Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia
Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine...
Uloženo v:
| Vydáno v: | Radiology Ročník 296; číslo 2; s. E86 |
|---|---|
| Hlavní autoři: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.08.2020
|
| Témata: | |
| ISSN: | 1527-1315, 1527-1315 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine prognosis in patients with COVID-19 pneumonia. Materials and Methods Imaging of patients admitted at the emergency department between February 17 and March 10, 2020 who underwent chest CT were retrospectively analyzed. Patients with negative results of reverse-transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 at nasal-pharyngeal swabbing, negative chest CT findings, and incomplete clinical data were excluded. CT images were analyzed for quantification of WAL visually (%V-WAL), with open-source software (%S-WAL), and with absolute volume (VOL-WAL). Clinical parameters included patient characteristics, comorbidities, symptom type and duration, oxygen saturation, and laboratory values. Logistic regression was used to evaluate the relationship between clinical parameters and CT metrics versus patient outcome (intensive care unit [ICU] admission or death vs no ICU admission or death). The area under the receiver operating characteristic curve (AUC) was calculated to determine model performance. Results The study included 236 patients (59 of 123 [25%] were female; median age, 68 years). A %V-WAL less than 73% (odds ratio [OR], 5.4; 95% confidence interval [CI]: 2.7, 10.8;
< .001), %S-WAL less than 71% (OR, 3.8; 95% CI: 1.9, 7.5;
< .001), and VOL-WAL less than 2.9 L (OR, 2.6; 95% CI: 1.2, 5.8;
< .01) were predictors of ICU admission or death. In comparison with clinical models containing only clinical parameters (AUC = 0.83), all three quantitative models showed better diagnostic performance (AUC = 0.86 for all models). The models containing %V-WAL less than 73% and VOL-WAL less than 2.9 L were superior in terms of performance as compared with the models containing only clinical parameters (
= .04 for both models). Conclusion In patients with confirmed coronavirus disease 2019 pneumonia, visual or software quantification of the extent of CT lung abnormality were predictors of intensive care unit admission or death. © RSNA, 2020 |
|---|---|
| AbstractList | Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine prognosis in patients with COVID-19 pneumonia. Materials and Methods Imaging of patients admitted at the emergency department between February 17 and March 10, 2020 who underwent chest CT were retrospectively analyzed. Patients with negative results of reverse-transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 at nasal-pharyngeal swabbing, negative chest CT findings, and incomplete clinical data were excluded. CT images were analyzed for quantification of WAL visually (%V-WAL), with open-source software (%S-WAL), and with absolute volume (VOL-WAL). Clinical parameters included patient characteristics, comorbidities, symptom type and duration, oxygen saturation, and laboratory values. Logistic regression was used to evaluate the relationship between clinical parameters and CT metrics versus patient outcome (intensive care unit [ICU] admission or death vs no ICU admission or death). The area under the receiver operating characteristic curve (AUC) was calculated to determine model performance. Results The study included 236 patients (59 of 123 [25%] were female; median age, 68 years). A %V-WAL less than 73% (odds ratio [OR], 5.4; 95% confidence interval [CI]: 2.7, 10.8;
< .001), %S-WAL less than 71% (OR, 3.8; 95% CI: 1.9, 7.5;
< .001), and VOL-WAL less than 2.9 L (OR, 2.6; 95% CI: 1.2, 5.8;
