Understanding Flaky Tests Through Linguistic Diversity: A Cross-Language and Comparative Machine Learning Study

Software development is significantly impeded by flaky tests, which intermittently pass or fail without requiring code modifications, resulting in a decline in confidence in automated testing frameworks. Code smells (i.e., test case or production code) are the primary cause of test flakiness. In ord...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access Vol. 13; pp. 54561 - 54584
Main Authors: Ahmad, Azeem, Sun, Xin, Naeem, Muhammad Rashid, Javed, Yasir, Akour, Mohammad, Sandahl, Kristian
Format: Journal Article
Language:English
Published: Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2169-3536, 2169-3536
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Software development is significantly impeded by flaky tests, which intermittently pass or fail without requiring code modifications, resulting in a decline in confidence in automated testing frameworks. Code smells (i.e., test case or production code) are the primary cause of test flakiness. In order to ascertain the prevalence of test smells, researchers and practitioners have examined numerous programming languages. However, one isolated experiment was conducted, which focused solely on one programming language. Across a variety of programming languages, such as Java, Python, C++, Go, and JavaScript, this study examines the predictive accuracy of a variety of machine learning classifiers in identifying flaky tests. We compare the performance of classifiers such as Random Forest, Decision Tree, Naive Bayes, Support Vector Machine, and Logistic Regression in both single-language and cross-language settings. In order to ascertain the impact of linguistic diversity on the flakiness of test cases, models were trained on a single language and subsequently tested on a variety of languages. The following key findings indicate that Random Forest and Logistic Regression consistently outperform other classifiers in terms of accuracy, adaptability, and generalizability, particularly in cross-language environments. Additionally, the investigation contrasts our findings with those of previous research, exhibiting enhanced precision and accuracy in the identification of flaky tests as a result of meticulous classifier selection. We conducted a thorough statistical analysis, which included t-tests, to assess the importance of classifier performance differences in terms of accuracy and F1-score across a variety of programming languages. This analysis emphasizes the substantial discrepancies between classifiers and their effectiveness in detecting flaky tests. The datasets and experiment code utilized in this study are accessible through an open source GitHub repository to facilitate reproducibility is available at: https://github.com/PELAB-LiU/FlakyCrossLanguage . Our results emphasize the effectiveness of probabilistic and ensemble classifiers in improving the reliability of automated testing, despite certain constraints, including the potential biases introduced by language-specific structures and dataset variability. This research provides developers and researchers with practical insights that can be applied to the mitigation of flaky tests in a variety of software environments.
AbstractList Software development is significantly impeded by flaky tests, which intermittently pass or fail without requiring code modifications, resulting in a decline in confidence in automated testing frameworks. Code smells (i.e., test case or production code) are the primary cause of test flakiness. In order to ascertain the prevalence of test smells, researchers and practitioners have examined numerous programming languages. However, one isolated experiment was conducted, which focused solely on one programming language. Across a variety of programming languages, such as Java, Python, C++, Go, and JavaScript, this study examines the predictive accuracy of a variety of machine learning classifiers in identifying flaky tests. We compare the performance of classifiers such as Random Forest, Decision Tree, Naive Bayes, Support Vector Machine, and Logistic Regression in both single-language and cross-language settings. In order to ascertain the impact of linguistic diversity on the flakiness of test cases, models were trained on a single language and subsequently tested on a variety of languages. The following key findings indicate that Random Forest and Logistic Regression consistently outperform other classifiers in terms of accuracy, adaptability, and generalizability, particularly in cross-language environments. Additionally, the investigation contrasts our findings with those of previous research, exhibiting enhanced precision and accuracy in the identification of flaky tests as a result of meticulous classifier selection. We conducted a thorough statistical analysis, which included t-tests, to assess the importance of classifier performance differences in terms of accuracy and F1-score across a variety of programming languages. This analysis emphasizes the substantial discrepancies between classifiers and their effectiveness in detecting flaky tests. The datasets and experiment code utilized in this study are accessible through an open source GitHub repository to facilitate reproducibility is available at: https://github.com/PELAB-LiU/FlakyCrossLanguage . Our results emphasize the effectiveness of probabilistic and ensemble classifiers in improving the reliability of automated testing, despite certain constraints, including the potential biases introduced by language-specific structures and dataset variability. This research provides developers and researchers with practical insights that can be applied to the mitigation of flaky tests in a variety of software environments.
