A tutorial review of neural network modeling approaches for model predictive control

An overview of the recent developments of time-series neural network modeling is presented along with its use in model predictive control (MPC). A tutorial on the construction of a neural network-based model is provided and key practical implementation issues are discussed. A nonlinear process examp...

Full description

Saved in:
Bibliographic Details
Published in:Computers & chemical engineering Vol. 165; no. C; p. 107956
Main Authors: Ren, Yi Ming, Alhajeri, Mohammed S., Luo, Junwei, Chen, Scarlett, Abdullah, Fahim, Wu, Zhe, Christofides, Panagiotis D.
Format: Journal Article
Language:English
Published: United Kingdom Elsevier Ltd 01.09.2022
Elsevier
Subjects:
ISSN:0098-1354, 1873-4375
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract An overview of the recent developments of time-series neural network modeling is presented along with its use in model predictive control (MPC). A tutorial on the construction of a neural network-based model is provided and key practical implementation issues are discussed. A nonlinear process example is introduced to demonstrate the application of different neural network-based modeling approaches and evaluate their performance in terms of closed-loop stability and prediction accuracy. Finally, the paper concludes with a brief discussion of future research directions on neural network modeling and its integration with MPC. •Review of neural network model approaches.•Training and parameter estimation of neural network models.•Neural network model performance evaluation and improvement.•Implementation in MPC and evaluation of closed-loop performance.
AbstractList An overview of the recent developments of time-series neural network modeling is presented along with its use in model predictive control (MPC). A tutorial on the construction of a neural network-based model is provided and key practical implementation issues are discussed. A nonlinear process example is introduced to demonstrate the application of different neural network-based modeling approaches and evaluate their performance in terms of closed-loop stability and prediction accuracy. Finally, the paper concludes with a brief discussion of future research directions on neural network modeling and its integration with MPC. •Review of neural network model approaches.•Training and parameter estimation of neural network models.•Neural network model performance evaluation and improvement.•Implementation in MPC and evaluation of closed-loop performance.
ArticleNumber 107956
Author Ren, Yi Ming
Chen, Scarlett
Wu, Zhe
Abdullah, Fahim
Luo, Junwei
Christofides, Panagiotis D.
Alhajeri, Mohammed S.
Author_xml – sequence: 1
  givenname: Yi Ming
  surname: Ren
  fullname: Ren, Yi Ming
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
– sequence: 2
  givenname: Mohammed S.
  surname: Alhajeri
  fullname: Alhajeri, Mohammed S.
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
– sequence: 3
  givenname: Junwei
  surname: Luo
  fullname: Luo, Junwei
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
– sequence: 4
  givenname: Scarlett
  surname: Chen
  fullname: Chen, Scarlett
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
– sequence: 5
  givenname: Fahim
  surname: Abdullah
  fullname: Abdullah, Fahim
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
– sequence: 6
  givenname: Zhe
  surname: Wu
  fullname: Wu, Zhe
  organization: Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore, Singapore
– sequence: 7
  givenname: Panagiotis D.
  surname: Christofides
  fullname: Christofides, Panagiotis D.
  email: pdc@seas.ucla.edu
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
BackLink https://www.osti.gov/biblio/1961482$$D View this record in Osti.gov
BookMark eNqNkM1OwzAQhC1UJErhHQz3FDtxEvuEUMWfVIlLOVuOs25dUjtyTBFvj6NwQJx6Wml2dnb0XaKZ8w4QuqFkSQmt7vZL7Q-93sEB3HaZkzxPei3K6gzNKa-LjBV1OUNzQgTPaFGyC3Q5DHtCSM44n6PNA46f0QerOhzgaOELe4MdfIYkOIhfPnzgg2-hs26LVd8Hr9K3ARsfJh33AVqroz0C1t7F4LsrdG5UN8D171yg96fHzeolW789v64e1pkuhIiZEKzRFfBK8YKXbclaYURbqpozWuSsMco0vDGmUUI0alw0FdcMaG3aXDW6WKDbKdcP0cpB2wh6lzo40FFSUVHG82S6n0w6-GEIYGTyqWjHqsp2khI5kpR7-YekHEnKiWRKEP8S-mAPKnyfdLuabiFxSHjDWBOcTsjC2LL19oSUH3zwmow
CitedBy_id crossref_primary_10_1016_j_cherd_2025_04_007
crossref_primary_10_1016_j_automatica_2024_111943
crossref_primary_10_1049_cth2_12492
crossref_primary_10_1016_j_cherd_2022_12_001
crossref_primary_10_1039_D3RA04489K
crossref_primary_10_1016_j_asoc_2025_113674
crossref_primary_10_1016_j_compchemeng_2025_109396
crossref_primary_10_1007_s11424_025_4546_0
crossref_primary_10_1016_j_ces_2025_121943
crossref_primary_10_1016_j_applthermaleng_2024_124795
crossref_primary_10_1016_j_psep_2023_02_023
crossref_primary_10_1016_j_compchemeng_2023_108377
crossref_primary_10_1016_j_apenergy_2024_124965
crossref_primary_10_1016_j_est_2023_109982
crossref_primary_10_1007_s11071_024_09615_7
crossref_primary_10_1016_j_apenergy_2024_123634
crossref_primary_10_3390_en18102588
crossref_primary_10_1016_j_energy_2025_137574
crossref_primary_10_1016_j_jclepro_2022_135049
crossref_primary_10_1016_j_engappai_2025_110105
crossref_primary_10_1007_s12257_024_00174_7
crossref_primary_10_1016_j_engappai_2025_110940
crossref_primary_10_1080_00423114_2024_2393340
crossref_primary_10_1109_JAS_2024_124227
crossref_primary_10_1016_j_jtice_2025_106119
crossref_primary_10_1016_j_jclepro_2025_145708
crossref_primary_10_1002_aic_18076
crossref_primary_10_1016_j_cherd_2023_02_048
crossref_primary_10_1016_j_cherd_2023_02_003
crossref_primary_10_1016_j_dche_2023_100084
crossref_primary_10_1515_revce_2024_0055
crossref_primary_10_1007_s12145_025_01784_2
crossref_primary_10_1016_j_compchemeng_2024_108790
crossref_primary_10_1007_s10462_025_11278_8
crossref_primary_10_1016_j_cherd_2024_03_019
crossref_primary_10_1016_j_compchemeng_2023_108365
crossref_primary_10_1016_j_cherd_2023_08_017
crossref_primary_10_3390_act13090331
crossref_primary_10_1016_j_compchemeng_2023_108367
crossref_primary_10_1016_j_jcp_2023_112408
crossref_primary_10_1016_j_cja_2024_10_011
crossref_primary_10_1016_j_compchemeng_2023_108523
crossref_primary_10_1016_j_jcp_2023_111953
crossref_primary_10_1016_j_automatica_2023_111472
crossref_primary_10_1002_aic_18224
crossref_primary_10_1007_s10845_024_02438_8
crossref_primary_10_1016_j_jprocont_2025_103473
crossref_primary_10_1016_j_cherd_2025_06_034
crossref_primary_10_1016_j_dche_2025_100237
crossref_primary_10_3390_pr12030515
crossref_primary_10_1016_j_cherd_2023_12_024
crossref_primary_10_1007_s40435_024_01426_3
crossref_primary_10_3390_pr11041080
crossref_primary_10_1007_s00521_023_09203_7
crossref_primary_10_1016_j_engappai_2024_108126
crossref_primary_10_1017_S0263574723000097
crossref_primary_10_1016_j_buildenv_2025_112947
crossref_primary_10_3103_S1060992X23060115
crossref_primary_10_1038_s41598_025_13899_z
crossref_primary_10_1002_aic_18732
crossref_primary_10_1002_cjce_25379
crossref_primary_10_1016_j_ifacol_2024_08_308
crossref_primary_10_3390_s24247950
crossref_primary_10_1016_j_energy_2025_136989
crossref_primary_10_1177_01423312241262079
crossref_primary_10_3390_pr13071985
crossref_primary_10_1002_bit_29022
crossref_primary_10_1007_s12008_025_02404_5
crossref_primary_10_1080_00207179_2025_2525544
crossref_primary_10_1007_s42452_025_07198_5
crossref_primary_10_1016_j_buildenv_2023_110519
crossref_primary_10_1016_j_ijmedinf_2023_105248
crossref_primary_10_1080_21642583_2025_2479526
crossref_primary_10_1021_acs_iecr_4c03782
crossref_primary_10_3390_fractalfract7030236
crossref_primary_10_1016_j_dche_2023_100103
crossref_primary_10_1016_j_compchemeng_2024_108880
crossref_primary_10_3390_batteries10110380
crossref_primary_10_1109_TII_2025_3567401
crossref_primary_10_3390_info15120776
crossref_primary_10_1016_j_compchemeng_2024_108723
crossref_primary_10_1016_j_eng_2025_01_014
crossref_primary_10_1016_j_ces_2023_119118
Cites_doi 10.1002/aic.17642
10.1109/JPROC.2015.2388958
10.1162/neco.1997.9.8.1735
10.1016/j.compchemeng.2017.02.010
10.1109/9.751369
10.23919/EUSIPCO.2018.8553492
10.1109/TAC.2007.904277
10.1038/nature14539
10.1038/323533a0
10.1109/TNNLS.2019.2891257
10.1016/j.scitotenv.2020.144507
10.1016/S0005-1098(99)00214-9
10.1016/j.jprocont.2014.03.010
10.1021/acs.iecr.9b03055
10.3390/math9161912
10.1016/j.neucom.2016.01.020
10.1063/1.5133386
10.1002/aic.14683
10.1109/TPAMI.2021.3059510
10.1016/j.compchemeng.2004.01.009
10.3390/math6110242
10.1002/aic.15430
10.1145/2379776.2379786
10.1002/aic.14942
10.1109/MDM.2018.00029
10.1016/S0967-0661(02)00186-7
10.1016/S0098-1354(98)00191-4
10.1109/CCA.2012.6402735
10.3115/v1/D14-1179
10.1049/piee.1979.0145
10.1016/j.neunet.2014.09.003
10.1016/j.cherd.2021.12.046
10.3390/en13195190
10.1016/j.enbuild.2017.02.012
10.1016/j.jprocont.2009.01.001
10.1049/piee.1975.0252
10.1021/acs.iecr.2c00026
10.1016/j.neucom.2012.02.053
10.1016/j.jprocont.2008.09.003
10.3390/s21165625
10.1016/0005-1098(91)90104-A
10.1016/j.cherd.2021.10.042
10.1111/j.1467-9868.2005.00503.x
10.1016/j.jprocont.2020.03.013
10.1109/CDC.2008.4739105
10.1016/j.compchemeng.2021.107411
10.1016/j.compchemeng.2021.107628
10.1016/j.cherd.2020.11.009
10.1109/37.466261
10.1073/pnas.1517384113
10.1073/pnas.79.8.2554
10.1016/0009-2509(84)80128-1
10.1016/S0098-1354(98)00301-9
10.1016/j.cherd.2021.01.009
10.1016/j.jprocont.2022.04.011
10.1016/j.cherd.2019.02.016
10.1002/aic.690430713
10.1109/37.845037
10.1109/78.650093
10.1016/j.cherd.2020.06.008
10.1049/ip-d.1980.0047
10.1109/5.58337
10.1021/acs.iecr.9b05931
10.3390/math7100890
10.1109/TAC.2011.2179349
10.1109/41.661316
10.1016/0098-1354(92)80055-E
10.1016/j.jcp.2019.06.056
10.1016/0167-6911(91)90111-Q
10.1016/j.arcontrol.2011.10.011
10.1016/j.cherd.2021.02.011
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.compchemeng.2022.107956
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID 1961482
10_1016_j_compchemeng_2022_107956
S0098135422002927
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
OTOTI
ID FETCH-LOGICAL-c399t-994bc6e86a8385d54d9f9d5a7841324bfafb8bffba99bad5a7b68c4e17fd2abc3
ISICitedReferencesCount 102
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000874764000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Mon Apr 01 04:54:02 EDT 2024
Sat Nov 29 07:27:59 EST 2025
Tue Nov 18 21:08:17 EST 2025
Fri Feb 23 02:37:20 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Model predictive control
Recurrent neural networks
Feed-forward neural networks
Encoder–decoder architecture
Chemical processes
Nonlinear systems
Time-series forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-994bc6e86a8385d54d9f9d5a7841324bfafb8bffba99bad5a7b68c4e17fd2abc3
Notes USDOE
OpenAccessLink https://www.osti.gov/biblio/1961482
ParticipantIDs osti_scitechconnect_1961482
crossref_citationtrail_10_1016_j_compchemeng_2022_107956
crossref_primary_10_1016_j_compchemeng_2022_107956
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2022_107956
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Computers & chemical engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References LeCun, Bengio, Hinton (b56) 2015; 521
Maclaurin, Duvenaud, Adams (b64) 2015
Clarke, Gawthrop (b29) 1979; 126
Kittisupakorn, Thitiyasook, Hussain, Daosud (b54) 2009; 19
Raissi, Perdikaris, Karniadakis (b78) 2018
Billings, S.A., 1980. Identification of nonlinear systems-a survey. In: IEE Proceedings D-Control Theory and Applications, Vol. 127, no. 6. pp. 272–285.
Camacho, Bordons (b20) 2013
Miller, Sutton, Werbos (b69) 1995
Alanqar, Ellis, Christofides (b8) 2015; 61
Scokaert, Mayne, Rawlings (b86) 1999; 44
Angeli, Amrit, Rawlings (b14) 2011; 57
Gal, Ghahramani (b40) 2016; 29
Brunton, Proctor, Kutz (b19) 2016; 113
Ester, Kriegel, Sander, Xu (b38) 1996; 96
Hochreiter, Schmidhuber (b48) 1997; 9
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b73) 2019; 32
Holkar, Waghmare (b49) 2010; 3
Schmidhuber (b84) 2015; 61
Afram, Janabi-Sharifi, Fung, Raahemifar (b5) 2017; 141
Rudy, Nathan Kutz, Brunton (b82) 2019; 396
Wellstead, Prager, Zanker (b93) 1979
Rawlings (b79) 2000; 20
Alhajeri, Soroush (b10) 2020; 59
Csáji (b30) 2001; 24
Amrit, Rawlings, Angeli (b13) 2011; 35
Alanqar, Durand, Christofides (b6) 2015; 61
Schuster, Paliwal (b85) 1997; 45
Biegler (b16) 2010
Li, Tong (b60) 2021; 42
Ellis, Durand, Christofides (b36) 2014; 24
Hedjar (b46) 2013; 9
Wu, Alnajdi, Gu, Christofides (b97) 2022; 68
Kieu, T., Yang, B., Jensen, C.S., 2018. Outlier detection for multidimensional time series using deep neural networks. In: 2018 19th IEEE International Conference on Mobile Data Management. MDM, Aalborg, Denmark, pp. 125–134.
Hrovat, D., Di Cairano, S., Tseng, H., Kolmanovsky, I., 2012. The development of Model Predictive Control in automotive industry: A survey. In: 2012 IEEE International Conference on Control Applications. Dubrovnik, Croatia, pp. 295–302.
Esche, Weigert, Rihm, Göbel, Repke (b37) 2022; 177
Tabuada (b90) 2007; 52
Dietterich (b31) 2002
Donate, Cortez, Sanchez, De Miguel (b33) 2013; 109
Maner, Doyle III (b65) 1997; 43
Xu, Xie, Dai, Zhang, Chen, Qi, Xiong, Tian (b105) 2021; 43
Cho, Van Merriënboer, Bahdanau, Bengio (b23) 2014
Wang, X., Lemmon, M.D., 2008. Event design in event-triggered feedback control systems. In: 2008 47th IEEE Conference on Decision and Control. Cancun, Mexico, pp. 2105–2110.
Mendes-Moreira, Soares, Jorge, Sousa (b67) 2012; 45
Chang, Aluko (b21) 1984; 39
Wu, Tran, Rincon, Christofides (b103) 2019; 65
Wilson, Sahinidis (b95) 2017; 106
Chow (b26) 1975
Goodfellow, Bengio, Courville (b42) 2016
Henson, Seborg (b47) 1997
Snoek, Larochelle, Adams (b87) 2012; 25
Wu, Tran, Ren, Barnes, Chen, Christofides (b102) 2019; 145
AlMomani, Sun, Bollt (b12) 2020; 30
Abdullah, Wu, Christofides (b3) 2021; 153
Alanqar, Durand, Christofides (b7) 2017; 63
González-García, Rico-Martínez, Kevrekidis (b41) 1998; 22
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014b. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. EMNLP, Doha, Qatar, pp. 1724–1734.
Gurney (b43) 2018
Habib, Zucker, Blochle, Judex, Haase (b44) 2015
Qin, McAvoy (b77) 1992; 16
Pemberton (b74) 1990
Abdullah, Wu, Christofides (b2) 2021; 166
Miljanovic (b68) 2012; 3
Chow, Fang (b25) 1998; 45
Wu, Rincon, Gu, Christofides (b101) 2021; 9
Werbos (b94) 1990; 78
Wu, Rincon, Christofides (b100) 2020; 89
Alhajeri, Wu, Rincon, Albalawi, Christofides (b11) 2021; 167
Kotsiantis, Kanellopoulos, Pintelas (b55) 2006; 1
Zhang, Zou, Qin, Lu, Jin, Wang (b112) 2021; 765
Bergstra, Bengio (b15) 2012; 13
Wong, Chee, Li, Wang (b96) 2018; 6
Kingma, Ba (b53) 2014
Xu, Li, He, Huang (b104) 2016; 190
Fablet, R., Ouala, S., Herzet, C., 2018. Bilinear Residual Neural Network for the Identification and Forecasting of Geophysical Dynamics. In: Proceedings of the 26th European Signal Processing Conference. Rome, Italy, pp. 1477–1481.
Hopfield (b50) 1982; 79
Lee (b57) 2000
Clarke, Gawthrop (b28) 1975; 122
Mayne, Rawlings, Rao, Scokaert (b66) 2000; 36
Rubanova, Chen, Duvenaud (b81) 2019; 32
Chen, Rubanova, Bettencourt, Duvenaud (b22) 2018; 31
Wu, Luo, Rincon, Christofides (b98) 2021; 168
Lévine, Rouchon (b58) 1991; 27
Liu, Shah, Jiang (b62) 2004; 28
Domingos (b32) 1997
Draeger, Engell, Ranke (b34) 1995; 15
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all you need. In: Advances in Neural Information Processing Systems. pp. 5998–6008.
Rumelhart, Hinton, Williams (b83) 1986; 323
Bonassi, Farina, Xie, Scattolini (b18) 2022; 114
Mohajerin, Waslander (b70) 2019; 30
Abdullah, Wu, Christofides (b4) 2022; 157
Zhang, Wu, Rincon, Christofides (b111) 2019; 7
Zheng, Wang, Wu (b113) 2022; 61
Zou, Hastie (b114) 2005; 67
Mohanty (b71) 2009; 19
Lu, Jin, Karniadakis (b63) 2019
Morari, Lee (b72) 1999; 23
Li, Chen, Jin, Shi, Goh, Ng (b59) 2019
Chung, Gulcehre, Cho, Bengio (b27) 2014
Yin, Kaynak (b106) 2015; 103
Qin, Badgwell (b76) 2003; 11
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b88) 2014; 15
Ellis, Chinde (b35) 2020; 160
Lin, Sontag (b61) 1991; 16
Han, Yao, Yu, Niu, Xu, Hu, Tsang, Sugiyama (b45) 2018; 31
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. TensorFlow: A System for Large-Scale Machine Learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI 16, Savannah, GA, USA, pp. 265–283.
Polikar (b75) 2012
Sutskever, Vinyals, Le (b89) 2014; 27
Zhang, Lipton, Li, Smola (b109) 2021
Zhang, Qin, Zhu, Zhang, Zhang (b110) 2006
Zefrehi, Altınçay (b108) 2020; 142
Wu, Rincon, Christofides (b99) 2019; 59
Alhajeri, Luo, Wu, Albalawi, Christofides (b9) 2022; 179
Zarzycki, Ławryńczuk (b107) 2021; 21
Ribeiro, Stefenon, de Lima, Nied, Mariani, Coelho (b80) 2020; 13
Esche (10.1016/j.compchemeng.2022.107956_b37) 2022; 177
Liu (10.1016/j.compchemeng.2022.107956_b62) 2004; 28
Schmidhuber (10.1016/j.compchemeng.2022.107956_b84) 2015; 61
Ellis (10.1016/j.compchemeng.2022.107956_b35) 2020; 160
Wu (10.1016/j.compchemeng.2022.107956_b103) 2019; 65
Wu (10.1016/j.compchemeng.2022.107956_b98) 2021; 168
Abdullah (10.1016/j.compchemeng.2022.107956_b2) 2021; 166
Biegler (10.1016/j.compchemeng.2022.107956_b16) 2010
Wu (10.1016/j.compchemeng.2022.107956_b101) 2021; 9
Han (10.1016/j.compchemeng.2022.107956_b45) 2018; 31
Kotsiantis (10.1016/j.compchemeng.2022.107956_b55) 2006; 1
Holkar (10.1016/j.compchemeng.2022.107956_b49) 2010; 3
Qin (10.1016/j.compchemeng.2022.107956_b76) 2003; 11
Wu (10.1016/j.compchemeng.2022.107956_b97) 2022; 68
Miller (10.1016/j.compchemeng.2022.107956_b69) 1995
Scokaert (10.1016/j.compchemeng.2022.107956_b86) 1999; 44
Dietterich (10.1016/j.compchemeng.2022.107956_b31) 2002
Amrit (10.1016/j.compchemeng.2022.107956_b13) 2011; 35
Alhajeri (10.1016/j.compchemeng.2022.107956_b11) 2021; 167
Gurney (10.1016/j.compchemeng.2022.107956_b43) 2018
Lin (10.1016/j.compchemeng.2022.107956_b61) 1991; 16
Maclaurin (10.1016/j.compchemeng.2022.107956_b64) 2015
Goodfellow (10.1016/j.compchemeng.2022.107956_b42) 2016
Wong (10.1016/j.compchemeng.2022.107956_b96) 2018; 6
Brunton (10.1016/j.compchemeng.2022.107956_b19) 2016; 113
Qin (10.1016/j.compchemeng.2022.107956_b77) 1992; 16
Csáji (10.1016/j.compchemeng.2022.107956_b30) 2001; 24
Srivastava (10.1016/j.compchemeng.2022.107956_b88) 2014; 15
Polikar (10.1016/j.compchemeng.2022.107956_b75) 2012
Zou (10.1016/j.compchemeng.2022.107956_b114) 2005; 67
Alanqar (10.1016/j.compchemeng.2022.107956_b6) 2015; 61
Xu (10.1016/j.compchemeng.2022.107956_b104) 2016; 190
Zhang (10.1016/j.compchemeng.2022.107956_b112) 2021; 765
Clarke (10.1016/j.compchemeng.2022.107956_b29) 1979; 126
Camacho (10.1016/j.compchemeng.2022.107956_b20) 2013
Kingma (10.1016/j.compchemeng.2022.107956_b53) 2014
Alhajeri (10.1016/j.compchemeng.2022.107956_b10) 2020; 59
Rumelhart (10.1016/j.compchemeng.2022.107956_b83) 1986; 323
10.1016/j.compchemeng.2022.107956_b17
Lu (10.1016/j.compchemeng.2022.107956_b63) 2019
Tabuada (10.1016/j.compchemeng.2022.107956_b90) 2007; 52
Rudy (10.1016/j.compchemeng.2022.107956_b82) 2019; 396
Bergstra (10.1016/j.compchemeng.2022.107956_b15) 2012; 13
10.1016/j.compchemeng.2022.107956_b92
Habib (10.1016/j.compchemeng.2022.107956_b44) 2015
10.1016/j.compchemeng.2022.107956_b91
Alhajeri (10.1016/j.compchemeng.2022.107956_b9) 2022; 179
Ester (10.1016/j.compchemeng.2022.107956_b38) 1996; 96
Wellstead (10.1016/j.compchemeng.2022.107956_b93) 1979
Abdullah (10.1016/j.compchemeng.2022.107956_b4) 2022; 157
Li (10.1016/j.compchemeng.2022.107956_b59) 2019
Wilson (10.1016/j.compchemeng.2022.107956_b95) 2017; 106
Afram (10.1016/j.compchemeng.2022.107956_b5) 2017; 141
Alanqar (10.1016/j.compchemeng.2022.107956_b8) 2015; 61
10.1016/j.compchemeng.2022.107956_b24
Ribeiro (10.1016/j.compchemeng.2022.107956_b80) 2020; 13
Donate (10.1016/j.compchemeng.2022.107956_b33) 2013; 109
Hochreiter (10.1016/j.compchemeng.2022.107956_b48) 1997; 9
Chen (10.1016/j.compchemeng.2022.107956_b22) 2018; 31
Wu (10.1016/j.compchemeng.2022.107956_b100) 2020; 89
Mohanty (10.1016/j.compchemeng.2022.107956_b71) 2009; 19
Zheng (10.1016/j.compchemeng.2022.107956_b113) 2022; 61
Cho (10.1016/j.compchemeng.2022.107956_b23) 2014
Werbos (10.1016/j.compchemeng.2022.107956_b94) 1990; 78
Snoek (10.1016/j.compchemeng.2022.107956_b87) 2012; 25
Pemberton (10.1016/j.compchemeng.2022.107956_b74) 1990
Li (10.1016/j.compchemeng.2022.107956_b60) 2021; 42
Chow (10.1016/j.compchemeng.2022.107956_b26) 1975
10.1016/j.compchemeng.2022.107956_b39
Sutskever (10.1016/j.compchemeng.2022.107956_b89) 2014; 27
Miljanovic (10.1016/j.compchemeng.2022.107956_b68) 2012; 3
González-García (10.1016/j.compchemeng.2022.107956_b41) 1998; 22
Chung (10.1016/j.compchemeng.2022.107956_b27) 2014
Raissi (10.1016/j.compchemeng.2022.107956_b78) 2018
Chow (10.1016/j.compchemeng.2022.107956_b25) 1998; 45
Clarke (10.1016/j.compchemeng.2022.107956_b28) 1975; 122
Paszke (10.1016/j.compchemeng.2022.107956_b73) 2019; 32
Hedjar (10.1016/j.compchemeng.2022.107956_b46) 2013; 9
Zhang (10.1016/j.compchemeng.2022.107956_b110) 2006
Zarzycki (10.1016/j.compchemeng.2022.107956_b107) 2021; 21
Lee (10.1016/j.compchemeng.2022.107956_b57) 2000
Zhang (10.1016/j.compchemeng.2022.107956_b111) 2019; 7
10.1016/j.compchemeng.2022.107956_b1
Hopfield (10.1016/j.compchemeng.2022.107956_b50) 1982; 79
Yin (10.1016/j.compchemeng.2022.107956_b106) 2015; 103
Wu (10.1016/j.compchemeng.2022.107956_b102) 2019; 145
AlMomani (10.1016/j.compchemeng.2022.107956_b12) 2020; 30
Chang (10.1016/j.compchemeng.2022.107956_b21) 1984; 39
Domingos (10.1016/j.compchemeng.2022.107956_b32) 1997
Morari (10.1016/j.compchemeng.2022.107956_b72) 1999; 23
Gal (10.1016/j.compchemeng.2022.107956_b40) 2016; 29
Ellis (10.1016/j.compchemeng.2022.107956_b36) 2014; 24
Bonassi (10.1016/j.compchemeng.2022.107956_b18) 2022; 114
10.1016/j.compchemeng.2022.107956_b52
Zefrehi (10.1016/j.compchemeng.2022.107956_b108) 2020; 142
Henson (10.1016/j.compchemeng.2022.107956_b47) 1997
10.1016/j.compchemeng.2022.107956_b51
LeCun (10.1016/j.compchemeng.2022.107956_b56) 2015; 521
Draeger (10.1016/j.compchemeng.2022.107956_b34) 1995; 15
Lévine (10.1016/j.compchemeng.2022.107956_b58) 1991; 27
Schuster (10.1016/j.compchemeng.2022.107956_b85) 1997; 45
Mohajerin (10.1016/j.compchemeng.2022.107956_b70) 2019; 30
Zhang (10.1016/j.compchemeng.2022.107956_b109) 2021
Angeli (10.1016/j.compchemeng.2022.107956_b14) 2011; 57
Maner (10.1016/j.compchemeng.2022.107956_b65) 1997; 43
Wu (10.1016/j.compchemeng.2022.107956_b99) 2019; 59
Mendes-Moreira (10.1016/j.compchemeng.2022.107956_b67) 2012; 45
Rubanova (10.1016/j.compchemeng.2022.107956_b81) 2019; 32
Abdullah (10.1016/j.compchemeng.2022.107956_b3) 2021; 153
Mayne (10.1016/j.compchemeng.2022.107956_b66) 2000; 36
Alanqar (10.1016/j.compchemeng.2022.107956_b7) 2017; 63
Rawlings (10.1016/j.compchemeng.2022.107956_b79) 2000; 20
Kittisupakorn (10.1016/j.compchemeng.2022.107956_b54) 2009; 19
Xu (10.1016/j.compchemeng.2022.107956_b105) 2021; 43
References_xml – volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: b38
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– volume: 3
  start-page: 47
  year: 2010
  end-page: 63
  ident: b49
  article-title: An overview of model predictive control
  publication-title: Int. J. Control Autom.
– volume: 32
  year: 2019
  ident: b81
  article-title: Latent ordinary differential equations for irregularly-sampled time series
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: b50
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 2113
  year: 2015
  end-page: 2122
  ident: b64
  article-title: Gradient-based hyperparameter optimization through reversible learning
  publication-title: International Conference on Machine Learning
– reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. TensorFlow: A System for Large-Scale Machine Learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI 16, Savannah, GA, USA, pp. 265–283.
– volume: 15
  start-page: 61
  year: 1995
  end-page: 66
  ident: b34
  article-title: Model predictive control using neural networks
  publication-title: IEEE Control Syst. Mag.
– volume: 45
  start-page: 151
  year: 1998
  end-page: 161
  ident: b25
  article-title: A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics
  publication-title: IEEE Trans. Ind. Electron.
– volume: 126
  start-page: 633
  year: 1979
  end-page: 640
  ident: b29
  article-title: Self-tuning control
  publication-title: Proc. Inst. Electr. Eng.
– volume: 27
  year: 2014
  ident: b89
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 1995
  ident: b69
  article-title: Neural Networks for Control
– volume: 52
  start-page: 1680
  year: 2007
  end-page: 1685
  ident: b90
  article-title: Event-triggered real-time scheduling of stabilizing control tasks
  publication-title: IEEE Trans. Automat. Control
– start-page: 103
  year: 2014
  end-page: 111
  ident: b23
  article-title: On the properties of neural machine translation: Encoder-decoder approaches
  publication-title: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation
– volume: 65
  year: 2019
  ident: b103
  article-title: Machine learning-based predictive control of nonlinear processes. Part I: Theory
  publication-title: AIChE J.
– volume: 28
  start-page: 1635
  year: 2004
  end-page: 1647
  ident: b62
  article-title: On-line outlier detection and data cleaning
  publication-title: Comput. Chem. Eng.
– volume: 32
  year: 2019
  ident: b73
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 145
  start-page: 173
  year: 2019
  end-page: 183
  ident: b102
  article-title: Model predictive control of phthalic anhydride synthesis in a fixed-bed catalytic reactor via machine learning modeling
  publication-title: Chem. Eng. Res. Des.
– volume: 43
  start-page: 2953
  year: 2021
  end-page: 2970
  ident: b105
  article-title: Partially-connected neural architecture search for reduced computational redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2013
  ident: b20
  article-title: Model Predictive Control
– reference: Hrovat, D., Di Cairano, S., Tseng, H., Kolmanovsky, I., 2012. The development of Model Predictive Control in automotive industry: A survey. In: 2012 IEEE International Conference on Control Applications. Dubrovnik, Croatia, pp. 295–302.
– volume: 16
  start-page: 393
  year: 1991
  end-page: 397
  ident: b61
  article-title: A universal formula for stabilization with bounded controls
  publication-title: Systems Control Lett.
– volume: 31
  year: 2018
  ident: b45
  article-title: Co-teaching: Robust training of deep neural networks with extremely noisy labels
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: b85
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 168
  start-page: 275
  year: 2021
  end-page: 287
  ident: b98
  article-title: Machine learning-based predictive control using noisy data: Evaluating performance and robustness via a large-scale process simulator
  publication-title: Chem. Eng. Res. Des.
– reference: Wang, X., Lemmon, M.D., 2008. Event design in event-triggered feedback control systems. In: 2008 47th IEEE Conference on Decision and Control. Cancun, Mexico, pp. 2105–2110.
– volume: 20
  start-page: 38
  year: 2000
  end-page: 52
  ident: b79
  article-title: Tutorial overview of model predictive control
  publication-title: IEEE Control Syst. Mag.
– volume: 396
  start-page: 483
  year: 2019
  end-page: 506
  ident: b82
  article-title: Deep learning of dynamics and signal-noise decomposition with time-stepping constraints
  publication-title: J. Comput. Phys.
– year: 2021
  ident: b109
  article-title: Dive into deep learning
– year: 1990
  ident: b74
  publication-title: Non-Linear and Non-Stationary Time Series Analysis
– volume: 63
  start-page: 949
  year: 2017
  end-page: 966
  ident: b7
  article-title: Error-triggered on-line model identification for model-based feedback control
  publication-title: AIChE J.
– volume: 57
  start-page: 1615
  year: 2011
  end-page: 1626
  ident: b14
  article-title: On average performance and stability of economic model predictive control
  publication-title: IEEE Trans. Automat. Control
– volume: 11
  start-page: 733
  year: 2003
  end-page: 764
  ident: b76
  article-title: A survey of industrial model predictive control technology
  publication-title: Control Eng. Pract.
– start-page: 703
  year: 2019
  end-page: 716
  ident: b59
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
  publication-title: International Conference on Artificial Neural Networks
– start-page: 15
  year: 2002
  end-page: 30
  ident: b31
  article-title: Machine learning for sequential data: A review
  publication-title: Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition
– volume: 9
  start-page: 1245
  year: 2013
  end-page: 1257
  ident: b46
  article-title: Adaptive neural network model predictive control
  publication-title: Int. J. Innovative Comput. Inf. Control
– volume: 22
  start-page: S965
  year: 1998
  end-page: s968
  ident: b41
  article-title: Identification of distributed parameter systems: A neural net based approach
  publication-title: Comput. Chem. Eng.
– volume: 16
  start-page: 379
  year: 1992
  end-page: 391
  ident: b77
  article-title: Nonlinear PLS modeling using neural networks
  publication-title: Comput. Chem. Eng.
– volume: 89
  start-page: 74
  year: 2020
  end-page: 84
  ident: b100
  article-title: Process structure-based recurrent neural network modeling for model predictive control of nonlinear processes
  publication-title: J. Process Control
– volume: 39
  start-page: 37
  year: 1984
  end-page: 50
  ident: b21
  article-title: Multi-scale analysis of exotic dynamics in surface catalyzed reactions I: Justification and preliminary model discriminations
  publication-title: Chem. Eng. Sci.
– volume: 167
  start-page: 268
  year: 2021
  end-page: 280
  ident: b11
  article-title: Machine-learning-based state estimation and predictive control of nonlinear processes
  publication-title: Chem. Eng. Res. Des.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: b114
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: b15
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 157
  year: 2022
  ident: b4
  article-title: Handling noisy data in sparse model identification using subsampling and co-teaching
  publication-title: Comput. Chem. Eng.
– volume: 106
  start-page: 785
  year: 2017
  end-page: 795
  ident: b95
  article-title: The ALAMO approach to machine learning
  publication-title: Comput. Chem. Eng.
– volume: 9
  start-page: 1912
  year: 2021
  ident: b101
  article-title: Statistical machine learning in model predictive control of nonlinear processes
  publication-title: Mathematics
– volume: 122
  start-page: 929
  year: 1975
  end-page: 934
  ident: b28
  article-title: Self-tuning controller
  publication-title: Proc. Inst. Electr. Eng.
– volume: 141
  start-page: 96
  year: 2017
  end-page: 113
  ident: b5
  article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system
  publication-title: Energy Build.
– start-page: 155
  year: 1997
  end-page: 158
  ident: b32
  article-title: Why does bagging work? A Bayesian account and its implications
  publication-title: KDD
– reference: Fablet, R., Ouala, S., Herzet, C., 2018. Bilinear Residual Neural Network for the Identification and Forecasting of Geophysical Dynamics. In: Proceedings of the 26th European Signal Processing Conference. Rome, Italy, pp. 1477–1481.
– volume: 190
  start-page: 172
  year: 2016
  end-page: 178
  ident: b104
  article-title: Recurrent neural network for solving model predictive control problem in application of four-tank benchmark
  publication-title: Neurocomputing
– volume: 61
  start-page: 816
  year: 2015
  end-page: 830
  ident: b8
  article-title: Economic model predictive control of nonlinear process systems using empirical models
  publication-title: AIChE J.
– volume: 25
  year: 2012
  ident: b87
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b48
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 19
  start-page: 991
  year: 2009
  end-page: 999
  ident: b71
  article-title: Artificial neural network based system identification and model predictive control of a flotation column
  publication-title: J. Process Control
– volume: 21
  start-page: 5625
  year: 2021
  ident: b107
  article-title: LSTM and GRU neural networks as models of dynamical processes used in predictive control: A comparison of models developed for two chemical reactors
  publication-title: Sensors
– volume: 179
  start-page: 77
  year: 2022
  end-page: 89
  ident: b9
  article-title: Process structure-based recurrent neural network modeling for predictive control: A comparative study
  publication-title: Chem. Eng. Res. Des.
– volume: 6
  start-page: 242
  year: 2018
  ident: b96
  article-title: Recurrent neural network-based model predictive control for continuous pharmaceutical manufacturing
  publication-title: Mathematics
– volume: 765
  year: 2021
  ident: b112
  article-title: A novel encoder-decoder model based on read-first LSTM for air pollutant prediction
  publication-title: Sci. Total Environ.
– volume: 114
  start-page: 92
  year: 2022
  end-page: 104
  ident: b18
  article-title: On Recurrent Neural Networks for learning-based control: Recent results and ideas for future developments
  publication-title: J. Process Control
– volume: 59
  start-page: 2275
  year: 2019
  end-page: 2290
  ident: b99
  article-title: Real-time adaptive machine-learning-based predictive control of nonlinear processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 35
  start-page: 178
  year: 2011
  end-page: 186
  ident: b13
  article-title: Economic optimization using model predictive control with a terminal cost
  publication-title: Annu. Rev. Control
– reference: Kieu, T., Yang, B., Jensen, C.S., 2018. Outlier detection for multidimensional time series using deep neural networks. In: 2018 19th IEEE International Conference on Mobile Data Management. MDM, Aalborg, Denmark, pp. 125–134.
– volume: 30
  year: 2020
  ident: b12
  article-title: How entropic regression beats the outliers problem in nonlinear system identification
  publication-title: Chaos
– year: 2019
  ident: b63
  article-title: Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
– start-page: 1081
  year: 2006
  end-page: 1086
  ident: b110
  article-title: Clustering-based missing value imputation for data preprocessing
  publication-title: 2006 4th IEEE International Conference on Industrial Informatics
– volume: 166
  start-page: 1
  year: 2021
  end-page: 9
  ident: b2
  article-title: Data-based reduced-order modeling of nonlinear two-time-scale processes
  publication-title: Chem. Eng. Res. Des.
– volume: 44
  start-page: 648
  year: 1999
  end-page: 654
  ident: b86
  article-title: Suboptimal model predictive control (feasibility implies stability)
  publication-title: IEEE Trans. Automat. Control
– volume: 59
  start-page: 4177
  year: 2020
  end-page: 4191
  ident: b10
  article-title: Tuning guidelines for model-predictive control
  publication-title: Ind. Eng. Chem. Res.
– volume: 30
  start-page: 3370
  year: 2019
  end-page: 3383
  ident: b70
  article-title: Multistep prediction of dynamic systems with recurrent neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 24
  start-page: 7
  year: 2001
  ident: b30
  article-title: Approximation with artificial neural networks
  publication-title: Fac. Sci. Etvs Lornd Univ. Hungary
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b88
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 45
  start-page: 1
  year: 2012
  end-page: 40
  ident: b67
  article-title: Ensemble approaches for regression: A survey
  publication-title: ACM Comput. Surv.
– volume: 13
  start-page: 5190
  year: 2020
  ident: b80
  article-title: Electricity price forecasting based on self-adaptive decomposition and heterogeneous ensemble learning
  publication-title: Energies
– volume: 3
  start-page: 180
  year: 2012
  end-page: 191
  ident: b68
  article-title: Comparative analysis of recurrent and finite impulse response neural networks in time series prediction
  publication-title: Indian J. Comput. Sci. Eng.
– volume: 7
  start-page: 890
  year: 2019
  ident: b111
  article-title: Real-time optimization and control of nonlinear processes using machine learning
  publication-title: Mathematics
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b84
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– volume: 153
  year: 2021
  ident: b3
  article-title: Sparse-identification-based model predictive control of nonlinear two-time-scale processes
  publication-title: Comput. Chem. Eng.
– volume: 42
  year: 2021
  ident: b60
  article-title: Model predictive control strategy using encoder-decoder recurrent neural networks for smart control of thermal environment
  publication-title: J. Build. Eng.
– start-page: 781
  year: 1979
  end-page: 787
  ident: b93
  article-title: Pole assignment self-tuning regulator
  publication-title: Proceedings of the Institution of Electrical Engineers, Vol. 126, no. 8
– volume: 1
  start-page: 111
  year: 2006
  end-page: 117
  ident: b55
  article-title: Data preprocessing for supervised leaning
  publication-title: Int. J. Comput. Sci.
– reference: Billings, S.A., 1980. Identification of nonlinear systems-a survey. In: IEE Proceedings D-Control Theory and Applications, Vol. 127, no. 6. pp. 272–285.
– volume: 31
  year: 2018
  ident: b22
  article-title: Neural ordinary differential equations
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 68
  year: 2022
  ident: b97
  article-title: Statistical machine-learning-based predictive control of uncertain nonlinear processes
  publication-title: AIChE J.
– volume: 113
  start-page: 3932
  year: 2016
  end-page: 3937
  ident: b19
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
– volume: 61
  start-page: 3353
  year: 2015
  end-page: 3373
  ident: b6
  article-title: On identification of well-conditioned nonlinear systems: Application to economic model predictive control of nonlinear processes
  publication-title: AIChE J.
– volume: 27
  start-page: 463
  year: 1991
  end-page: 480
  ident: b58
  article-title: Quality control of binary distillation columns via nonlinear aggregated models
  publication-title: Automatica
– reference: Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I., 2017. Attention is all you need. In: Advances in Neural Information Processing Systems. pp. 5998–6008.
– reference: Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y., 2014b. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. EMNLP, Doha, Qatar, pp. 1724–1734.
– year: 1975
  ident: b26
  article-title: Analysis and Control of Dynamic Economic Systems
– year: 2014
  ident: b53
  article-title: Adam: A method for stochastic optimization
– volume: 36
  start-page: 789
  year: 2000
  end-page: 814
  ident: b66
  article-title: Constrained model predictive control: Stability and optimality
  publication-title: Automatica
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b56
  article-title: Deep learning
  publication-title: Nature
– volume: 109
  start-page: 27
  year: 2013
  end-page: 32
  ident: b33
  article-title: Time series forecasting using a weighted cross-validation evolutionary artificial neural network ensemble
  publication-title: Neurocomputing
– volume: 61
  start-page: 5578
  year: 2022
  end-page: 5592
  ident: b113
  article-title: Machine learning modeling and predictive control of the batch crystallization process
  publication-title: Ind. Eng. Chem. Res.
– volume: 19
  start-page: 579
  year: 2009
  end-page: 590
  ident: b54
  article-title: Neural network based model predictive control for a steel pickling process
  publication-title: J. Process Control
– volume: 177
  start-page: 184
  year: 2022
  end-page: 199
  ident: b37
  article-title: Architectures for neural networks as surrogates for dynamic systems in chemical engineering
  publication-title: Chem. Eng. Res. Des.
– volume: 103
  start-page: 143
  year: 2015
  end-page: 146
  ident: b106
  article-title: Big data for modern industry: Challenges and trends [point of view]
  publication-title: Proc. IEEE
– year: 2010
  ident: b16
  article-title: Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
– start-page: 269
  year: 2000
  end-page: 293
  ident: b57
  article-title: Modeling and identification for NonlinearModel predictive control: Requirements, current status and future research needs
  publication-title: Nonlinear Model Predictive Control
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  ident: b83
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
– volume: 23
  start-page: 667
  year: 1999
  end-page: 682
  ident: b72
  article-title: Model predictive control: Past, present and future
  publication-title: Comput. Chem. Eng.
– start-page: 1
  year: 2012
  end-page: 34
  ident: b75
  article-title: Ensemble learning
  publication-title: Ensemble Machine Learning
– volume: 29
  year: 2016
  ident: b40
  article-title: A theoretically grounded application of dropout in recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: 1763
  year: 1997
  end-page: 1784
  ident: b65
  article-title: Polymerization reactor control using autoregressive-plus Volterra-based MPC
  publication-title: AIChE J.
– year: 2014
  ident: b27
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 78
  start-page: 1550
  year: 1990
  end-page: 1560
  ident: b94
  article-title: Backpropagation through time: What it does and how to do it
  publication-title: Proc. IEEE
– volume: 160
  start-page: 508
  year: 2020
  end-page: 520
  ident: b35
  article-title: An encoder–decoder LSTM-based EMPC framework applied to a building HVAC system
  publication-title: Chem. Eng. Res. Des.
– year: 2016
  ident: b42
  article-title: Deep Learning
– volume: 142
  year: 2020
  ident: b108
  article-title: Imbalance learning using heterogeneous ensembles
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 1156
  year: 2014
  end-page: 1178
  ident: b36
  article-title: A tutorial review of economic model predictive control methods
  publication-title: J. Process Control
– year: 1997
  ident: b47
  article-title: Nonlinear Process Control
– start-page: 000694
  year: 2015
  end-page: 000700
  ident: b44
  article-title: Outliers detection method using clustering in buildings data
  publication-title: IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society
– year: 2018
  ident: b43
  article-title: An Introduction to Neural Networks
– year: 2018
  ident: b78
  article-title: Multistep neural networks for data-driven discovery of nonlinear dynamical systems
– start-page: 000694
  year: 2015
  ident: 10.1016/j.compchemeng.2022.107956_b44
  article-title: Outliers detection method using clustering in buildings data
– volume: 68
  year: 2022
  ident: 10.1016/j.compchemeng.2022.107956_b97
  article-title: Statistical machine-learning-based predictive control of uncertain nonlinear processes
  publication-title: AIChE J.
  doi: 10.1002/aic.17642
– volume: 103
  start-page: 143
  issue: 2
  year: 2015
  ident: 10.1016/j.compchemeng.2022.107956_b106
  article-title: Big data for modern industry: Challenges and trends [point of view]
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2388958
– ident: 10.1016/j.compchemeng.2022.107956_b91
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.compchemeng.2022.107956_b48
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 1997
  ident: 10.1016/j.compchemeng.2022.107956_b47
– volume: 106
  start-page: 785
  year: 2017
  ident: 10.1016/j.compchemeng.2022.107956_b95
  article-title: The ALAMO approach to machine learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.010
– volume: 44
  start-page: 648
  issue: 3
  year: 1999
  ident: 10.1016/j.compchemeng.2022.107956_b86
  article-title: Suboptimal model predictive control (feasibility implies stability)
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.751369
– volume: 96
  start-page: 226
  issue: 34
  year: 1996
  ident: 10.1016/j.compchemeng.2022.107956_b38
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: KDD
– year: 2018
  ident: 10.1016/j.compchemeng.2022.107956_b78
– year: 1975
  ident: 10.1016/j.compchemeng.2022.107956_b26
– year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b109
– volume: 1
  start-page: 111
  issue: 2
  year: 2006
  ident: 10.1016/j.compchemeng.2022.107956_b55
  article-title: Data preprocessing for supervised leaning
  publication-title: Int. J. Comput. Sci.
– ident: 10.1016/j.compchemeng.2022.107956_b39
  doi: 10.23919/EUSIPCO.2018.8553492
– year: 2014
  ident: 10.1016/j.compchemeng.2022.107956_b53
– volume: 52
  start-page: 1680
  issue: 9
  year: 2007
  ident: 10.1016/j.compchemeng.2022.107956_b90
  article-title: Event-triggered real-time scheduling of stabilizing control tasks
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2007.904277
– start-page: 1
  year: 2012
  ident: 10.1016/j.compchemeng.2022.107956_b75
  article-title: Ensemble learning
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.compchemeng.2022.107956_b88
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: 10.1016/j.compchemeng.2022.107956_b42
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.compchemeng.2022.107956_b56
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 323
  start-page: 533
  issue: 6088
  year: 1986
  ident: 10.1016/j.compchemeng.2022.107956_b83
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 30
  start-page: 3370
  issue: 11
  year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b70
  article-title: Multistep prediction of dynamic systems with recurrent neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2019.2891257
– start-page: 2113
  year: 2015
  ident: 10.1016/j.compchemeng.2022.107956_b64
  article-title: Gradient-based hyperparameter optimization through reversible learning
– volume: 3
  start-page: 180
  issue: 1
  year: 2012
  ident: 10.1016/j.compchemeng.2022.107956_b68
  article-title: Comparative analysis of recurrent and finite impulse response neural networks in time series prediction
  publication-title: Indian J. Comput. Sci. Eng.
– volume: 765
  year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b112
  article-title: A novel encoder-decoder model based on read-first LSTM for air pollutant prediction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144507
– volume: 36
  start-page: 789
  year: 2000
  ident: 10.1016/j.compchemeng.2022.107956_b66
  article-title: Constrained model predictive control: Stability and optimality
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00214-9
– volume: 24
  start-page: 1156
  issue: 8
  year: 2014
  ident: 10.1016/j.compchemeng.2022.107956_b36
  article-title: A tutorial review of economic model predictive control methods
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.03.010
– volume: 59
  start-page: 2275
  issue: 6
  year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b99
  article-title: Real-time adaptive machine-learning-based predictive control of nonlinear processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b03055
– volume: 9
  start-page: 1912
  issue: 16
  year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b101
  article-title: Statistical machine learning in model predictive control of nonlinear processes
  publication-title: Mathematics
  doi: 10.3390/math9161912
– volume: 190
  start-page: 172
  year: 2016
  ident: 10.1016/j.compchemeng.2022.107956_b104
  article-title: Recurrent neural network for solving model predictive control problem in application of four-tank benchmark
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.01.020
– volume: 42
  year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b60
  article-title: Model predictive control strategy using encoder-decoder recurrent neural networks for smart control of thermal environment
  publication-title: J. Build. Eng.
– year: 1995
  ident: 10.1016/j.compchemeng.2022.107956_b69
– year: 2014
  ident: 10.1016/j.compchemeng.2022.107956_b27
– volume: 27
  year: 2014
  ident: 10.1016/j.compchemeng.2022.107956_b89
  article-title: Sequence to sequence learning with neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  year: 2020
  ident: 10.1016/j.compchemeng.2022.107956_b12
  article-title: How entropic regression beats the outliers problem in nonlinear system identification
  publication-title: Chaos
  doi: 10.1063/1.5133386
– ident: 10.1016/j.compchemeng.2022.107956_b1
– year: 2013
  ident: 10.1016/j.compchemeng.2022.107956_b20
– volume: 61
  start-page: 816
  year: 2015
  ident: 10.1016/j.compchemeng.2022.107956_b8
  article-title: Economic model predictive control of nonlinear process systems using empirical models
  publication-title: AIChE J.
  doi: 10.1002/aic.14683
– volume: 32
  year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b81
  article-title: Latent ordinary differential equations for irregularly-sampled time series
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: 2953
  issue: 9
  year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b105
  article-title: Partially-connected neural architecture search for reduced computational redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3059510
– volume: 28
  start-page: 1635
  issue: 9
  year: 2004
  ident: 10.1016/j.compchemeng.2022.107956_b62
  article-title: On-line outlier detection and data cleaning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2004.01.009
– year: 1990
  ident: 10.1016/j.compchemeng.2022.107956_b74
– volume: 6
  start-page: 242
  issue: 11
  year: 2018
  ident: 10.1016/j.compchemeng.2022.107956_b96
  article-title: Recurrent neural network-based model predictive control for continuous pharmaceutical manufacturing
  publication-title: Mathematics
  doi: 10.3390/math6110242
– volume: 63
  start-page: 949
  issue: 3
  year: 2017
  ident: 10.1016/j.compchemeng.2022.107956_b7
  article-title: Error-triggered on-line model identification for model-based feedback control
  publication-title: AIChE J.
  doi: 10.1002/aic.15430
– volume: 45
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.compchemeng.2022.107956_b67
  article-title: Ensemble approaches for regression: A survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2379776.2379786
– volume: 24
  start-page: 7
  issue: 48
  year: 2001
  ident: 10.1016/j.compchemeng.2022.107956_b30
  article-title: Approximation with artificial neural networks
  publication-title: Fac. Sci. Etvs Lornd Univ. Hungary
– volume: 61
  start-page: 3353
  year: 2015
  ident: 10.1016/j.compchemeng.2022.107956_b6
  article-title: On identification of well-conditioned nonlinear systems: Application to economic model predictive control of nonlinear processes
  publication-title: AIChE J.
  doi: 10.1002/aic.14942
– volume: 31
  year: 2018
  ident: 10.1016/j.compchemeng.2022.107956_b45
  article-title: Co-teaching: Robust training of deep neural networks with extremely noisy labels
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.compchemeng.2022.107956_b52
  doi: 10.1109/MDM.2018.00029
– volume: 32
  year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b73
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 11
  start-page: 733
  issue: 7
  year: 2003
  ident: 10.1016/j.compchemeng.2022.107956_b76
  article-title: A survey of industrial model predictive control technology
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(02)00186-7
– volume: 22
  start-page: S965
  year: 1998
  ident: 10.1016/j.compchemeng.2022.107956_b41
  article-title: Identification of distributed parameter systems: A neural net based approach
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(98)00191-4
– ident: 10.1016/j.compchemeng.2022.107956_b51
  doi: 10.1109/CCA.2012.6402735
– ident: 10.1016/j.compchemeng.2022.107956_b24
  doi: 10.3115/v1/D14-1179
– year: 2010
  ident: 10.1016/j.compchemeng.2022.107956_b16
– volume: 126
  start-page: 633
  issue: 6
  year: 1979
  ident: 10.1016/j.compchemeng.2022.107956_b29
  article-title: Self-tuning control
  publication-title: Proc. Inst. Electr. Eng.
  doi: 10.1049/piee.1979.0145
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.compchemeng.2022.107956_b84
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 179
  start-page: 77
  year: 2022
  ident: 10.1016/j.compchemeng.2022.107956_b9
  article-title: Process structure-based recurrent neural network modeling for predictive control: A comparative study
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.12.046
– volume: 13
  start-page: 5190
  issue: 19
  year: 2020
  ident: 10.1016/j.compchemeng.2022.107956_b80
  article-title: Electricity price forecasting based on self-adaptive decomposition and heterogeneous ensemble learning
  publication-title: Energies
  doi: 10.3390/en13195190
– volume: 141
  start-page: 96
  year: 2017
  ident: 10.1016/j.compchemeng.2022.107956_b5
  article-title: Artificial neural network (ANN) based model predictive control (MPC) and optimization of HVAC systems: A state of the art review and case study of a residential HVAC system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.02.012
– volume: 19
  start-page: 991
  issue: 6
  year: 2009
  ident: 10.1016/j.compchemeng.2022.107956_b71
  article-title: Artificial neural network based system identification and model predictive control of a flotation column
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2009.01.001
– volume: 122
  start-page: 929
  year: 1975
  ident: 10.1016/j.compchemeng.2022.107956_b28
  article-title: Self-tuning controller
  publication-title: Proc. Inst. Electr. Eng.
  doi: 10.1049/piee.1975.0252
– volume: 61
  start-page: 5578
  year: 2022
  ident: 10.1016/j.compchemeng.2022.107956_b113
  article-title: Machine learning modeling and predictive control of the batch crystallization process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c00026
– volume: 109
  start-page: 27
  year: 2013
  ident: 10.1016/j.compchemeng.2022.107956_b33
  article-title: Time series forecasting using a weighted cross-validation evolutionary artificial neural network ensemble
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.053
– volume: 19
  start-page: 579
  issue: 4
  year: 2009
  ident: 10.1016/j.compchemeng.2022.107956_b54
  article-title: Neural network based model predictive control for a steel pickling process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2008.09.003
– volume: 21
  start-page: 5625
  issue: 16
  year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b107
  article-title: LSTM and GRU neural networks as models of dynamical processes used in predictive control: A comparison of models developed for two chemical reactors
  publication-title: Sensors
  doi: 10.3390/s21165625
– volume: 27
  start-page: 463
  issue: 3
  year: 1991
  ident: 10.1016/j.compchemeng.2022.107956_b58
  article-title: Quality control of binary distillation columns via nonlinear aggregated models
  publication-title: Automatica
  doi: 10.1016/0005-1098(91)90104-A
– volume: 9
  start-page: 1245
  issue: 3
  year: 2013
  ident: 10.1016/j.compchemeng.2022.107956_b46
  article-title: Adaptive neural network model predictive control
  publication-title: Int. J. Innovative Comput. Inf. Control
– start-page: 15
  year: 2002
  ident: 10.1016/j.compchemeng.2022.107956_b31
  article-title: Machine learning for sequential data: A review
– year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b63
– volume: 25
  year: 2012
  ident: 10.1016/j.compchemeng.2022.107956_b87
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 177
  start-page: 184
  year: 2022
  ident: 10.1016/j.compchemeng.2022.107956_b37
  article-title: Architectures for neural networks as surrogates for dynamic systems in chemical engineering
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.10.042
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.compchemeng.2022.107956_b114
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 89
  start-page: 74
  year: 2020
  ident: 10.1016/j.compchemeng.2022.107956_b100
  article-title: Process structure-based recurrent neural network modeling for model predictive control of nonlinear processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.03.013
– start-page: 155
  year: 1997
  ident: 10.1016/j.compchemeng.2022.107956_b32
  article-title: Why does bagging work? A Bayesian account and its implications
  publication-title: KDD
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.compchemeng.2022.107956_b15
  article-title: Random search for hyper-parameter optimization
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.compchemeng.2022.107956_b92
  doi: 10.1109/CDC.2008.4739105
– volume: 153
  year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b3
  article-title: Sparse-identification-based model predictive control of nonlinear two-time-scale processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107411
– volume: 157
  year: 2022
  ident: 10.1016/j.compchemeng.2022.107956_b4
  article-title: Handling noisy data in sparse model identification using subsampling and co-teaching
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107628
– volume: 31
  year: 2018
  ident: 10.1016/j.compchemeng.2022.107956_b22
  article-title: Neural ordinary differential equations
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 703
  year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b59
  article-title: MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks
– volume: 166
  start-page: 1
  year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b2
  article-title: Data-based reduced-order modeling of nonlinear two-time-scale processes
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2020.11.009
– volume: 15
  start-page: 61
  issue: 5
  year: 1995
  ident: 10.1016/j.compchemeng.2022.107956_b34
  article-title: Model predictive control using neural networks
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/37.466261
– volume: 113
  start-page: 3932
  year: 2016
  ident: 10.1016/j.compchemeng.2022.107956_b19
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 79
  start-page: 2554
  issue: 8
  year: 1982
  ident: 10.1016/j.compchemeng.2022.107956_b50
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.79.8.2554
– volume: 39
  start-page: 37
  issue: 1
  year: 1984
  ident: 10.1016/j.compchemeng.2022.107956_b21
  article-title: Multi-scale analysis of exotic dynamics in surface catalyzed reactions I: Justification and preliminary model discriminations
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(84)80128-1
– volume: 23
  start-page: 667
  issue: 4
  year: 1999
  ident: 10.1016/j.compchemeng.2022.107956_b72
  article-title: Model predictive control: Past, present and future
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(98)00301-9
– volume: 65
  issue: 11
  year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b103
  article-title: Machine learning-based predictive control of nonlinear processes. Part I: Theory
  publication-title: AIChE J.
– volume: 167
  start-page: 268
  year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b11
  article-title: Machine-learning-based state estimation and predictive control of nonlinear processes
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.01.009
– start-page: 269
  year: 2000
  ident: 10.1016/j.compchemeng.2022.107956_b57
  article-title: Modeling and identification for NonlinearModel predictive control: Requirements, current status and future research needs
– volume: 114
  start-page: 92
  year: 2022
  ident: 10.1016/j.compchemeng.2022.107956_b18
  article-title: On Recurrent Neural Networks for learning-based control: Recent results and ideas for future developments
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2022.04.011
– volume: 145
  start-page: 173
  year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b102
  article-title: Model predictive control of phthalic anhydride synthesis in a fixed-bed catalytic reactor via machine learning modeling
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.02.016
– volume: 43
  start-page: 1763
  issue: 7
  year: 1997
  ident: 10.1016/j.compchemeng.2022.107956_b65
  article-title: Polymerization reactor control using autoregressive-plus Volterra-based MPC
  publication-title: AIChE J.
  doi: 10.1002/aic.690430713
– volume: 20
  start-page: 38
  year: 2000
  ident: 10.1016/j.compchemeng.2022.107956_b79
  article-title: Tutorial overview of model predictive control
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/37.845037
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10.1016/j.compchemeng.2022.107956_b85
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 142
  year: 2020
  ident: 10.1016/j.compchemeng.2022.107956_b108
  article-title: Imbalance learning using heterogeneous ensembles
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 47
  issue: 4
  year: 2010
  ident: 10.1016/j.compchemeng.2022.107956_b49
  article-title: An overview of model predictive control
  publication-title: Int. J. Control Autom.
– volume: 160
  start-page: 508
  year: 2020
  ident: 10.1016/j.compchemeng.2022.107956_b35
  article-title: An encoder–decoder LSTM-based EMPC framework applied to a building HVAC system
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2020.06.008
– ident: 10.1016/j.compchemeng.2022.107956_b17
  doi: 10.1049/ip-d.1980.0047
– volume: 78
  start-page: 1550
  issue: 10
  year: 1990
  ident: 10.1016/j.compchemeng.2022.107956_b94
  article-title: Backpropagation through time: What it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
– start-page: 1081
  year: 2006
  ident: 10.1016/j.compchemeng.2022.107956_b110
  article-title: Clustering-based missing value imputation for data preprocessing
– volume: 59
  start-page: 4177
  issue: 10
  year: 2020
  ident: 10.1016/j.compchemeng.2022.107956_b10
  article-title: Tuning guidelines for model-predictive control
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b05931
– volume: 7
  start-page: 890
  issue: 10
  year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b111
  article-title: Real-time optimization and control of nonlinear processes using machine learning
  publication-title: Mathematics
  doi: 10.3390/math7100890
– volume: 57
  start-page: 1615
  issue: 7
  year: 2011
  ident: 10.1016/j.compchemeng.2022.107956_b14
  article-title: On average performance and stability of economic model predictive control
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2011.2179349
– volume: 45
  start-page: 151
  issue: 1
  year: 1998
  ident: 10.1016/j.compchemeng.2022.107956_b25
  article-title: A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/41.661316
– volume: 16
  start-page: 379
  issue: 4
  year: 1992
  ident: 10.1016/j.compchemeng.2022.107956_b77
  article-title: Nonlinear PLS modeling using neural networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(92)80055-E
– volume: 396
  start-page: 483
  year: 2019
  ident: 10.1016/j.compchemeng.2022.107956_b82
  article-title: Deep learning of dynamics and signal-noise decomposition with time-stepping constraints
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.06.056
– start-page: 103
  year: 2014
  ident: 10.1016/j.compchemeng.2022.107956_b23
  article-title: On the properties of neural machine translation: Encoder-decoder approaches
– volume: 29
  year: 2016
  ident: 10.1016/j.compchemeng.2022.107956_b40
  article-title: A theoretically grounded application of dropout in recurrent neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 16
  start-page: 393
  issue: 6
  year: 1991
  ident: 10.1016/j.compchemeng.2022.107956_b61
  article-title: A universal formula for stabilization with bounded controls
  publication-title: Systems Control Lett.
  doi: 10.1016/0167-6911(91)90111-Q
– volume: 35
  start-page: 178
  issue: 2
  year: 2011
  ident: 10.1016/j.compchemeng.2022.107956_b13
  article-title: Economic optimization using model predictive control with a terminal cost
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2011.10.011
– volume: 168
  start-page: 275
  year: 2021
  ident: 10.1016/j.compchemeng.2022.107956_b98
  article-title: Machine learning-based predictive control using noisy data: Evaluating performance and robustness via a large-scale process simulator
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.02.011
– start-page: 781
  year: 1979
  ident: 10.1016/j.compchemeng.2022.107956_b93
  article-title: Pole assignment self-tuning regulator
– year: 2018
  ident: 10.1016/j.compchemeng.2022.107956_b43
SSID ssj0002488
Score 2.6601202
SecondaryResourceType review_article
Snippet An overview of the recent developments of time-series neural network modeling is presented along with its use in model predictive control (MPC). A tutorial on...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107956
SubjectTerms Chemical processes
Encoder–decoder architecture
Feed-forward neural networks
Model predictive control
Nonlinear systems
Recurrent neural networks
Time-series forecasting
Title A tutorial review of neural network modeling approaches for model predictive control
URI https://dx.doi.org/10.1016/j.compchemeng.2022.107956
https://www.osti.gov/biblio/1961482
Volume 165
WOSCitedRecordID wos000874764000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTSnNofRJk7RFhd6Cl61trSXIxYSUtpDQwxa2JyPLMvGyeJfEm-bS_94Zj2Sb0JTtoRdjRsgPzafRSBp9w9iHwgoRaaUCoeU0iI2RgQa_OFDx1Aipjc3Lsk02kVxcyMVCfRuNfvmzMDerpK7l7a3a_FdVgwyUjUdn_0Hd3UNBAPegdLiC2uG6k-LT4wZ5CaqWsd-fS0HaShDUFPRN-W_a44mOUty2tAwkR96AomrtoI9kH7qwPg_EdYsa4wkHbE9s2G3ikEn7UR2fD6Tp6lIv3QH38_UlrpyDzzvpIoO2tBe0rX_aqg8-oEfhdhEArRmuVcA01wdjuQU0N9oPDbKCSWxEPNITSzZYJlEQR5RQpTPSlFHCofH0j8af1iGWqLsN_j38-AS_AkoSJe4QbtMMSLU8qA_YXpgIBUZxL_1ytvjaDeVhLKUnXcWvfMTe9wGC97zmPgdnvAabPfBd5k_ZEzfp4CmB5Rkb2fo52x9QUb5g85R72HCCDV-XnGDDHWy4hw3vYcMBNiTnPWy4g81L9v3T2fz0c-AybgQGHNUmUCrOzczKmZaRFIWIC1WqQmjcnAbPOy91mUvovTn07lxjQT6TJrYfk7IIdW6iV2xcr2v7mvEinIH_BQ6piQWmc5HlFEZSUcTaiFDb_IBJ30yZcXT0mBVllfm4w2U2aOEMWzijFj5gYVd1Q5wsu1Q68brInHNJTmMG8Nml-hHqD6siubLBKDSo6wB0-NfSI_a47wxv2Li52tq37KG5aarrq3cOc78BsG6p_g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+tutorial+review+of+neural+network+modeling+approaches+for+model+predictive+control&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Ren%2C+Yi+Ming&rft.au=Alhajeri%2C+Mohammed+S.&rft.au=Luo%2C+Junwei&rft.au=Chen%2C+Scarlett&rft.date=2022-09-01&rft.pub=Elsevier&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=165&rft.issue=C&rft_id=info:doi/10.1016%2Fj.compchemeng.2022.107956&rft.externalDocID=1961482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon