Understanding Flaky Tests Through Linguistic Diversity: A Cross-Language and Comparative Machine Learning Study
Software development is significantly impeded by flaky tests, which intermittently pass or fail without requiring code modifications, resulting in a decline in confidence in automated testing frameworks. Code smells (i.e., test case or production code) are the primary cause of test flakiness. In ord...
Saved in:
| Published in: | IEEE access Vol. 13; pp. 54561 - 54584 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Software development is significantly impeded by flaky tests, which intermittently pass or fail without requiring code modifications, resulting in a decline in confidence in automated testing frameworks. Code smells (i.e., test case or production code) are the primary cause of test flakiness. In order to ascertain the prevalence of test smells, researchers and practitioners have examined numerous programming languages. However, one isolated experiment was conducted, which focused solely on one programming language. Across a variety of programming languages, such as Java, Python, C++, Go, and JavaScript, this study examines the predictive accuracy of a variety of machine learning classifiers in identifying flaky tests. We compare the performance of classifiers such as Random Forest, Decision Tree, Naive Bayes, Support Vector Machine, and Logistic Regression in both single-language and cross-language settings. In order to ascertain the impact of linguistic diversity on the flakiness of test cases, models were trained on a single language and subsequently tested on a variety of languages. The following key findings indicate that Random Forest and Logistic Regression consistently outperform other classifiers in terms of accuracy, adaptability, and generalizability, particularly in cross-language environments. Additionally, the investigation contrasts our findings with those of previous research, exhibiting enhanced precision and accuracy in the identification of flaky tests as a result of meticulous classifier selection. We conducted a thorough statistical analysis, which included t-tests, to assess the importance of classifier performance differences in terms of accuracy and F1-score across a variety of programming languages. This analysis emphasizes the substantial discrepancies between classifiers and their effectiveness in detecting flaky tests. The datasets and experiment code utilized in this study are accessible through an open source GitHub repository to facilitate reproducibility is available at: https://github.com/PELAB-LiU/FlakyCrossLanguage . Our results emphasize the effectiveness of probabilistic and ensemble classifiers in improving the reliability of automated testing, despite certain constraints, including the potential biases introduced by language-specific structures and dataset variability. This research provides developers and researchers with practical insights that can be applied to the mitigation of flaky tests in a variety of software environments. |
|---|---|
| AbstractList | Software development is significantly impeded by flaky tests, which intermittently pass or fail without requiring code modifications, resulting in a decline in confidence in automated testing frameworks. Code smells (i.e., test case or production code) are the primary cause of test flakiness. In order to ascertain the prevalence of test smells, researchers and practitioners have examined numerous programming languages. However, one isolated experiment was conducted, which focused solely on one programming language. Across a variety of programming languages, such as Java, Python, C++, Go, and JavaScript, this study examines the predictive accuracy of a variety of machine learning classifiers in identifying flaky tests. We compare the performance of classifiers such as Random Forest, Decision Tree, Naive Bayes, Support Vector Machine, and Logistic Regression in both single-language and