Author Javed, Yasir
Ahmad, Azeem
Akour, Mohammad
Sandahl, Kristian
Sun, Xin
Naeem, Muhammad Rashid
Author_xml – sequence: 1
  givenname: Azeem
  orcidid: 0000-0003-3049-1261
  surname: Ahmad
  fullname: Ahmad, Azeem
  email: aahmad@psu.edu.sa
  organization: Department of Software Engineering, Prince Sultan University, Riyadh, Saudi Arabia
– sequence: 2
  givenname: Xin
  orcidid: 0009-0004-4854-6229
  surname: Sun
  fullname: Sun, Xin
  organization: Department of Computer Sciences, Linköping University, Linköping, Sweden
– sequence: 3
  givenname: Muhammad Rashid
  surname: Naeem
  fullname: Naeem, Muhammad Rashid
  organization: Department of Software Engineering, Prince Sultan University, Riyadh, Saudi Arabia
– sequence: 4
  givenname: Yasir
  orcidid: 0000-0002-6311-027X
  surname: Javed
  fullname: Javed, Yasir
  organization: Department of Software Engineering, Prince Sultan University, Riyadh, Saudi Arabia
– sequence: 5
  givenname: Mohammad
  surname: Akour
  fullname: Akour, Mohammad
  organization: Department of Software Engineering, Prince Sultan University, Riyadh, Saudi Arabia
– sequence: 6
  givenname: Kristian
  orcidid: 0000-0002-3052-5604
  surname: Sandahl
  fullname: Sandahl, Kristian
  organization: Department of Computer Sciences, Linköping University, Linköping, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213193$$DView record from Swedish Publication Index (Linköpings universitet)
BookMark eNpVkctu2zAQRYkiAZKm-YJ0QaBruXxIfHRnKEkbQEUXdrIlRhJp03VEl5Ra-O9LR0GRckNy5t4DzNz36GwIg0XohpIFpUR_Xtb13Wq1YIRVC15VXDDxDl0yKnTB8-_szfsCXae0I_moXKrkJQqPQ29jGmHo_bDB93v4ecRrm8aE19sYps0WN7kx-TT6Dt_631nsx-MXvMR1DCkVDeQubCzOBFyH5wNEGLMMf4du6weLGwtxOLFX49QfP6BzB_tkr1_vK_R4f7euvxXNj68P9bIpOq71WGiQ2knhlCyhJRwoENnKCjrClFWCKS57RzhtRUld1ZbaKme1BOXKjlSi51foYeb2AXbmEP0zxKMJ4M1LIcSNgZhH2lvTU6BlZjsuaAmib9tOEco6WklrnWaZVcys9McepvY_2q1_Wr7Q9n4yjHKqedZ_mvWHGH5NeZdmF6Y45HENp6rinAqusorPqu60x2jdPy4l5hSsmYM1p2DNa7DZ9XF2eWvtG4fmkgrC_wJm1qFS
CODEN IAECCG
Cites_doi 10.1109/QRS-C.2018.00031
10.1145/3379597.3387482
10.1017/CBO9780511809071
10.1007/BF00116251
10.1145/2635868.2635920
10.1109/COMPSAC61105.2024.00015
10.1109/TIT.1967.1053964
10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011
10.1016/j.patrec.2005.10.010
10.1002/9781118181034
10.1145/2950290.2983932
10.1111/j.2517-6161.1958.tb00292.x
10.1145/3236024.3275529
10.1109/ICPC52881.2021.00052
10.1145/3180155.3180164
10.1109/WETSoM.2017.2
10.1037/h0042519
10.1109/ICST.2018.00011
10.1145/3293882.3330568
10.1111/j.1469-1809.1936.tb02137.x
10.1145/3106237.3106288
10.1145/3106237.3106270
10.1145/3212695
10.1109/ICSME.2018.00062
10.1007/BF00994018
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
7T9
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOA
DOI 10.1109/ACCESS.2025.3553626
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 54584
ExternalDocumentID oai_doaj_org_article_d1a1475af3614a6dbbc8012c157eef92
oai_DiVA_org_liu_213193
10_1109_ACCESS_2025_3553626
10937160
Genre orig-research
GrantInformation_xml – fundername: Prince Sultan University
  funderid: 10.13039/501100012639
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
7T9
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
ID FETCH-LOGICAL-c399t-9a79f76f874ab03a1a07b75ac028e862837df031b641f5b49e8fe97a8f4c056d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001462610000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:23 EDT 2025
Tue Nov 04 16:45:43 EST 2025
Fri Nov 28 02:36:00 EST 2025
Sat Nov 29 08:06:58 EST 2025
Wed Aug 27 02:05:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vocabulary
Java
Codes
software testing
Flaky tests
Programming
Reproducibility of results
machine learning
Random forests
artificial intelligence
Training
Accuracy
Feature extraction
non-deterministic tests
Python
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-9a79f76f874ab03a1a07b75ac028e862837df031b641f5b49e8fe97a8f4c056d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-4854-6229
0000-0003-3049-1261
0000-0002-6311-027X
0000-0002-3052-5604
OpenAccessLink https://doaj.org/article/d1a1475af3614a6dbbc8012c157eef92
PQID 3185331638
PQPubID 4845423
PageCount 24
ParticipantIDs proquest_journals_3185331638
swepub_primary_oai_DiVA_org_liu_213193
doaj_primary_oai_doaj_org_article_d1a1475af3614a6dbbc8012c157eef92
crossref_primary_10_1109_ACCESS_2025_3553626
ieee_primary_10937160
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
Ahmad (ref2) 2019
ref12
ref34
ref15
Fisher (ref35) 1936; 7
Fawcett (ref40) 2006; 27
ref14
ref31
ref11
ref33
Saito (ref36) 2015; 10
ref10
Marinov (ref16)
Zhang (ref43)
Cordy (ref21)
Yin (ref23) 2009
Quinlan (ref29) 1986; 1
Manning (ref25) 2008
Runeson (ref42) 2012
Allamanis (ref24) 2019; 51
ref26
Micco (ref7) 2019
Joachims (ref27)
ref44
Bishop (ref39) 2006
Xu (ref17) 2021
ref28
Zhang (ref30)
Cortes (ref32) 1995; 20
Miranda (ref18) 2021; 26
ref8
Ahmad (ref1)
Opitz (ref38) 2020; 101
ref9
ref4
ref3
ref6
ref5
Wendler (ref20) 2024; 35
Bell (ref37)
Boughorbel (ref41) 2017; 18
Lin (ref22)
Liviu (ref19) 2025
References_xml – ident: ref3
  doi: 10.1109/QRS-C.2018.00031
– start-page: 145
  volume-title: Proc. Int. Conf. Softw. Maintenance Evol.
  ident: ref22
  article-title: Dynamic features for flaky test detection
– ident: ref14
  doi: 10.1145/3379597.3387482
– volume: 10
  issue: 3
  year: 2015
  ident: ref36
  article-title: Precision-recall curves and roc curves for machine learning evaluation
  publication-title: PLoS ONE
– volume-title: A Machine Learning Solution for Detecting and Mitigating Flaky Tests—Medium.com
  year: 2025
  ident: ref19
– volume-title: Introduction to Information Retrieval
  year: 2008
  ident: ref25
  doi: 10.1017/CBO9780511809071
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: ref29
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– ident: ref4
  doi: 10.1145/2635868.2635920
– ident: ref26
  doi: 10.1109/COMPSAC61105.2024.00015
– volume-title: Case Study Research: Design and Methods
  year: 2009
  ident: ref23
– ident: ref33
  doi: 10.1109/TIT.1967.1053964
– volume: 101
  year: 2020
  ident: ref38
  article-title: F1-score in imbalanced classification problems: A comprehensive review
  publication-title: Pattern Recognit.
– year: 2021
  ident: ref17
  article-title: A LiDAR assisted control module with high precision in parking scenarios for autonomous driving vehicle
  publication-title: arXiv:2105.00398
– start-page: 193
  volume-title: Proc. Int. Symp. Softw. Test. Anal.
  ident: ref37
  article-title: Improving recall of flaky test detection: A classification approach
– volume: 35
  start-page: 121
  year: 2024
  ident: ref20
  article-title: Cross-project flaky test detection: Challenges and solutions
  publication-title: J. Softw. Test., Verification, Rel.
– ident: ref28
  doi: 10.29172/7c2a6982-6d72-4cd8-bba6-2fccb06a7011
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: ref40
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume-title: Case Study Research in Software Engineering: Guidelines and Examples
  year: 2012
  ident: ref42
  doi: 10.1002/9781118181034
– start-page: 317
  volume-title: Proc. Int. Conf. Theory Inf. Retr.
  ident: ref43
  article-title: Estimating the uncertainty of average F1 scores
– ident: ref11
  doi: 10.1145/2950290.2983932
– volume: 18
  start-page: 1
  issue: 1
  year: 2017
  ident: ref41
  article-title: The Matthews correlation coefficient (MCC) as an alternative metric in classification performance analysis
  publication-title: BMC Bioinf.