< .01) were predictors of ICU admission or death. In comparison with clinical models containing only clinical parameters (AUC = 0.83), all three quantitative models showed better diagnostic performance (AUC = 0.86 for all models). The models containing %V-WAL less than 73% and VOL-WAL less than 2.9 L were superior in terms of performance as compared with the models containing only clinical parameters (
= .04 for both models). Conclusion In patients with confirmed coronavirus disease 2019 pneumonia, visual or software quantification of the extent of CT lung abnormality were predictors of intensive care unit admission or death. © RSNA, 2020 Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine prognosis in patients with COVID-19 pneumonia. Materials and Methods Imaging of patients admitted at the emergency department between February 17 and March 10, 2020 who underwent chest CT were retrospectively analyzed. Patients with negative results of reverse-transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 at nasal-pharyngeal swabbing, negative chest CT findings, and incomplete clinical data were excluded. CT images were analyzed for quantification of WAL visually (%V-WAL), with open-source software (%S-WAL), and with absolute volume (VOL-WAL). Clinical parameters included patient characteristics, comorbidities, symptom type and duration, oxygen saturation, and laboratory values. Logistic regression was used to evaluate the relationship between clinical parameters and CT metrics versus patient outcome (intensive care unit [ICU] admission or death vs no ICU admission or death). The area under the receiver operating characteristic curve (AUC) was calculated to determine model performance. Results The study included 236 patients (59 of 123 [25%] were female; median age, 68 years). A %V-WAL less than 73% (odds ratio [OR], 5.4; 95% confidence interval [CI]: 2.7, 10.8; P < .001), %S-WAL less than 71% (OR, 3.8; 95% CI: 1.9, 7.5; P < .001), and VOL-WAL less than 2.9 L (OR, 2.6; 95% CI: 1.2, 5.8; P < .01) were predictors of ICU admission or death. In comparison with clinical models containing only clinical parameters (AUC = 0.83), all three quantitative models showed better diagnostic performance (AUC = 0.86 for all models). The models containing %V-WAL less than 73% and VOL-WAL less than 2.9 L were superior in terms of performance as compared with the models containing only clinical parameters (P = .04 for both models). Conclusion In patients with confirmed coronavirus disease 2019 pneumonia, visual or software quantification of the extent of CT lung abnormality were predictors of intensive care unit admission or death. © RSNA, 2020 Online supplemental material is available for this article.Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019 (COVID-19) pneumonia. Purpose To determine the value of quantification of the well-aerated lung (WAL) obtained at admission chest CT to determine prognosis in patients with COVID-19 pneumonia. Materials and Methods Imaging of patients admitted at the emergency department between February 17 and March 10, 2020 who underwent chest CT were retrospectively analyzed. Patients with negative results of reverse-transcription polymerase chain reaction for severe acute respiratory syndrome coronavirus 2 at nasal-pharyngeal swabbing, negative chest CT findings, and incomplete clinical data were excluded. CT images were analyzed for quantification of WAL visually (%V-WAL), with open-source software (%S-WAL), and with absolute volume (VOL-WAL). Clinical parameters included patient characteristics, comorbidities, symptom type and duration, oxygen saturation, and laboratory values. Logistic regression was used to evaluate the relationship between clinical parameters and CT metrics versus