Deep Kusuoka Approximation: High-Order Spatial Approximation for Solving High-Dimensional Kolmogorov Equations and Its Application to Finance
The paper introduces a new deep learning-based high-order spatial approximation for a solution of a high-dimensional Kolmogorov equation where the initial condition is only assumed to be a continuous function and the condition on the vector fields associated with the differential operator is very ge...
Uloženo v:
| Vydáno v: | Computational economics Ročník 64; číslo 3; s. 1443 - 1461 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.09.2024
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 0927-7099, 1572-9974 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The paper introduces a new deep learning-based high-order spatial approximation for a solution of a high-dimensional Kolmogorov equation where the initial condition is only assumed to be a continuous function and the condition on the vector fields associated with the differential operator is very general, i.e. weaker than Hörmander’s hypoelliptic condition. In particular, the deep learning-based method is constructed based on the Kusuoka approximation. Numerical results for high-dimensional partial differential equations up to 500-dimension cases appearing in option pricing problems show the validity of the method. As an application, a computation scheme for the delta is shown using “deep” numerical differentiation. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0927-7099 1572-9974 |
| DOI: | 10.1007/s10614-023-10476-2 |