cross-language settings. In order to ascertain the impact of linguistic diversity on the flakiness of test cases, models were trained on a single language and subsequently tested on a variety of languages. The following key findings indicate that Random Forest and Logistic Regression consistently outperform other classifiers in terms of accuracy, adaptability, and generalizability, particularly in cross-language environments. Additionally, the investigation contrasts our findings with those of previous research, exhibiting enhanced precision and accuracy in the identification of flaky tests as a result of meticulous classifier selection. We conducted a thorough statistical analysis, which included t-tests, to assess the importance of classifier performance differences in terms of accuracy and F1-score across a variety of programming languages. This analysis emphasizes the substantial discrepancies between classifiers and their effectiveness in detecting flaky tests. The datasets and experiment code utilized in this study are accessible through an open source GitHub repository to facilitate reproducibility is available at: https://github.com/PELAB-LiU/FlakyCrossLanguage . Our results emphasize the effectiveness of probabilistic and ensemble classifiers in improving the reliability of automated testing, despite certain constraints, including the potential biases introduced by language-specific structures and dataset variability. This research provides developers and researchers with practical insights that can be applied to the mitigation of flaky tests in a variety of software environments. |
| Author | Javed, Yasir Ahmad, Azeem Akour, Mohammad Sandahl, Kristian Sun, Xin Naeem, Muhammad Rashid |
| Author_xml | – sequence: 1 givenname: Azeem orcidid: 0000-0003-3049-1261 surname: Ahmad fullname: Ahmad, Azeem email: aahmad@psu.edu.sa organization: Department of Software Engineering, Prince Sultan University, Riyadh, Saudi Arabia – sequence: 2 givenname: Xin orcidid: 0009-0004-4854-6229 surname: Sun fullname: Sun, Xin organization: Department of Computer Sciences, Linköping University, Linköping, Sweden – sequence: 3 givenname: Muhammad Rashid surname: Naeem fullname: Naeem, Muhammad Rashid organization: Department of Software Engineering, Prince Sultan University, Riyadh, Saudi Arabia – sequence: 4 givenname: Yasir orcidid: 0000-0002-6311-027X surname: Javed fullname: Javed, Yasir organization: Department of Software Engineering, Prince Sultan University, Riyadh, Saudi Arabia – sequence: 5 givenname: Mohammad surname: Akour fullname: Akour, Mohammad organization: Department of Software Engineering, Prince Sultan University, Riyadh, Saudi Arabia – sequence: 6 givenname: Kristian orcidid: 0000-0002-3052-5604 surname: Sandahl fullname: Sandahl, Kristian organization: Department of Computer Sciences, Linköping University, Linköping, Sweden |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213193$$DView record from Swedish Publication Index (Linköpings universitet) |
| BookMark | eNpVkctu2zAQRYkiAZKm-YJ0QaBruXxIfHRnKEkbQEUXdrIlRhJp03VEl5Ra-O9LR0GRckNy5t4DzNz36GwIg0XohpIFpUR_Xtb13Wq1YIRVC15VXDDxDl0yKnTB8-_szfsCXae0I_moXKrkJQqPQ29jGmHo_bDB93v4ecRrm8aE19sYps0WN7kx-TT6Dt_631nsx-MXvMR1DCkVDeQubCzOBFyH5wNEGLMMf4du6weLGwtxOLFX49QfP6BzB_tkr1_vK_R4f7euvxXNj68P9bIpOq71WGiQ2knhlCyhJRwoENnKCjrClFWCKS57RzhtRUld1ZbaKme1BOXKjlSi51foYeb2AXbmEP0zxKMJ4M1LIcSNgZhH2lvTU6BlZjsuaAmib9tOEco6WklrnWaZVcys9McepvY_2q1_Wr7Q9n4yjHKqedZ_mvWHGH5NeZdmF6Y45HENp6rinAqusorPqu60x2jdPy4l5hSsmYM1p2DNa7DZ9XF2eWvtG4fmkgrC_wJm1qFS |
| CODEN | IAECCG |
| Cites_doi | 10.1109/QRS-C.2018.00031 10.1145/3379597.3387482 10.1017/CBO9780511809071 10.1007/BF00116251 10.1145/2635868.2635920 10.1109/COMPSAC61105.2024.00015 10.1109/TIT.1967.1053964 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011 10.1016/j.patrec.2005.10.010 10.1002/9781118181034 10.1145/2950290.2983932 10.1111/j.2517-6161.1958.tb00292.x 10.1145/3236024.3275529 10.1109/ICPC52881.2021.00052 10.1145/3180155.3180164 10.1109/WETSoM.2017.2 10.1037/h0042519 10.1109/ICST.2018.00011 10.1145/3293882.3330568 10.1111/j.1469-1809.1936.tb02137.x 10.1145/3106237.3106288 10.1145/3106237.3106270 10.1145/3212695 10.1109/ICSME.2018.00062 10.1007/BF00994018 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 7T9 8BQ 8FD JG9 JQ2 L7M L~C L~D ABXSW ADTPV AOWAS D8T DG8 ZZAVC DOA |