patient outcome (intensive care unit [ICU] admission or death vs no ICU admission or death). The area under the receiver operating characteristic curve (AUC) was calculated to determine model performance. Results The study included 236 patients (59 of 123 [25%] were female; median age, 68 years). A %V-WAL less than 73% (odds ratio [OR], 5.4; 95% confidence interval [CI]: 2.7, 10.8; P < .001), %S-WAL less than 71% (OR, 3.8; 95% CI: 1.9, 7.5; P < .001), and VOL-WAL less than 2.9 L (OR, 2.6; 95% CI: 1.2, 5.8; P < .01) were predictors of ICU admission or death. In comparison with clinical models containing only clinical parameters (AUC = 0.83), all three quantitative models showed better diagnostic performance (AUC = 0.86 for all models). The models containing %V-WAL less than 73% and VOL-WAL less than 2.9 L were superior in terms of performance as compared with the models containing only clinical parameters (P = .04 for both models). Conclusion In patients with confirmed coronavirus disease 2019 pneumonia, visual or software quantification of the extent of CT lung abnormality were predictors of intensive care unit admission or death. © RSNA, 2020 Online supplemental material is available for this article. |
| Author | Sverzellati, Nicola Bodini, Flavio C Milanese, Gianluca Petrini, Marcello Michieletti, Emanuele Morelli, Nicola Silva, Mario Maffi, Gabriele Colombi, Davide |
| Author_xml | – sequence: 1 givenname: Davide orcidid: 0000-0002-2794-5237 surname: Colombi fullname: Colombi, Davide organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.) – sequence: 2 givenname: Flavio C orcidid: 0000-0003-0832-2605 surname: Bodini fullname: Bodini, Flavio C organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.) – sequence: 3 givenname: Marcello surname: Petrini fullname: Petrini, Marcello organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.) – sequence: 4 givenname: Gabriele orcidid: 0000-0002-4126-3478 surname: Maffi fullname: Maffi, Gabriele organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.) – sequence: 5 givenname: Nicola orcidid: 0000-0003-3787-2243 surname: Morelli fullname: Morelli, Nicola organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.) – sequence: 6 givenname: Gianluca orcidid: 0000-0003-1974-4854 surname: Milanese fullname: Milanese, Gianluca organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.) – sequence: 7 givenname: Mario orcidid: 0000-0002-2538-7032 surname: Silva fullname: Silva, Mario organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.) – sequence: 8 givenname: Nicola orcidid: 0000-0002-4820-3785 surname: Sverzellati fullname: Sverzellati, Nicola organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.) – sequence: 9 givenname: Emanuele orcidid: 0000-0002-6483-4798 surname: Michieletti fullname: Michieletti, Emanuele organization: From the Department of Radiological Functions, Radiology Unit, Guglielmo da Saliceto Hospital, Via Taverna 49, 29121, Piacenza, Italy (D.C., F.C.B., M.P., G. Maffi, N.M., E.M.); and Department of Medicine and Surgery (DiMeC), University of Parma, Parma, Italy (G. Milanese, M.S., N.S.) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32301647$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1LxDAQhoOsuB_6A7xIjl6qTdK0yXGpXwsLu4f141bSZKqRNlmbVPDfW3EFeQ8zL_MwzLxzNHHeAULnJL0iJBPXvTLWt1c0_RHJGDtCM8JpkRBG-ORfP0XzEN7TkeGiOEFTRllK8qyYoZdnaNtEQa8iGLwe3Cv2Di9NZ2O0oynfIERc7nD0eNuDsTqO00_oA-DNELXvAFuHy83T6iYhEm8dDJ13Vp2i40a1Ac4OdYEe72535UOy3tyvyuU60UzKmEjIdGoyo-o6Z4JpoVStVSNE0XCSUqZyLigwAVo3RtQNyRteA-eQFVopBnSBLn_37nv_MYzHVp0NenxKOfBDqCiTRBZUFmJELw7oUHdgqn1vO9V_VX9p0G8rT2Ph |
| CitedBy_id | crossref_primary_10_1097_RCT_0000000000001393 crossref_primary_10_1097_RTI_0000000000000704 crossref_primary_10_1371_journal_pone_0271787 crossref_primary_10_1080_23744235_2020_1792544 crossref_primary_10_1111_jan_14848 crossref_primary_10_1016_j_heliyon_2024_e37272 crossref_primary_10_1109_MSP_2021_3090674 crossref_primary_10_3390_diagnostics10110929 crossref_primary_10_3390_diagnostics11091616 crossref_primary_10_1016_j_bjid_2021_101702 crossref_primary_10_1080_13685538_2020_1774748 crossref_primary_10_1038_s42256_020_00251_5 crossref_primary_10_1007_s00134_020_06118_y crossref_primary_10_1371_journal_pone_0251946 crossref_primary_10_1080_23744235_2022_2035428 crossref_primary_10_3390_diagnostics11050878 crossref_primary_10_3390_ijerph17186914 crossref_primary_10_12998_wjcc_v9_i28_8388 crossref_primary_10_1016_j_acra_2022_03_025 crossref_primary_10_1016_j_ejrad_2021_109650 crossref_primary_10_1097_MD_0000000000030407 crossref_primary_10_1183_13993003_00870_2021 crossref_primary_10_1186_s13098_020_00586_4 crossref_primary_10_1002_jmv_27301 crossref_primary_10_3389_fcimb_2021_777070 crossref_primary_10_1002_emp2_12575 crossref_primary_10_1007_s00330_020_07033_y crossref_primary_10_1016_j_rx_2021_09_011 crossref_primary_10_1371_journal_pone_0263261 crossref_primary_10_1007_s10140_021_01937_y crossref_primary_10_3390_ijerph17207394 crossref_primary_10_1007_s10140_021_02008_y crossref_primary_10_1017_S0950268821000376 crossref_primary_10_1016_j_ejrad_2022_110238 crossref_primary_10_1371_journal_pone_0270111 crossref_primary_10_3389_fmed_2022_914098 crossref_primary_10_5005_jp_journals_11010_1176 crossref_primary_10_3389_fimmu_2021_765330 crossref_primary_10_1109_MPULS_2020_3008354 crossref_primary_10_1007_s13167_023_00325_5 crossref_primary_10_1111_jfbc_14079 crossref_primary_10_3389_fmed_2021_588013 crossref_primary_10_1371_journal_pone_0254550 crossref_primary_10_1016_j_acra_2022_06_002 crossref_primary_10_1016_j_rxeng_2021_09_004 crossref_primary_10_3390_diagnostics12061501 crossref_primary_10_1007_s11739_022_02931_z crossref_primary_10_1371_journal_pone_0243966 crossref_primary_10_1186_s12879_021_05855_9 crossref_primary_10_1007_s00330_021_07993_9 crossref_primary_10_1007_s10140_020_01867_1 crossref_primary_10_1007_s11517_024_03066_3 crossref_primary_10_3390_diagnostics11050738 crossref_primary_10_1016_j_bjid_2021_101599 crossref_primary_10_1016_j_ejrad_2020_109298 crossref_primary_10_1186_s40560_021_00566_4 crossref_primary_10_4103_ijri_IJRI_965_20 crossref_primary_10_1159_000515110 crossref_primary_10_1007_s11547_020_01293_w crossref_primary_10_1016_j_rmed_2021_106577 crossref_primary_10_1007_s10072_022_06333_z crossref_primary_10_1111_echo_14962 crossref_primary_10_3390_jcm12124054 crossref_primary_10_1186_s13244_020_00901_7 crossref_primary_10_1016_j_jiph_2020_11_012 crossref_primary_10_1016_j_mayocp_2020_10_022 crossref_primary_10_3390_jcm10132894 crossref_primary_10_1007_s00330_021_08049_8 crossref_primary_10_1016_j_hrtlng_2021_02_015 crossref_primary_10_1016_j_jfma_2021_07_021 crossref_primary_10_1080_23744235_2021_1910727 crossref_primary_10_1177_2040622320935765 crossref_primary_10_1111_resp_14336 crossref_primary_10_1016_j_imu_2022_100929 crossref_primary_10_1016_j_patrec_2021_09_012 crossref_primary_10_4081_mrm_2021_766 crossref_primary_10_1016_j_jcct_2020_08_013 crossref_primary_10_1259_bjr_20220058 crossref_primary_10_1186_s12931_022_02222_3 crossref_primary_10_3389_fmed_2021_659520 crossref_primary_10_1007_s10140_020_01833_x crossref_primary_10_1016_j_ejro_2021_100322 crossref_primary_10_3389_fimmu_2020_02072 crossref_primary_10_1109_TCBB_2021_3102584 crossref_primary_10_1007_s10278_022_00593_z crossref_primary_10_1016_j_ejro_2020_100294 crossref_primary_10_1186_s12880_020_00521_z crossref_primary_10_1371_journal_pone_0239172 crossref_primary_10_3389_fphys_2025_1578058 crossref_primary_10_3390_diagnostics15111301 crossref_primary_10_1186_s12931_024_02970_4 crossref_primary_10_1177_1747493020938294 crossref_primary_10_3390_biomedicines9091228 crossref_primary_10_3390_life13010198 crossref_primary_10_1038_s41467_020_20657_4 crossref_primary_10_1038_s41598_022_12311_4 crossref_primary_10_6061_clinics_2021_e2376 crossref_primary_10_1016_j_engappai_2024_108336 crossref_primary_10_6061_clinics_2020_e2027 crossref_primary_10_1016_j_ejrad_2021_109612 crossref_primary_10_1007_s00330_023_09427_0 crossref_primary_10_1007_s11547_022_01458_9 crossref_primary_10_1007_s00330_021_08485_6 crossref_primary_10_1055_a_1731_7905 crossref_primary_10_3390_app12104861 crossref_primary_10_1136_bmjopen_2021_052665 crossref_primary_10_3348_jksr_2021_0117 crossref_primary_10_3389_fmed_2022_770031 crossref_primary_10_3389_fonc_2020_582901 crossref_primary_10_1007_s13760_022_02043_7 crossref_primary_10_1186_s13244_021_01096_1 crossref_primary_10_1016_j_clinimag_2021_02_009 crossref_primary_10_1093_bjro_tzaf008 crossref_primary_10_1186_s40001_025_02303_1 crossref_primary_10_1007_s00330_020_07271_0 crossref_primary_10_1080_02664763_2022_2104229 crossref_primary_10_3390_diagnostics11030437 crossref_primary_10_3389_fmed_2020_572115 crossref_primary_10_3390_jcm10235650 crossref_primary_10_1007_s42058_021_00068_0 crossref_primary_10_1038_s41598_021_85694_5 crossref_primary_10_1109_ACCESS_2021_3093633 crossref_primary_10_1186_s12879_021_06536_3 crossref_primary_10_1186_s13613_020_00799_w crossref_primary_10_3390_diagnostics11101791 crossref_primary_10_6061_clinics_2021_e2476 crossref_primary_10_1016_j_clinimag_2020_09_002 crossref_primary_10_1016_j_bspc_2021_102582 crossref_primary_10_1038_s41598_021_90246_y crossref_primary_10_1067_j_cpradiol_2022_04_002 crossref_primary_10_1007_s13668_020_00330_4 crossref_primary_10_2196_24225 crossref_primary_10_1016_S2665_9913_20_30333_7 crossref_primary_10_1183_20734735_0006_2024 crossref_primary_10_3390_app11031238 crossref_primary_10_3389_fphys_2021_617657 crossref_primary_10_1016_j_clinimag_2020_12_037 crossref_primary_10_1038_s41598_022_06199_3 crossref_primary_10_1016_j_hrtlng_2020_10_005 crossref_primary_10_1038_s41598_021_88591_z crossref_primary_10_1016_j_ejmp_2021_01_004 crossref_primary_10_1016_j_metabol_2020_154436 crossref_primary_10_1007_s15010_020_01476_7 crossref_primary_10_1002_acm2_13263 crossref_primary_10_1016_j_cca_2020_06_012 crossref_primary_10_1007_s11517_023_02958_0 crossref_primary_10_3390_diagnostics12122921 crossref_primary_10_1055_a_1344_4715 crossref_primary_10_3390_diagnostics11112125 crossref_primary_10_1371_journal_pone_0271271 crossref_primary_10_1016_j_rmed_2020_106206 crossref_primary_10_1016_j_jcct_2021_03_003 crossref_primary_10_1007_s00330_020_07013_2 crossref_primary_10_3390_jcm11061704 crossref_primary_10_5114_pjr_2020_100788 crossref_primary_10_3390_diagnostics11020265 crossref_primary_10_1186_s41747_022_00317_6 crossref_primary_10_1016_j_acra_2021_03_001 crossref_primary_10_1007_s00259_021_05375_3 crossref_primary_10_1007_s10140_025_02359_w crossref_primary_10_1148_radiol_2021204141 crossref_primary_10_1016_j_amsu_2020_10_071 crossref_primary_10_1186_s12931_022_02025_6 crossref_primary_10_1016_j_ejro_2020_100237 crossref_primary_10_1186_s12877_022_02776_3 crossref_primary_10_1002_mp_18049 crossref_primary_10_5114_pjr_2021_104049 crossref_primary_10_1097_RCT_0000000000001303 crossref_primary_10_1038_s41598_023_46625_8 crossref_primary_10_1038_s41598_021_95114_3 crossref_primary_10_1038_s41746_021_00383_x crossref_primary_10_3389_fonc_2020_01560 crossref_primary_10_1371_journal_pone_0287953 crossref_primary_10_1371_journal_pone_0245518 crossref_primary_10_2217_bmm_2021_0669 crossref_primary_10_1097_MD_0000000000033960 crossref_primary_10_1007_s10278_022_00734_4 