– ident: ref31
  doi: 10.1111/j.2517-6161.1958.tb00292.x
– ident: ref13
  doi: 10.1145/3236024.3275529
– volume-title: Flaky Tests at Google and How we Mitigate Them
  year: 2019
  ident: ref7
– ident: ref15
  doi: 10.1109/ICPC52881.2021.00052
– ident: ref9
  doi: 10.1145/3180155.3180164
– start-page: 1
  volume-title: Proc. IEEE Int. Conf. Softw. Test., Verification Validation
  ident: ref16
  article-title: Test dependency detection for practical flaky test mitigation
– volume: 26
  start-page: 543
  year: 2021
  ident: ref18
  article-title: Feature engineering for flaky test detection: Lessons from the field
  publication-title: Empirical Softw. Eng.
– ident: ref44
  doi: 10.1109/WETSoM.2017.2
– ident: ref34
  doi: 10.1037/h0042519
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: ref39
– ident: ref12
  doi: 10.1109/ICST.2018.00011
– ident: ref10
  doi: 10.1145/3293882.3330568
– volume: 7
  start-page: 179
  issue: 2
  year: 1936
  ident: ref35
  article-title: The use of multiple measurements in taxonomic problems
  publication-title: Ann. Eugenics
  doi: 10.1111/j.1469-1809.1936.tb02137.x
– start-page: 562
  volume-title: Proc. 17th Int. Florida Artif. Intell. Res. Soc. Conf.
  ident: ref30
  article-title: The optimality of naive Bayes
– ident: ref5
  doi: 10.1145/3106237.3106288
– ident: ref6
  doi: 10.1145/3106237.3106270
– volume: 51
  start-page: 1
  issue: 4
  year: 2019
  ident: ref24
  article-title: A survey of machine learning for big code and naturalness
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3212695
– start-page: 137
  volume-title: Proc. 10th Eur. Conf. Mach. Learn. (ECML)
  ident: ref27
  article-title: Text categorization with support vector machines: Learning with many relevant features
– ident: ref8
  doi: 10.1109/ICSME.2018.00062
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: ref32
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– year: 2019
  ident: ref2
  article-title: Empirical analysis of factors and their effect on test flakiness—Practitioners’ perceptions
  publication-title: arXiv:1906.00673
– start-page: 37
  volume-title: Proc. 8th Int. Workshop Quant. Approaches Softw. Quality Conjunct. 27th Asia–Pacifc Softw. Eng. Conf. (APSEC)
  ident: ref1
  article-title: An evaluation of machine learning methods for predicting flaky tests
– start-page: 123
  volume-title: Proc. Int. Conf. Softw. Eng.
  ident: ref21
  article-title: Studying flaky tests across projects: Replication challenges and opportunities
SSID ssj0000816957
Score 2.3341246
Snippet Software development is significantly impeded by flaky tests, which intermittently pass or fail without requiring code modifications, resulting in a decline in...
SourceID doaj
swepub
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 54561
SubjectTerms Accuracy
artificial intelligence
Automation
Codes
Copyright
Datasets
Decision making
Decision trees
Discrepancies
Effectiveness
Ensemble learning
Feature extraction
Flaky tests
Generalizability
Java
Language
Language acquisition
Language diversity
Language tests
Language varieties
Languages
Linguistics
Machine learning
Mitigation
non-deterministic tests
Programming
Programming languages
Python
Quantitative analysis