| DOI | 10.1109/ACCESS.2025.3553626 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Linguistics and Language Behavior Abstracts (LLBA) METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Linguistics and Language Behavior Abstracts (LLBA) Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 54584 |
| ExternalDocumentID | oai_doaj_org_article_d1a1475af3614a6dbbc8012c157eef92 oai_DiVA_org_liu_213193 10_1109_ACCESS_2025_3553626 10937160 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Prince Sultan University funderid: 10.13039/501100012639 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 7T9 8BQ 8FD JG9 JQ2 L7M L~C L~D ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
| ID | FETCH-LOGICAL-c399t-9a79f76f874ab03a1a07b75ac028e862837df031b641f5b49e8fe97a8f4c056d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001462610000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:23 EDT 2025 Tue Nov 04 16:45:43 EST 2025 Fri Nov 28 02:36:00 EST 2025 Sat Nov 29 08:06:58 EST 2025 Wed Aug 27 02:05:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Vocabulary Java Codes software testing Flaky tests Programming Reproducibility of results machine learning Random forests artificial intelligence Training Accuracy Feature extraction non-deterministic tests Python |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c399t-9a79f76f874ab03a1a07b75ac028e862837df031b641f5b49e8fe97a8f4c056d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-4854-6229 0000-0003-3049-1261 0000-0002-6311-027X 0000-0002-3052-5604 |
| OpenAccessLink | https://doaj.org/article/d1a1475af3614a6dbbc8012c157eef92 |
| PQID | 3185331638 |
| PQPubID | 4845423 |
| PageCount | 24 |
| ParticipantIDs | proquest_journals_3185331638 swepub_primary_oai_DiVA_org_liu_213193 doaj_primary_oai_doaj_org_article_d1a1475af3614a6dbbc8012c157eef92 crossref_primary_10_1109_ACCESS_2025_3553626 ieee_primary_10937160 |
| PublicationCentury | 2000 |
| PublicationDate | 20250000 2025-00-00 20250101 2025 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – year: 2025 text: 20250000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 Ahmad (ref2) 2019 ref12 ref34 ref15 Fisher (ref35) 1936; 7 Fawcett (ref40) 2006; 27 ref14 ref31 ref11 ref33 Saito (ref36) 2015; 10 ref10 Marinov (ref16) Zhang (ref43) Cordy (ref21) Yin (ref23) 2009 Quinlan (ref29) 1986; 1 Manning (ref25) 2008 Runeson (ref42) 2012 Allamanis (ref24) 2019; 51 ref26 Micco (ref7) 2019 Joachims (ref27) ref44 Bishop (ref39) 2006 Xu (ref17) 2021 ref28 Zhang (ref30) Cortes (ref32) 1995; 20 Miranda (ref18) 2021; 26 ref8 Ahmad (ref1) Opitz (ref38) 2020; 101 ref9 ref4 ref3 ref6 ref5 Wendler (ref20) 2024; 35 Bell (ref37) Boughorbel (ref41) 2017; 18 Lin (ref22) Liviu (ref19) 2025 |
| References_xml | – ident: ref3 doi: 10.1109/QRS-C.2018.00031 – start-page: 145 volume-title: Proc. Int. Conf. Softw. Maintenance Evol. ident: ref22 article-title: Dynamic features for flaky test detection – ident: ref14 doi: 10.1145/3379597.3387482 – volume: 10 issue: 3 year: 2015 ident: ref36 article-title: Precision-recall curves and roc curves for machine learning evaluation publication-title: PLoS ONE – volume-title: A Machine Learning Solution for Detecting and Mitigating Flaky Tests—Medium.com year: 2025 ident: ref19 – volume-title: Introduction to Information Retrieval year: 2008 ident: ref25 doi: 10.1017/CBO9780511809071 – volume: 1 start-page: 81 issue: 1 year: 1986 ident: ref29 article-title: Induction of decision trees publication-title: Mach. Learn. doi: 10.1007/BF00116251 – ident: ref4 doi: 10.1145/2635868.2635920 – ident: ref26 doi: 10.1109/COMPSAC61105.2024.00015 – volume-title: Case Study Research: Design and Methods year: 2009 ident: ref23 – ident: ref33 doi: 10.1109/TIT.1967.1053964 – volume: 101 year: 2020 ident: ref38 article-title: F1-score in imbalanced classification problems: A comprehensive review publication-title: Pattern Recognit. – year: 2021 ident: ref17 article-title: A LiDAR assisted control module with high precision in parking scenarios for autonomous driving vehicle publication-title: arXiv:2105.00398 – start-page: 193 volume-title: Proc. Int. Symp. Softw. Test. Anal. ident: ref37 article-title: Improving recall of flaky test detection: A classification approach – volume: 35 start-page: 121 year: 2024 ident: ref20 article-title: Cross-project flaky test detection: Challenges and solutions publication-title: J. Softw. Test., Verification, Rel. – ident: ref28 doi: 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011 – volume: 27 start-page: 861 issue: 8 year: 2006 ident: ref40 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume-title: Case Study Research in Software Engineering: Guidelines and Examples year: 2012 ident: ref42 doi: 10.1002/9781118181034 – start-page: 317 volume-title: Proc. Int. Conf. Theory Inf. Retr. ident: ref43 article-title: Estimating the uncertainty of average F1 scores – ident: ref11 doi: 10.1145/2950290.2983932 – volume: 18 start-page: 1 issue: 1 year: 2017 ident: ref41 article-title: The Matthews correlation coefficient (MCC) as an alternative metric in classification performance analysis publication-title: BMC Bioinf. – ident: ref31 doi: 10.1111/j.2517-6161.1958.tb00292.x – ident: ref13 doi: 10.1145/3236024.3275529 – volume-title: Flaky Tests at Google and How we Mitigate Them year: 2019 ident: ref7 – ident: ref15 doi: 10.1109/ICPC52881.2021.00052 – ident: ref9 doi: 10.1145/3180155.3180164 – start-page: 1 volume-title: Proc. IEEE Int. Conf. Softw. Test., Verification Validation ident: ref16 article-title: Test dependency detection for practical flaky test mitigation – volume: 26 start-page: 543 year: 2021 ident: ref18 article-title: Feature engineering for flaky test detection: Lessons from the field publication-title: Empirical Softw. Eng. – ident: ref44 doi: 10.1109/WETSoM.2017.2 – ident: ref34 doi: 10.1037/h0042519 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: ref39 – ident: ref12 doi: 10.1109/ICST.2018.00011 – ident: ref10 doi: 10.1145/3293882.3330568 – volume: 7 start-page: 179 issue: 2 year: 1936 ident: ref35 article-title: The use of multiple measurements in taxonomic problems publication-title: Ann. Eugenics doi: 10.1111/j.1469-1809.1936.tb02137.x – start-page: 562 volume-title: Proc. 17th Int. Florida Artif. Intell. Res. Soc. Conf. ident: ref30 article-title: The optimality of naive Bayes – ident: ref5 doi: 10.1145/3106237.3106288 – ident: ref6 doi: 10.1145/3106237.3106270 – volume: 51 start-page: 1 issue: 4 year: 2019 ident: ref24 article-title: A survey of machine learning for big code and naturalness publication-title: ACM Comput. Surv. doi: 10.1145/3212695 – start-page: 137 volume-title: Proc. 10th Eur. Conf. Mach. Learn. (ECML) ident: ref27 article-title: Text categorization with support vector machines: Learning with many relevant features – ident: ref8 doi: 10.1109/ICSME.2018.00062 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: ref32 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – year: 2019 ident: ref2 article-title: Empirical analysis of factors and their effect on test flakiness—Practitioners’ perceptions publication-title: arXiv:1906.00673 – start-page: 37 volume-title: Proc. 8th Int. Workshop Quant. Approaches Softw. Quality Conjunct. 27th Asia–Pacifc Softw. Eng. Conf. (APSEC) ident: ref1 article-title: An evaluation of machine learning methods for predicting flaky tests – start-page: 123 volume-title: Proc. Int. Conf. Softw. Eng. ident: ref21 article-title: Studying flaky tests across projects: Replication challenges and opportunities |
| SSID | ssj0000816957 |