crossref_primary_10_1016_j_ejrad_2020_109209 crossref_primary_10_3389_fmed_2021_643917 crossref_primary_10_1148_radiol_2021210834 crossref_primary_10_1007_s11604_020_01085_2 crossref_primary_10_1017_S0950268820002502 crossref_primary_10_1016_j_imed_2021_05_005 crossref_primary_10_1097_CCM_0000000000006105 crossref_primary_10_1007_s10140_022_02034_4 crossref_primary_10_1016_j_ejro_2020_100272 crossref_primary_10_1007_s00259_021_05435_8 crossref_primary_10_3390_diagnostics13182988 crossref_primary_10_1016_j_ejrad_2020_109217 crossref_primary_10_1002_dmrr_3519 crossref_primary_10_1109_JBHI_2021_3082527 crossref_primary_10_1016_j_diii_2021_06_007 crossref_primary_10_1097_CCM_0000000000005915 crossref_primary_10_3389_fmed_2023_1125530 crossref_primary_10_1016_j_compbiomed_2021_104605 crossref_primary_10_1007_s00592_025_02507_1 crossref_primary_10_3348_kjr_2020_0318 crossref_primary_10_1109_TBME_2021_3085576 crossref_primary_10_1186_s12985_021_01538_8 crossref_primary_10_1259_bjr_20220180 crossref_primary_10_1186_s41747_020_00167_0 crossref_primary_10_5005_jp_journals_10071_23772 crossref_primary_10_4274_balkanmedj_galenos_2023_2023_4_52_response crossref_primary_10_1038_s41598_021_89182_8 crossref_primary_10_1016_j_clinimag_2022_11_010 crossref_primary_10_1016_j_heliyon_2022_e10166 crossref_primary_10_1016_j_heliyon_2023_e21965 crossref_primary_10_3390_cells11030467 crossref_primary_10_1053_j_ro_2021_10_002 crossref_primary_10_1136_bmjopen_2020_040175 crossref_primary_10_1159_000509223 crossref_primary_10_1016_j_resmer_2024_101140 crossref_primary_10_1007_s12325_021_01702_0 crossref_primary_10_1016_j_patcog_2021_108135 crossref_primary_10_1016_j_clinimag_2021_01_028 crossref_primary_10_1007_s00330_025_11752_5 crossref_primary_10_1016_j_ejrad_2020_109344 crossref_primary_10_3233_XST_200721 crossref_primary_10_2196_24973 crossref_primary_10_1093_abm_kaab081 crossref_primary_10_1186_s12931_023_02530_2 crossref_primary_10_1007_s00330_020_07046_7 crossref_primary_10_31067_acusaglik_1663231 crossref_primary_10_1259_bjr_20200716 crossref_primary_10_6061_clinics_2021_e3503 crossref_primary_10_4103_jehp_jehp_287_22 crossref_primary_10_1016_j_ejrad_2020_109233 crossref_primary_10_1016_j_archger_2021_104383 crossref_primary_10_1016_j_compbiomed_2021_104304 crossref_primary_10_3390_diagnostics13213328 crossref_primary_10_1016_j_ejmp_2021_04_022 crossref_primary_10_1016_j_ajem_2022_06_043 crossref_primary_10_21292_2075_1230_2020_98_6_7_14 crossref_primary_10_3390_jcm12227164 crossref_primary_10_5812_iranjradiol_110396 crossref_primary_10_3390_jpm13030382 crossref_primary_10_3892_etm_2022_11350 crossref_primary_10_1186_s12890_023_02613_2 crossref_primary_10_1007_s11547_020_01320_w crossref_primary_10_1109_ACCESS_2020_3034032 crossref_primary_10_1016_j_media_2021_102159 crossref_primary_10_1016_j_diii_2020_12_002 crossref_primary_10_1155_2022_6460865 crossref_primary_10_1186_s13223_023_00797_0 crossref_primary_10_3389_fimmu_2020_01359 crossref_primary_10_1371_journal_pone_0308014 crossref_primary_10_1155_2024_5520174 crossref_primary_10_1097_TP_0000000000003968 crossref_primary_10_1007_s40477_021_00559_x crossref_primary_10_1016_j_clinimag_2021_04_008 crossref_primary_10_4103_jrms_JRMS_1160_20 crossref_primary_10_3390_biology9080181 crossref_primary_10_1007_s00330_021_07938_2 crossref_primary_10_1007_s12015_020_10026_5 crossref_primary_10_1016_j_ejrad_2020_109256 crossref_primary_10_1097_IPC_0000000000001432 crossref_primary_10_25259_JPATS_31_2023 crossref_primary_10_1183_13993003_03498_2020 crossref_primary_10_1007_s11547_022_01456_x |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1148/radiol.2020201433 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1527-1315 |
| ExternalDocumentID | 32301647 |
| Genre | Journal Article |
| GroupedDBID | --- .55 .GJ 123 18M 1CY 1KJ 29P 2WC 34G 39C 4.4 53G 5RE 6NX 6PF 7FM AAEJM AAQQT AAWTL ABDPE ABHFT ABOCM ACFQH ACGFO ACJAN ACRZS ADBBV AENEX AENYM AFFNX AFOSN AJJEV AJWWR ALMA_UNASSIGNED_HOLDINGS BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P F9R GX1 H13 J5H KO8 L7B LMP LSO MJL MV1 N4W NPM OK1 P2P R.V RKKAF RXW SJN TAE TR2 TRS TWZ VXZ W8F WH7 WOQ X7M YQI YQJ ZGI ZKG ZVN ZXP 7X8 |
| ID | FETCH-LOGICAL-c399t-9e4c0d4dabb6383c8aabcaf887f51023a6582e38eccfd8bf16f5be55e47caa3e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 352 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551892700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1527-1315 |
| IngestDate | Wed Oct 01 14:55:34 EDT 2025 Wed Feb 19 02:29:11 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c399t-9e4c0d4dabb6383c8aabcaf887f51023a6582e38eccfd8bf16f5be55e47caa3e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0832-2605 0000-0003-1974-4854 0000-0002-6483-4798 0000-0003-3787-2243 0000-0002-2538-7032 0000-0002-4126-3478 0000-0002-4820-3785 0000-0002-2794-5237 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7233411 |
| PMID | 32301647 |
| PQID | 2391972978 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2391972978 pubmed_primary_32301647 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Radiology |
| PublicationTitleAlternate | Radiology |
| PublicationYear | 2020 |
| References | 32553834 - Int J Infect Dis. 2020 Aug;97:233-235 |
| References_xml | – reference: 32553834 - Int J Infect Dis. 2020 Aug;97:233-235 |
| SSID | ssj0014587 |
| Score | 2.709505 |
| Snippet | Background CT of patients with severe acute respiratory syndrome coronavirus 2 disease depicts the extent of lung involvement in coronavirus disease 2019... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | E86 |
| SubjectTerms | Aged Betacoronavirus Coronavirus Infections - diagnostic imaging Coronavirus Infections - pathology COVID-19 Emergency Service, Hospital Female Hospitalization Humans Intensive Care Units Male Middle Aged Pandemics Patient Admission - statistics & numerical data Pneumonia, Viral - diagnostic imaging Pneumonia, Viral - pathology Predictive Value of Tests Prognosis Radiographic Image Interpretation, Computer-Assisted - methods Retrospective Studies ROC Curve SARS-CoV-2 Tomography, X-Ray Computed - methods |
| Title | Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32301647 https://www.proquest.com/docview/2391972978 |
| Volume | 296 |
| WOSCitedRecordID | wos000551892700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Uinjx_agvVvC61GY3bXISqRYF-zhU7a3sYxYCJalt6u93JknpSRAkkFOWXWZnJt_uN8zH2J23VlJbb2GNiYVCyCzwy1gEkfZtqQIfqVJsot3vR-NxPKwu3BZVWeUqJxaJ2mWW7sgbgYxJIQsPPQ-zL0GqUcSuVhIam6wmEcqQV7fHaxZBhYVAHim3iqZshhWriSeAxly7JCPqgR7EDPJ3hFn8abr7_13jAdurMCZ_LJ3ikG1AesR2ehWLfszGnzCdCk3tlMHxNwx3nqWc2ugWRdC8QxpavDPiecaHcxqW80K4eQF8sMxxLcCTlHcGH69PohnzYQpLnDrRJ-y9-zzqvIhKYUFYtFYuYlD23imnjcE4lDbS2ljtMfH4kHo6aMQnAcgI99m7yPhmy4cGwhBU22otIThlW2mWwjnjgBncBZHzDloKMY8JnApAeSJqvW2ZOrtd2WyCHky0hE4hWy4ma6vV2Vlp-MmsbLUxkXhCoo5nF38Yfcl2aTPL6rwrVvMYv3DNtu13nizmN4Vr4Ls_7P0AWjfEEA |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well-aerated+Lung+on+Admitting+Chest+CT+to+Predict+Adverse+Outcome+in+COVID-19+Pneumonia&rft.jtitle=Radiology&rft.au=Colombi%2C+Davide&rft.au=Bodini%2C+Flavio+C&rft.au=Petrini%2C+Marcello&rft.au=Maffi%2C+Gabriele&rft.date=2020-08-01&rft.issn=1527-1315&rft.eissn=1527-1315&rft.volume=296&rft.issue=2&rft.spage=E86&rft_id=info:doi/10.1148%2Fradiol.2020201433&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-1315&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-1315&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-1315&client=summon |