Random forests
Regression analysis
Reliability
Reproducibility
Reproducibility of results
Software
Software development
software testing
Source code
Statistical analysis
Support vector machines
Test validity and reliability
Tests
Training
Vocabulary
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09b9swED20QYd2aNMkRdUmBYegU5SIJiWK3RylRoc0yOAE2QiSIgOjhl3EdoH8-x4_nNpDhm6CIPBDjxTfne7eARw3bYs0tKrKlvNByU3rSmNYVVpOPe3rxvcJ6UtxddXe3cnrnKwec2GcczH4zJ2Gy_gvv5_bVXCVnQXpI-T3aKG_FKJJyVpPDpVQQULWIisL4aNnw67DSaANOKhP8VgNwitbp08U6c9VVbYJ5qZoaDxoRu_-c4i78DYzSjJMS-A9vHCzPXizoTO4D_ObzRQWMprqX49kjINYkHGq00PQJr1fRdFmcrEO1fhGhqQL8ygvs1eTYAuk-ycYTn7GWExHskzrPQlxiY8HcDP6Pu5-lLnSQmmRoCxLqYX0ovGt4NpUTFNdCSNqbZF9OLR50IrtPW5_0yCEteHStd5JoVvPLTKonn2Andl85j4CMaxH1Kl2THBujZXe-6BhY2ohpBO0gJM1Aup3EtRQ0RCppEqAqQCYyoAVcB5Qeno0qGHHG_jWVd5cqqeachyuZ0g2dNMbY8PBa2ktnPNyUMBBQGqjvwRSAYdr0FXeugsV0skZCzS1gK9pIWz1fjG5Hcbep5OVGlD8hLFPz7T_GV6HuSSPzSHsLB9W7ghe2T_LyeLhS1y-fwFJTe7I
  priority: 102
  providerName: IEEE
Title Understanding Flaky Tests Through Linguistic Diversity: A Cross-Language and Comparative Machine Learning Study
URI https://ieeexplore.ieee.org/document/10937160
https://www.proquest.com/docview/3185331638
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213193
https://doaj.org/article/d1a1475af3614a6dbbc8012c157eef92
Volume 13
WOSCitedRecordID wos001462610000015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07TxwxELYiRJEUKCGgbEKQiyhVFuyzd22nOxZOFIBSHBGdZXttdAIdEXeHRMNvz_hxyV6VJs0Wq5XtnW88D2v8DUJfWikhDCWklpyPam6lr61lpHacBto3begz0hfi6kre3Kgfg1ZfsSYs0wNnwR331FAuGhMYOBLT9ta6aFQdbYT3QSXrS4QaJFPJBkvaqkYUmiFK1PG46-CPICEcNUfgYyMLy4YrSoz9pcXKZrQ5ZBBNXmfyFu2UcBGP8zLfoVd-voveDEgE36OH6-H9FDy5N3fPeAqDLvA0N-HBkHDerhIjMz5d12F8x2PcxXXVF-XIEsMIuPvLBo4vU6Glx4WD9RbHosPnPXQ9OZt253Vpo1A7iD6WtTJCBdEGKbixhBlqiLAgUQehhYeEBlLUPsDeti3g01iuvAxeCSMDdxAe9Wwfbc0f5v4Dwpb1ACk1ngnOnXUqhBAJamwjhPKCVujbWqL6V2bL0CnLIEpnAHQEQBcAKnQSpf7n00h1nV6AAuiiAPpfClChvYjZYL5I8deSCh2sQdRlXy50vCvOWIxBK_Q1A7sx--ns5zjNfj9b6REF-8Q-_o9FfkKv44_ns5sDtLV8XPnPaNs9LWeLx8Oku_C8fDk7TDcQfwOrXfO-
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6hggQceBaxUMAHxIlt17F3veYWtkRFpBGHFPVm2V67iqiSqkkq9d8zfqQkBw7cVivLj_1szzezns8AH5u2RRpaVWXL-aDkpnWlMawqLaee9nXj-4T0WEwm7fm5_JmT1WMujHMuHj5zh-Ex_svvF3YdQmVHQfoI-T166PdrrLpK6Vp3IZVwh4SsRdYWwsJHw67DYaAXOKgP0bAG6ZUd-xNl-vO9KrsUc1s2NJqa0dP_7OQzeJI5JRmmSfAc7rn5C3i8pTT4EhZn20ksZHSpf9-SKXZiSabpph6CXunFOso2k-PNYY0vZEi6MI5ynOOaBGsg3V_JcHIaT2M6koVaL0g4mXi7D2ejb9PupMx3LZQWKcqqlFpILxrfCq5NxTTVlTCi1hb5h0OvB_3Y3uMGYBoEsTZcutY7KXTruUUO1bNXsDdfzN1rIIb1CA7VjgnOrbHSex9UbEwthHSCFvB5g4C6SpIaKroilVQJMBUAUxmwAr4GlO6KBj3s-AK_usrLS_VUU47d9Qzphm56Y2wwvZbWwjkvBwXsB6S22ksgFXCwAV3lxbtUIaGcsUBUC_iUJsJO68ezX8PY-uVsrQYUNzH25h_1f4CHJ9PTsRp_n_x4C4_CuFL85gD2Vtdr9w4e2JvVbHn9Pk7lP9RW8g8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+Flaky+Tests+Through+Linguistic+Diversity%3A+A+Cross-Language+and+Comparative+Machine+Learning+Study&rft.jtitle=IEEE+access&rft.au=Ahmad%2C+Azeem&rft.au=Sun%2C+Xin&rft.au=Naeem%2C+Muhammad+Rashid&rft.au=Javed%2C+Yasir&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=54561&rft_id=info:doi/10.1109%2FACCESS.2025.3553626&rft.externalDocID=oai_DiVA_org_liu_213193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon