing %V-WAL less than 73% and VOL-WAL less than 2.9 L were superior in terms of performance as compared with the models containing only clinical parameters ( = .04 for both models). Conclusion In patients with confirmed coronavirus disease 2019 pneumonia, visual or software quantification of the extent of CT lung abnormality were predictors of intensive care unit admission or death. ©  RSNA, 2020
Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine prognosis in patients with COVID-19 pneumonia. Materials and Methods Imaging of patients admitted at the emergency department between February 17 and March 10, 2020 who underwent chest CT were retrospectively analyzed. Patients with negative results of reverse-transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 at nasal-pharyngeal swabbing, negative chest CT findings, and incomplete clinical data were excluded. CT images were analyzed for quantification of WAL visually (%V-WAL), with open-source software (%S-WAL), and with absolute volume (VOL-WAL). Clinical parameters included patient characteristics, comorbidities, symptom type and duration, oxygen saturation, and laboratory values. Logistic regression was used to evaluate the relationship between clinical parameters and CT metrics versus patient outcome (intensive care unit [ICU] admission or death vs no ICU admission or death). The area under the receiver operating characteristic curve (AUC) was calculated to determine model performance. Results The study included 236 patients (59 of 123 [25%] were female; median age, 68 years). A %V-WAL less than 73% (odds ratio [OR], 5.4; 95% confidence interval [CI]: 2.7, 10.8; P < .001), %S-WAL less than 71% (OR, 3.8; 95% CI: 1.9, 7.5; P < .001), and VOL-WAL less than 2.9 L (OR, 2.6; 95% CI: 1.2, 5.8; P < .01) were predictors of ICU admission or death. In comparison with clinical models containing only clinical parameters (AUC = 0.83), all three quantitative models showed better diagnostic performance (AUC = 0.86 for all models). The models containing %V-WAL less than 73% and VOL-WAL less than 2.9 L were superior in terms of performance as compared with the models containing only clinical parameters (P = .04 for both models). Conclusion In patients with confirmed coronavirus disease 2019 pneumonia, visual or software quantification of the extent of CT lung abnormality were predictors of intensive care unit admission or death. ©  RSNA, 2020 Online supplemental material is available for this article.Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine prognosis in patients with COVID-19 pneumonia. Materials and Methods Imaging of patients admitted at the emergency department between February 17 and March 10, 2020 who underwent chest CT were retrospectively analyzed. Patients with negative results of reverse-transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 at nasal-pharyngeal swabbing, negative chest CT findings, and incomplete clinical data were excluded. CT images were analyzed for quantification of WAL visually (%V-WAL), with open-source software (%S-WAL), and with absolute volume (VOL-WAL). Clinical parameters included patient characteristics, comorbidities, symptom type and duration, oxygen saturation, and laboratory values. Logistic regression was used to evaluate the relationship between clinical parameters and CT metrics versus patient outcome (intensive care unit [ICU] admission or death vs no ICU admission or death). The area under the receiver operating characteristic curve (AUC) was calculated to determine model performance. Results The study included 236 patients (59 of 123 [25%] were female; median age, 68 years). A %V-WAL less than 73% (odds ratio [OR], 5.4; 95% confidence interval [CI]: 2.7, 10.8; P < .001), %S-WAL less than 71% (OR, 3.8; 95% CI: 1.9, 7.5; P < .001), and VOL-WAL less than 2.9 L (OR, 2.6; 95% CI: 1.2, 5.8; P < .01) were predictors of ICU admission or death. In comparison with clinical models containing only clinical parameters (AUC = 0.83), all three quantitative models showed better diagnostic performance (AUC = 0.86 for all models). The models containing %V-WAL less than 73% and VOL-WAL less than 2.9 L were superior in terms of performance as compared with the models containing only clinical parameters (P = .04 for both models). Conclusion In patients with confirmed coronavirus disease 2019 pneumonia, visual or software quantification of the extent of CT lung abnormality were predictors of intensive care unit admission or death. ©  RSNA, 2020 Online supplemental material is available for this article.
Author Sverzellati, Nicola
Bodini, Flavio C
Milanese, Gianluca
Petrini, Marcello
Michieletti, Emanuele
Morelli, Nicola
Silva, Mario
Maffi, Gabriele
Colombi, Davide
Author_xml – sequence: 1
  givenname: Davide
  orcidid: 0000-0002-2794-5237
  surname: Colombi
  fullname: Colombi, Davide
  organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.)
– sequence: 2
  givenname: Flavio C
  orcidid: 0000-0003-0832-2605
  surname: Bodini
  fullname: Bodini, Flavio C
  organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.)
– sequence: 3
  givenname: Marcello
  surname: Petrini
  fullname: Petrini, Marcello
  organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.)
– sequence: 4
  givenname: Gabriele
  orcidid: 0000-0002-4126-3478
  surname: Maffi
  fullname: Maffi, Gabriele
  organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.)
– sequence: 5
  givenname: Nicola
  orcidid: 0000-0003-3787-2243
  surname: Morelli
  fullname: Morelli, Nicola
  organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.)
– sequence: 6
  givenname: Gianluca
  orcidid: 0000-0003-1974-4854
  surname: Milanese
  fullname: Milanese, Gianluca
  organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.)
– sequence: 7
  givenname: Mario
  orcidid: 0000-0002-2538-7032
  surname: Silva
  fullname: Silva, Mario
  organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.)
– sequence: 8
  givenname: Nicola
  orcidid: 0000-0002-4820-3785
  surname: Sverzellati
  fullname: Sverzellati, Nicola
  organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.)
– sequence: 9
  givenname: Emanuele
  orcidid: 0000-0002-6483-4798
  surname: Michieletti
  fullname: Michieletti, Emanuele
  organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32301647$$D View this record in MEDLINE/PubMed
BookMark eNpNkE1LxDAQhoOsuB_6A7xIjl6qTdK0yXGpXwsLu4f141bSZKqRNlmbVPDfW3EFeQ8zL_MwzLxzNHHeAULnJL0iJBPXvTLWt1c0_RHJGDtCM8JpkRBG-ORfP0XzEN7TkeGiOEFTRllK8qyYoZdnaNtEQa8iGLwe3Cv2Di9NZ2O0oynfIERc7nD0eNuDsTqO00_oA-DNELXvAFuHy83T6iYhEm8dDJ13Vp2i40a1Ac4OdYEe72535UOy3tyvyuU60UzKmEjIdGoyo-o6Z4JpoVStVSNE0XCSUqZyLigwAVo3RtQNyRteA-eQFVopBnSBLn_37nv_MYzHVp0NenxKOfBDqCiTRBZUFmJELw7oUHdgqn1vO9V_VX9p0G8rT2Ph
CitedBy_id crossref_primary_10_1097_RCT_0000000000001393
crossref_primary_10_1097_RTI_0000000000000704
crossref_primary_10_1371_journal_pone_0271787
crossref_primary_10_1080_23744235_2020_1792544
crossref_primary_10_1111_jan_14848
crossref_primary_10_1016_j_heliyon_2024_e37272
crossref_primary_10_1109_MSP_2021_3090674
crossref_primary_10_3390_diagnostics10110929
crossref_primary_10_3390_diagnostics11091616
crossref_primary_10_1016_j_bjid_2021_101702
crossref_primary_10_1080_13685538_2020_1774748
crossref_primary_10_1038_s42256_020_00251_5
crossref_primary_10_1007_s00134_020_06118_y
crossref_primary_10_1371_journal_pone_0251946
crossref_primary_10_1080_23744235_2022_2035428
crossref_primary_10_3390_diagnostics11050878
crossref_primary_10_3390_ijerph17186914
crossref_primary_10_12998_wjcc_v9_i28_8388
crossref_primary_10_1016_j_acra_2022_03_025
crossref_primary_10_1016_j_ejrad_2021_109650
crossref_primary_10_1097_MD_0000000000030407
crossref_primary_10_1183_13993003_00870_2021
crossref_primary_10_1186_s13098_020_00586_4
crossref_primary_10_1002_jmv_27301
crossref_primary_10_3389_fcimb_2021_777070
crossref_primary_10_1002_emp2_12575
crossref_primary_10_1007_s00330_020_07033_y
crossref_primary_10_1016_j_rx_2021_09_011
crossref_primary_10_1371_journal_pone_0263261
crossref_primary_10_1007_s10140_021_01937_y
crossref_primary_10_3390_ijerph17207394
crossref_primary_10_1007_s10140_021_02008_y
crossref_primary_10_1017_S0950268821000376
crossref_primary_10_1016_j_ejrad_2022_110238
crossref_primary_10_1371_journal_pone_0270111
crossref_primary_10_3389_fmed_2022_914098
crossref_primary_10_5005_jp_journals_11010_1176
crossref_primary_10_3389_fimmu_2021_765330
crossref_primary_10_1109_MPULS_2020_3008354
crossref_primary_10_1007_s13167_023_00325_5
crossref_primary_10_1111_jfbc_14079
crossref_primary_10_3389_fmed_2021_588013
crossref_primary_10_1371_journal_pone_0254550
crossref_primary_10_1016_j_acra_2022_06_002
crossref_primary_10_1016_j_rxeng_2021_09_004
crossref_primary_10_3390_diagnostics12061501
crossref_primary_10_1007_s11739_022_02931_z
crossref_primary_10_1371_journal_pone_0243966
crossref_primary_10_1186_s12879_021_05855_9
crossref_primary_10_1007_s00330_021_07993_9
crossref_primary_10_1007_s10140_020_01867_1
crossref_primary_10_1007_s11517_024_03066_3
crossref_primary_10_3390_diagnostics11050738
crossref_primary_10_1016_j_bjid_2021_101599
crossref_primary_10_1016_j_ejrad_2020_109298
crossref_primary_10_1186_s40560_021_00566_4
crossref_primary_10_4103_ijri_IJRI_965_20
crossref_primary_10_1159_000515110
crossref_primary_10_1007_s11547_020_01293_w
crossref_primary_10_1016_j_rmed_2021_106577
crossref_primary_10_1007_s10072_022_06333_z
crossref_primary_10_1111_echo_14962
crossref_primary_10_3390_jcm12124054
crossref_primary_10_1186_s13244_020_00901_7
crossref_primary_10_1016_j_jiph_2020_11_012
crossref_primary_10_1016_j_mayocp_2020_10_022
crossref_primary_10_3390_jcm10132894
crossref_primary_10_1007_s00330_021_08049_8
crossref_primary_10_1016_j_hrtlng_2021_02_015
crossref_primary_10_1016_j_jfma_2021_07_021
crossref_primary_10_1080_23744235_2021_1910727
crossref_primary_10_1177_2040622320935765
crossref_primary_10_1111_resp_14336
crossref_primary_10_1016_j_imu_2022_100929
crossref_primary_10_1016_j_patrec_2021_09_012
crossref_primary_10_4081_mrm_2021_766
crossref_primary_10_1016_j_jcct_2020_08_013
crossref_primary_10_1259_bjr_20220058
crossref_primary_10_1186_s12931_022_02222_3
crossref_primary_10_3389_fmed_2021_659520
crossref_primary_10_1007_s10140_020_01833_x
crossref_primary_10_1016_j_ejro_2021_100322
crossref_primary_10_3389_fimmu_2020_02072
crossref_primary_10_1109_TCBB_2021_3102584
crossref_primary_10_1007_s10278_022_00593_z
crossref_primary_10_1016_j_ejro_2020_100294
crossref_primary_10_1186_s12880_020_00521_z
crossref_primary_10_1371_journal_pone_0239172
crossref_primary_10_3389_fphys_2025_1578058
crossref_primary_10_3390_diagnostics15111301
crossref_primary_10_1186_s12931_024_02970_4
crossref_primary_10_1177_1747493020938294
crossref_primary_10_3390_biomedicines9091228
crossref_primary_10_3390_life13010198
crossref_primary_10_1038_s41467_020_20657_4
crossref_primary_10_1038_s41598_022_12311_4
crossref_primary_10_6061_clinics_2021_e2376
crossref_primary_10_1016_j_engappai_2024_108336
crossref_primary_10_6061_clinics_2020_e2027
crossref_primary_10_1016_j_ejrad_2021_109612
crossref_primary_10_1007_s00330_023_09427_0
crossref_primary_10_1007_s11547_022_01458_9
crossref_primary_10_1007_s00330_021_08485_6
crossref_primary_10_1055_a_1731_7905
crossref_primary_10_3390_app12104861
crossref_primary_10_1136_bmjopen_2021_052665
crossref_primary_10_3348_jksr_2021_0117
crossref_primary_10_3389_fmed_2022_770031
crossref_primary_10_3389_fonc_2020_582901
crossref_primary_10_1007_s13760_022_02043_7
crossref_primary_10_1186_s13244_021_01096_1
crossref_primary_10_1016_j_clinimag_2021_02_009
crossref_primary_10_1093_bjro_tzaf008
crossref_primary_10_1186_s40001_025_02303_1
crossref_primary_10_1007_s00330_020_07271_0
crossref_primary_10_1080_02664763_2022_2104229
crossref_primary_10_3390_diagnostics11030437
crossref_primary_10_3389_fmed_2020_572115
crossref_primary_10_3390_jcm10235650
crossref_primary_10_1007_s42058_021_00068_0
crossref_primary_10_1038_s41598_021_85694_5
crossref_primary_10_1109_ACCESS_2021_3093633
crossref_primary_10_1186_s12879_021_06536_3
crossref_primary_10_1186_s13613_020_00799_w
crossref_primary_10_3390_diagnostics11101791
crossref_primary_10_6061_clinics_2021_e2476
crossref_primary_10_1016_j_clinimag_2020_09_002
crossref_primary_10_1016_j_bspc_2021_102582
crossref_primary_10_1038_s41598_021_90246_y
crossref_primary_10_1067_j_cpradiol_2022_04_002
crossref_primary_10_1007_s13668_020_00330_4
crossref_primary_10_2196_24225
crossref_primary_10_1016_S2665_9913_20_30333_7
crossref_primary_10_1183_20734735_0006_2024
crossref_primary_10_3390_app11031238
crossref_primary_10_3389_fphys_2021_617657
crossref_primary_10_1016_j_clinimag_2020_12_037
crossref_primary_10_1038_s41598_022_06199_3
crossref_primary_10_1016_j_hrtlng_2020_10_005
crossref_primary_10_1038_s41598_021_88591_z
crossref_primary_10_1016_j_ejmp_2021_01_004
crossref_primary_10_1016_j_metabol_2020_154436
crossref_primary_10_1007_s15010_020_01476_7
crossref_primary_10_1002_acm2_13263
crossref_primary_10_1016_j_cca_2020_06_012
crossref_primary_10_1007_s11517_023_02958_0
crossref_primary_10_3390_diagnostics12122921
crossref_primary_10_1055_a_1344_4715
crossref_primary_10_3390_diagnostics11112125
crossref_primary_10_1371_journal_pone_0271271
crossref_primary_10_1016_j_rmed_2020_106206
crossref_primary_10_1016_j_jcct_2021_03_003
crossref_primary_10_1007_s00330_020_07013_2
crossref_primary_10_3390_jcm11061704
crossref_primary_10_5114_pjr_2020_100788
crossref_primary_10_3390_diagnostics11020265
crossref_primary_10_1186_s41747_022_00317_6
crossref_primary_10_1016_j_acra_2021_03_001
crossref_primary_10_1007_s00259_021_05375_3
crossref_primary_10_1007_s10140_025_02359_w
crossref_primary_10_1148_radiol_2021204141
crossref_primary_10_1016_j_amsu_2020_10_071
crossref_primary_10_1186_s12931_022_02025_6
crossref_primary_10_1016_j_ejro_2020_100237
crossref_primary_10_1186_s12877_022_02776_3
crossref_primary_10_1002_mp_18049
crossref_primary_10_5114_pjr_2021_104049
crossref_primary_10_1097_RCT_0000000000001303
crossref_primary_10_1038_s41598_023_46625_8
crossref_primary_10_1038_s41598_021_95114_3
crossref_primary_10_1038_s41746_021_00383_x
crossref_primary_10_3389_fonc_2020_01560
crossref_primary_10_1371_journal_pone_0287953
crossref_primary_10_1371_journal_pone_0245518
crossref_primary_10_2217_bmm_2021_0669
crossref_primary_10_1097_MD_0000000000033960
crossref_primary_10_1007_s10278_022_00734_4
crossref_primary_10_1016_j_ejrad_2020_109209
crossref_primary_10_3389_fmed_2021_643917
crossref_primary_10_1148_radiol_2021210834
crossref_primary_10_1007_s11604_020_01085_2
crossref_primary_10_1017_S0950268820002502
crossref_primary_10_1016_j_imed_2021_05_005
crossref_primary_10_1097_CCM_0000000000006105
crossref_primary_10_1007_s10140_022_02034_4
crossref_primary_10_1016_j_ejro_2020_100272
crossref_primary_10_1007_s00259_021_05435_8
crossref_primary_10_3390_diagnostics13182988
crossref_primary_10_1016_j_ejrad_2020_109217
crossref_primary_10_1002_dmrr_3519
crossref_primary_10_1109_JBHI_2021_3082527
crossref_primary_10_1016_j_diii_2021_06_007
crossref_primary_10_1097_CCM_0000000000005915
crossref_primary_10_3389_fmed_2023_1125530
crossref_primary_10_1016_j_compbiomed_2021_104605
crossref_primary_10_1007_s00592_025_02507_1
crossref_primary_10_3348_kjr_2020_0318
crossref_primary_10_1109_TBME_2021_3085576
crossref_primary_10_1186_s12985_021_01538_8
crossref_primary_10_1259_bjr_20220180
crossref_primary_10_1186_s41747_020_00167_0
crossref_primary_10_5005_jp_journals_10071_23772
crossref_primary_10_4274_balkanmedj_galenos_2023_2023_4_52_response
crossref_primary_10_1038_s41598_021_89182_8
crossref_primary_10_1016_j_clinimag_2022_11_010
crossref_primary_10_1016_j_heliyon_2022_e10166
crossref_primary_10_1016_j_heliyon_2023_e21965
crossref_primary_10_3390_cells11030467
crossref_primary_10_1053_j_ro_2021_10_002
crossref_primary_10_1136_bmjopen_2020_040175
crossref_primary_10_1159_000509223
crossref_primary_10_1016_j_resmer_2024_101140
crossref_primary_10_1007_s12325_021_01702_0
crossref_primary_10_1016_j_patcog_2021_108135
crossref_primary_10_1016_j_clinimag_2021_01_028
crossref_primary_10_1007_s00330_025_11752_5
crossref_primary_10_1016_j_ejrad_2020_109344
crossref_primary_10_3233_XST_200721
crossref_primary_10_2196_24973
crossref_primary_10_1093_abm_kaab081
crossref_primary_10_1186_s12931_023_02530_2
crossref_primary_10_1007_s00330_020_07046_7
crossref_primary_10_31067_acusaglik_1663231
crossref_primary_10_1259_bjr_20200716
crossref_primary_10_6061_clinics_2021_e3503
crossref_primary_10_4103_jehp_jehp_287_22
crossref_primary_10_1016_j_ejrad_2020_109233
crossref_primary_10_1016_j_archger_2021_104383
crossref_primary_10_1016_j_compbiomed_2021_104304
crossref_primary_10_3390_diagnostics13213328
crossref_primary_10_1016_j_ejmp_2021_04_022
crossref_primary_10_1016_j_ajem_2022_06_043
crossref_primary_10_21292_2075_1230_2020_98_6_7_14
crossref_primary_10_3390_jcm12227164
crossref_primary_10_5812_iranjradiol_110396
crossref_primary_10_3390_jpm13030382
crossref_primary_10_3892_etm_2022_11350
crossref_primary_10_1186_s12890_023_02613_2
crossref_primary_10_1007_s11547_020_01320_w
crossref_primary_10_1109_ACCESS_2020_3034032
crossref_primary_10_1016_j_media_2021_102159
crossref_primary_10_1016_j_diii_2020_12_002
crossref_primary_10_1155_2022_6460865
crossref_primary_10_1186_s13223_023_00797_0
crossref_primary_10_3389_fimmu_2020_01359
crossref_primary_10_1371_journal_pone_0308014
crossref_primary_10_1155_2024_5520174
crossref_primary_10_1097_TP_0000000000003968
crossref_primary_10_1007_s40477_021_00559_x
crossref_primary_10_1016_j_clinimag_2021_04_008
crossref_primary_10_4103_jrms_JRMS_1160_20
crossref_primary_10_3390_biology9080181
crossref_primary_10_1007_s00330_021_07938_2
crossref_primary_10_1007_s12015_020_10026_5
crossref_primary_10_1016_j_ejrad_2020_109256
crossref_primary_10_1097_IPC_0000000000001432
crossref_primary_10_25259_JPATS_31_2023
crossref_primary_10_1183_13993003_03498_2020
crossref_primary_10_1007_s11547_022_01456_x
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1148/radiol.2020201433
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1527-1315
ExternalDocumentID 32301647
Genre Journal Article
GroupedDBID ---
.55
.GJ
123
18M
1CY
1KJ
29P
2WC
34G
39C
4.4
53G
5RE
6NX
6PF
7FM
AAEJM
AAQQT
AAWTL
ABDPE
ABHFT
ABOCM
ACFQH
ACGFO
ACJAN
ACRZS
ADBBV
AENEX
AENYM
AFFNX
AFOSN
AJJEV
AJWWR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
GX1
H13
J5H
KO8
L7B
LMP
LSO
MJL
MV1
N4W
NPM
OK1
P2P
R.V
RKKAF
RXW
SJN
TAE
TR2
TRS
TWZ
VXZ
W8F
WH7
WOQ
X7M
YQI
YQJ
ZGI
ZKG
ZVN
ZXP
7X8
ID FETCH-LOGICAL-c399t-9e4c0d4dabb6383c8aabcaf887f51023a6582e38eccfd8bf16f5be55e47caa3e2
IEDL.DBID 7X8
ISICitedReferencesCount 352
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551892700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1527-1315
IngestDate Wed Oct 01 14:55:34 EDT 2025
Wed Feb 19 02:29:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-9e4c0d4dabb6383c8aabcaf887f51023a6582e38eccfd8bf16f5be55e47caa3e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0832-2605
0000-0003-1974-4854
0000-0002-6483-4798
0000-0003-3787-2243
0000-0002-2538-7032
0000-0002-4126-3478
0000-0002-4820-3785
0000-0002-2794-5237
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7233411
PMID 32301647
PQID 2391972978
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2391972978
pubmed_primary_32301647
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Radiology
PublicationTitleAlternate Radiology
PublicationYear 2020
References 32553834 - Int J Infect Dis. 2020 Aug;97:233-235
References_xml – reference: 32553834 - Int J Infect Dis. 2020 Aug;97:233-235
SSID ssj0014587
Score 2.709505
Snippet Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E86
SubjectTerms Aged
Betacoronavirus
Coronavirus Infections - diagnostic imaging
Coronavirus Infections - pathology
COVID-19
Emergency Service, Hospital
Female
Hospitalization
Humans
Intensive Care Units
Male
Middle Aged
Pandemics
Patient Admission - statistics & numerical data
Pneumonia, Viral - diagnostic imaging
Pneumonia, Viral - pathology
Predictive Value of Tests
Prognosis
Radiographic Image Interpretation, Computer-Assisted - methods
Retrospective Studies
ROC Curve
SARS-CoV-2
Tomography, X-Ray Computed - methods
Title Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia
URI https://www.ncbi.nlm.nih.gov/pubmed/32301647
https://www.proquest.com/docview/2391972978
Volume 296
WOSCitedRecordID wos000551892700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Uinjx_agvVvC61GY3bXISqRYF-zhU7a3sYxYCJalt6u93JknpSRAkkFOWXWZnJt_uN8zH2J23VlJbb2GNiYVCyCzwy1gEkfZtqQIfqVJsot3vR-NxPKwu3BZVWeUqJxaJ2mWW7sgbgYxJIQsPPQ-zL0GqUcSuVhIam6wmEcqQV7fHaxZBhYVAHim3iqZshhWriSeAxly7JCPqgR7EDPJ3hFn8abr7_13jAdurMCZ_LJ3ikG1AesR2ehWLfszGnzCdCk3tlMHxNwx3nqWc2ugWRdC8QxpavDPiecaHcxqW80K4eQF8sMxxLcCTlHcGH69PohnzYQpLnDrRJ-y9-zzqvIhKYUFYtFYuYlD23imnjcE4lDbS2ljtMfH4kHo6aMQnAcgI99m7yPhmy4cGwhBU22otIThlW2mWwjnjgBncBZHzDloKMY8JnApAeSJqvW2ZOrtd2WyCHky0hE4hWy4ma6vV2Vlp-MmsbLUxkXhCoo5nF38Yfcl2aTPL6rwrVvMYv3DNtu13nizmN4Vr4Ls_7P0AWjfEEA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well-aerated+Lung+on+Admitting+Chest+CT+to+Predict+Adverse+Outcome+in+COVID-19+Pneumonia&rft.jtitle=Radiology&rft.au=Colombi%2C+Davide&rft.au=Bodini%2C+Flavio+C&rft.au=Petrini%2C+Marcello&rft.au=Maffi%2C+Gabriele&rft.date=2020-08-01&rft.issn=1527-1315&rft.eissn=1527-1315&rft.volume=296&rft.issue=2&rft.spage=E86&rft_id=info:doi/10.1148%2Fradiol.2020201433&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-1315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-1315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-1315&client=summon