| Score | 2.3341246 |
| Snippet | Software development is significantly impeded by flaky tests, which intermittently pass or fail without requiring code modifications, resulting in a decline in... |
| SourceID | doaj swepub proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 54561 |
| SubjectTerms | Accuracy artificial intelligence Automation Codes Copyright Datasets Decision making Decision trees Discrepancies Effectiveness Ensemble learning Feature extraction Flaky tests Generalizability Java Language Language acquisition Language diversity Language tests Language varieties Languages Linguistics Machine learning Mitigation non-deterministic tests Programming Programming languages Python Quantitative analysis Random forests Regression analysis Reliability Reproducibility Reproducibility of results Software Software development software testing Source code Statistical analysis Support vector machines Test validity and reliability Tests Training Vocabulary |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b9swED20QYd2aNMkRdUmBYegU5SIJiWK3RylRoc0yOAE2QiSIgOjhl3EdoH8-x4_nNpDhm6CIPBDjxTfne7eARw3bYs0tKrKlvNByU3rSmNYVVpOPe3rxvcJ6UtxddXe3cnrnKwec2GcczH4zJ2Gy_gvv5_bVXCVnQXpI-T3aKG_FKJJyVpPDpVQQULWIisL4aNnw67DSaANOKhP8VgNwitbp08U6c9VVbYJ5qZoaDxoRu_-c4i78DYzSjJMS-A9vHCzPXizoTO4D_ObzRQWMprqX49kjINYkHGq00PQJr1fRdFmcrEO1fhGhqQL8ygvs1eTYAuk-ycYTn7GWExHskzrPQlxiY8HcDP6Pu5-lLnSQmmRoCxLqYX0ovGt4NpUTFNdCSNqbZF9OLR50IrtPW5_0yCEteHStd5JoVvPLTKonn2Andl85j4CMaxH1Kl2THBujZXe-6BhY2ohpBO0gJM1Aup3EtRQ0RCppEqAqQCYyoAVcB5Qeno0qGHHG_jWVd5cqqeachyuZ0g2dNMbY8PBa2ktnPNyUMBBQGqjvwRSAYdr0FXeugsV0skZCzS1gK9pIWz1fjG5Hcbep5OVGlD8hLFPz7T_GV6HuSSPzSHsLB9W7ghe2T_LyeLhS1y-fwFJTe7I priority: 102 providerName: IEEE |
| Title | Understanding Flaky Tests Through Linguistic Diversity: A Cross-Language and Comparative Machine Learning Study |
| URI | https://ieeexplore.ieee.org/document/10937160 https://www.proquest.com/docview/3185331638 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213193 https://doaj.org/article/d1a1475af3614a6dbbc8012c157eef92 |
| Volume | 13 |
| WOSCitedRecordID | wos001462610000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxELYiRJEUKCGgbEKQiyhVFuyzd22nOxZOFIBSHBGdZXttdAIdEXeHRMNvz_hxyV6VJs0Wq5XtnW88D2v8DUJfWikhDCWklpyPam6lr61lpHacBto3begz0hfi6kre3Kgfg1ZfsSYs0wNnwR331FAuGhMYOBLT9ta6aFQdbYT3QSXrS4QaJFPJBkvaqkYUmiFK1PG46-CPICEcNUfgYyMLy4YrSoz9pcXKZrQ5ZBBNXmfyFu2UcBGP8zLfoVd-voveDEgE36OH6-H9FDy5N3fPeAqDLvA0N-HBkHDerhIjMz5d12F8x2PcxXXVF-XIEsMIuPvLBo4vU6Glx4WD9RbHosPnPXQ9OZt253Vpo1A7iD6WtTJCBdEGKbixhBlqiLAgUQehhYeEBlLUPsDeti3g01iuvAxeCSMDdxAe9Wwfbc0f5v4Dwpb1ACk1ngnOnXUqhBAJamwjhPKCVujbWqL6V2bL0CnLIEpnAHQEQBcAKnQSpf7n00h1nV6AAuiiAPpfClChvYjZYL5I8deSCh2sQdRlXy50vCvOWIxBK_Q1A7sx--ns5zjNfj9b6REF-8Q-_o9FfkKv44_ns5sDtLV8XPnPaNs9LWeLx8Oku_C8fDk7TDcQfwOrXfO- |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6hggQceBaxUMAHxIlt17F3veYWtkRFpBGHFPVm2V67iqiSqkkq9d8zfqQkBw7cVivLj_1szzezns8AH5u2RRpaVWXL-aDkpnWlMawqLaee9nXj-4T0WEwm7fm5_JmT1WMujHMuHj5zh-Ex_svvF3YdQmVHQfoI-T166PdrrLpK6Vp3IZVwh4SsRdYWwsJHw67DYaAXOKgP0bAG6ZUd-xNl-vO9KrsUc1s2NJqa0dP_7OQzeJI5JRmmSfAc7rn5C3i8pTT4EhZn20ksZHSpf9-SKXZiSabpph6CXunFOso2k-PNYY0vZEi6MI5ynOOaBGsg3V_JcHIaT2M6koVaL0g4mXi7D2ejb9PupMx3LZQWKcqqlFpILxrfCq5NxTTVlTCi1hb5h0OvB_3Y3uMGYBoEsTZcutY7KXTruUUO1bNXsDdfzN1rIIb1CA7VjgnOrbHSex9UbEwthHSCFvB5g4C6SpIaKroilVQJMBUAUxmwAr4GlO6KBj3s-AK_usrLS_VUU47d9Qzphm56Y2wwvZbWwjkvBwXsB6S22ksgFXCwAV3lxbtUIaGcsUBUC_iUJsJO68ezX8PY-uVsrQYUNzH25h_1f4CHJ9PTsRp_n_x4C4_CuFL85gD2Vtdr9w4e2JvVbHn9Pk7lP9RW8g8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Flaky+Tests+Through+Linguistic+Diversity%3A+A+Cross-Language+and+Comparative+Machine+Learning+Study&rft.jtitle=IEEE+access&rft.au=Ahmad%2C+Azeem&rft.au=Sun%2C+Xin&rft.au=Naeem%2C+Muhammad+Rashid&rft.au=Javed%2C+Yasir&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=54561&rft_id=info:doi/10.1109%2FACCESS.2025.3553626&rft.externalDocID=oai_DiVA_org_liu_213193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |