Study of the interplay between lower-order and higher-order energetic strain-gradient effects in polycrystal plasticity

Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the mechanics and physics of solids Ročník 164; s. 104906
Hlavní autoři: Christodoulou, Paul G., Lebensohn, Ricardo A., Beyerlein, Irene J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Elsevier Ltd 01.07.2022
Elsevier BV
Elsevier
Témata:
ISSN:0022-5096, 1873-4782
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local theories. In this work, we incorporate lower-order (LO) and higher-order energetic (HOE) strain-gradient effects into a crystal plasticity fast Fourier transform (FFT)-based formulation to investigate the interplay of the length scale that each strain-gradient term introduces at the microscale, and the mechanical properties that result at the macroscale. For an applicable range of length scales, we consider two systems: a 1-D two-phase face centered cubic (FCC) laminate and a 3-D FCC polycrystal, and two uniaxial deformation modes: monotonic tension and cyclic tension–compression. We show that increases in the individual LO and HOE length scales increase the hardening rate and strength of the material, respectively. When combined, the strong LO hardening is less pronounced than the effect alone due to the lowering of the gradients due to the HOE microstress. We demonstrate that the LO and HOE hardening manifest as “isotropic” (yield surface expansion) and “kinematic” (yield surface shift) effects, respectively, consistent with their theoretical origins. We show that in cyclic loading, the Bauschinger effect emerges in both local and non-local calculations and link its origins and severity to the behavior in the strain field, slip-system rates, and the HOE microforce. •The interplay between strain-gradient length-scale parameters is studied.•Increasing the higher-order energetic parameter increases polycrystal yield strength.•Increasing the lower-order (LO) length scale increases the strain-hardening rate.•The higher-order effect reduces gradients, limiting the influence of the LO effect.•The higher-order energetic effect enhances the local Bauschinger effect.
AbstractList in this report strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local theories. In this work, we incorporate lower-order (LO) and higher-order energetic (HOE) strain-gradient effects into a crystal plasticity fast Fourier transform (FFT)-based formulation to investigate the interplay of the length scale that each strain-gradient term introduces at the microscale, and the mechanical properties that result at the macroscale. For an applicable range of length scales, we consider two systems: a 1-D two-phase face centered cubic (FCC) laminate and a 3-D FCC polycrystal, and two uniaxial deformation modes: monotonic tension and cyclic tension–compression. We show that increases in the individual LO and HOE length scales increase the hardening rate and strength of the material, respectively. When combined, the strong LO hardening is less pronounced than the effect alone due to the lowering of the gradients due to the HOE microstress. We demonstrate that the LO and HOE hardening manifest as “isotropic” (yield surface expansion) and “kinematic” (yield surface shift) effects, respectively, consistent with their theoretical origins. We show that in cyclic loading, the Bauschinger effect emerges in both local and non-local calculations and link its origins and severity to the behavior in the strain field, slip-system rates, and the HOE microforce.
Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local theories. In this work, we incorporate lower-order (LO) and higher-order energetic (HOE) strain-gradient effects into a crystal plasticity fast Fourier transform (FFT)-based formulation to investigate the interplay of the length scale that each strain-gradient term introduces at the microscale, and the mechanical properties that result at the macroscale. For an applicable range of length scales, we consider two systems: a 1-D two-phase face centered cubic (FCC) laminate and a 3-D FCC polycrystal, and two uniaxial deformation modes: monotonic tension and cyclic tension–compression. We show that increases in the individual LO and HOE length scales increase the hardening rate and strength of the material, respectively. When combined, the strong LO hardening is less pronounced than the effect alone due to the lowering of the gradients due to the HOE microstress. We demonstrate that the LO and HOE hardening manifest as “isotropic” (yield surface expansion) and “kinematic” (yield surface shift) effects, respectively, consistent with their theoretical origins. We show that in cyclic loading, the Bauschinger effect emerges in both local and non-local calculations and link its origins and severity to the behavior in the strain field, slip-system rates, and the HOE microforce. •The interplay between strain-gradient length-scale parameters is studied.•Increasing the higher-order energetic parameter increases polycrystal yield strength.•Increasing the lower-order (LO) length scale increases the strain-hardening rate.•The higher-order effect reduces gradients, limiting the influence of the LO effect.•The higher-order energetic effect enhances the local Bauschinger effect.
Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary dislocations, introducing a length-scale dependence in the mechanical behavior of crystalline materials, which is otherwise lacking in local theories. In this work, we incorporate lower-order (LO) and higher-order energetic (HOE) strain-gradient effects into a crystal plasticity fast Fourier transform (FFT)-based formulation to investigate the interplay of the length scale that each strain-gradient term introduces at the microscale, and the mechanical properties that result at the macroscale. For an applicable range of length scales, we consider two systems: a 1-D two-phase face centered cubic (FCC) laminate and a 3-D FCC polycrystal, and two uniaxial deformation modes: monotonic tension and cyclic tension–compression. We show that increases in the individual LO and HOE length scales increase the hardening rate and strength of the material, respectively. When combined, the strong LO hardening is less pronounced than the effect alone due to the lowering of the gradients due to the HOE microstress. We demonstrate that the LO and HOE hardening manifest as "isotropic" (yield surface expansion) and "kinematic" (yield surface shift) effects, respectively, consistent with their theoretical origins. We show that in cyclic loading, the Bauschinger effect emerges in both local and non-local calculations and link its origins and severity to the behavior in the strain field, slip-system rates, and the HOE microforce.
ArticleNumber 104906
Author Christodoulou, Paul G.
Beyerlein, Irene J.
Lebensohn, Ricardo A.
Author_xml – sequence: 1
  givenname: Paul G.
  orcidid: 0000-0002-5259-5785
  surname: Christodoulou
  fullname: Christodoulou, Paul G.
  email: pchristodoulou@ucsb.edu
  organization: Materials Department, University of California, Santa Barbara, Santa Barbara, 93117, CA, USA
– sequence: 2
  givenname: Ricardo A.
  orcidid: 0000-0002-3152-9105
  surname: Lebensohn
  fullname: Lebensohn, Ricardo A.
  email: lebenso@lanl.gov
  organization: Theoretical Division, Los Alamos National Laboratory, 87845, Los Alamos, NM, USA
– sequence: 3
  givenname: Irene J.
  orcidid: 0000-0002-5489-5132
  surname: Beyerlein
  fullname: Beyerlein, Irene J.
  email: beyerlein@ucsb.edu
  organization: Materials Department, University of California, Santa Barbara, Santa Barbara, 93117, CA, USA
BackLink https://www.osti.gov/servlets/purl/1865036$$D View this record in Osti.gov
BookMark eNp9kc1u3CAUhVGVSp38vEBXqF17AsZ4sJRNFaVNpEhdNFkjDJcZLAdcYDLy2xfLVRZZZIV0-c65B845OvPBA0JfKdlSQtvrYTu8TGlbk7oug6Yj7Se0oWLHqmYn6jO0IeWm4qRrv6DzlAZCCCc7ukGnP_loZhwszgfAzmeI06hm3EM-AXg8hhPEKkQDEStv8MHtD28D8BD3kJ3GKUflfLWPyjjwGYO1oHMqhngK46zjnLIacbFOBXd5vkSfrRoTXP0_L9Dzz7un2_vq8fevh9sfj5VmXZerjoEQ1igloOu5obbhvN9x3mqrmQWhBefKNkwo3TSqF8qYBVWk7y30tGcX6NvqG8pimcpq0AcdvC_xJBUtJ6wt0PcVmmL4e4SU5RCO0Zdcsm47yilrWFcosVI6hpQiWFncVHbBL48fJSVy6UIOculCLl3ItYsird9Jp-heVJw_Ft2sIij_8-ogLvHBazAuLulNcB_J_wHOqKjZ
CitedBy_id crossref_primary_10_1016_j_msea_2024_147690
crossref_primary_10_1016_j_jallcom_2023_169163
crossref_primary_10_1016_j_euromechsol_2024_105548
crossref_primary_10_1016_j_cma_2025_118355
crossref_primary_10_1016_j_ijplas_2022_103410
crossref_primary_10_1016_j_ijsolstr_2025_113589
Cites_doi 10.1016/j.ijplas.2003.08.001
10.1016/0022-5096(61)90018-7
10.1016/S0022-5096(02)00081-9
10.1002/zamm.201200101
10.1016/j.ijsolstr.2014.12.019
10.1016/j.actamat.2006.01.005
10.1016/S0022-5096(01)00049-7
10.1016/j.jmps.2007.07.015
10.1557/JMR.1995.0853
10.1016/S1359-6454(01)00172-0
10.1080/14786430802154815
10.1016/S0022-5096(99)00059-9
10.1016/j.ijplas.2004.11.001
10.1016/j.scriptamat.2010.05.014
10.1016/0956-7151(94)90502-9
10.1016/j.jmps.2005.01.004
10.1016/j.actamat.2008.10.057
10.1016/S1359-6454(98)00153-0
10.1080/14786437008238426
10.1016/S0022-5096(00)00006-5
10.1016/j.jmps.2004.04.010
10.1016/S0065-2156(08)70388-0
10.1016/j.actamat.2008.04.016
10.1016/j.jmps.2004.08.008
10.1016/j.ijplas.2014.01.010
10.1016/j.ijplas.2006.10.013
10.1016/S0022-5096(98)00103-3
10.1016/j.ijplas.2013.06.010
10.1016/j.jmps.2004.06.006
10.1002/nme.275
10.1088/0370-1301/64/9/303
10.1115/1.4030323
10.1016/S0045-7825(97)00218-1
10.1016/j.ijplas.2006.08.003
10.1088/0965-0393/18/1/015009
10.1016/j.actamat.2005.05.036
10.1016/0001-6160(53)90054-6
10.1016/S0022-5096(99)00075-7
10.1016/j.pmatsci.2013.06.001
10.1016/j.ijplas.2018.08.016
10.1016/j.jmps.2016.03.023
10.1007/s10409-015-0468-8
10.1016/0022-5096(93)90072-N
10.1016/j.jmps.2004.12.008
10.1016/j.euromechsol.2011.04.006
10.1016/S0022-5096(01)00104-1
10.1016/S0022-5096(99)00022-8
10.1016/j.ijplas.2011.12.005
10.1016/j.ijplas.2018.07.015
10.1115/1.3167205
10.1016/j.jmps.2013.08.014
10.1016/j.ijsolstr.2014.08.009
10.1557/JMR.2001.0146
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2022
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Texas A & M Univ., College Station, TX (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
– name: Texas A & M Univ., College Station, TX (United States)
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
KR7
L7M
OIOZB
OTOTI
DOI 10.1016/j.jmps.2022.104906
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4782
ExternalDocumentID 1865036
10_1016_j_jmps_2022_104906
S0022509622001089
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M24
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SPG
SST
SSZ
T5K
VH1
WUQ
XFK
XPP
YQT
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
KR7
L7M
AALMO
ABPIF
ABPTK
OIOZB
OTOTI
ID FETCH-LOGICAL-c399t-93e88fdaa8e9b5d1f455b7556cfc3fe8c855af438ac44ab8adda8e9a0bbfeb1b3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799849900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-5096
IngestDate Thu May 18 22:34:15 EDT 2023
Sun Nov 30 04:43:22 EST 2025
Tue Nov 18 22:12:30 EST 2025
Sat Nov 29 07:29:06 EST 2025
Fri Feb 23 02:40:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Strain-gradient plasticity
A. Dislocations
B. Crystal plasticity
C. Numerical algorithms
B. Elastic-viscoplastic material
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-93e88fdaa8e9b5d1f455b7556cfc3fe8c855af438ac44ab8adda8e9a0bbfeb1b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
89233218CNA000001; NA0003857
LA-UR-21-32270
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0002-5489-5132
0000-0002-3152-9105
0000-0002-5259-5785
0000000254895132
0000000252595785
0000000231529105
OpenAccessLink https://www.osti.gov/servlets/purl/1865036
PQID 2691513439
PQPubID 2045442
ParticipantIDs osti_scitechconnect_1865036
proquest_journals_2691513439
crossref_citationtrail_10_1016_j_jmps_2022_104906
crossref_primary_10_1016_j_jmps_2022_104906
elsevier_sciencedirect_doi_10_1016_j_jmps_2022_104906
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Journal of the mechanics and physics of solids
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Hutchinson (b35) 1976; 348
Forest (b23) 2008; 88
Moulinec, Suquet (b53) 1998; 157
Ashby (b5) 1970; 21
Hwang, Guo, Jiang, Huang, Zhuang (b36) 2004; 20
Stölken, Evans (b60) 1998; 46
Bittencourt (b8) 2014; 53
Huang, Gao, Nix, Hutchinson (b34) 2000; 48
Han, Ma, Roters, Raabe (b33) 2007; 23
Han, Gao, Huang, Nix (b32) 2005; 53
Ma, Clarke (b46) 1995; 10
Gurtin, Needleman (b29) 2005; 53
Lebensohn (b41) 2001; 49
Gurtin (b26) 2002; 50
Gao, Huang, Nix, Hutchinson (b24) 1999; 47
Kuroda, Tvergaard (b40) 2008; 56
Niordson, Kysar (b54) 2014; 62
Petch (b56) 1953; 174
Bittencourt, Needleman, Gurtin, Van der Giessen (b9) 2003; 51
Ryś, Petryk (b58) 2018; 111
Cheong, Busso, Arsenlis (b11) 2005; 21
Fleck, Hutchinson (b16) 1993; 41
Michel, Moulinec, Suquet (b49) 2000; 1
Ma, Roters, Raabe (b47) 2006; 54
Gurtin (b25) 2000; 48
Armstrong (b3) 1961; 9
Gurtin, Anand (b28) 2005; 53
Chiricotto, Giacomelli, Tomassetti (b12) 2012; 72
Fleck, Muller, Ashby, Hutchinson (b21) 1994; 42
Han, Gao, Huang, Nix (b31) 2005; 53
Lebensohn, Brenner, Castelnau, Rollett (b42) 2008; 56
Motz, Schöberl, Pippan (b51) 2005; 53
Fleck, Hutchinson, Willis (b20) 2015; 82
Fleck, Willis (b22) 2015; 31
Berbenni, Taupin, Djaka, Fressengeas (b7) 2014; 51
Hall (b30) 1951; 64
Kiener, Motz, Grosinger, Weygand, Pippan (b38) 2010; 63
Fleck, Hutchinson (b17) 1997; 33
Asaro (b4) 1983; 50
Bargmann, Reddy (b6) 2011; 30
Dahlberg, Boåsen (b14) 2019; 112
Nye (b55) 1953; 1
Lebensohn, Kanjarla, Eisenlohr (b43) 2012; 32–33
Busso, Meissonnier, O’Dowd (b10) 2000; 48
Gurtin (b27) 2004; 52
Moulinec, Suquet (b52) 1994; 318
Chong, Yang, Lam, Tong (b13) 2001; 16
Lebensohn, Needleman (b45) 2016; 97
Antolovich, Armstrong (b2) 2014
Michel, Moulinec, Suquet (b50) 2001; 52
Fleck, Hutchinson (b18) 2001; 49
Fleck, Hutchinson, Willis (b19) 2014; 470
Lebensohn, Montagnat, Mansuy, Duval, Meysonnier, Philip (b44) 2009; 57
Reddy (b57) 2013; 93
Shell De Guzman, Neubauber, Flinn, Nix (b59) 1993; 308
Dunne, Rugg, Walker (b15) 2007; 23
Kuroda (b39) 2015; 58
Mayeur, McDowell (b48) 2014; 57
Acharya, Bassani (b1) 2000; 48
Idiart, Fleck (b37) 2009; 18
Petch (10.1016/j.jmps.2022.104906_b56) 1953; 174
Moulinec (10.1016/j.jmps.2022.104906_b52) 1994; 318
Motz (10.1016/j.jmps.2022.104906_b51) 2005; 53
Han (10.1016/j.jmps.2022.104906_b32) 2005; 53
Hutchinson (10.1016/j.jmps.2022.104906_b35) 1976; 348
Lebensohn (10.1016/j.jmps.2022.104906_b41) 2001; 49
Ma (10.1016/j.jmps.2022.104906_b46) 1995; 10
Gurtin (10.1016/j.jmps.2022.104906_b29) 2005; 53
Lebensohn (10.1016/j.jmps.2022.104906_b42) 2008; 56
Ryś (10.1016/j.jmps.2022.104906_b58) 2018; 111
Kuroda (10.1016/j.jmps.2022.104906_b39) 2015; 58
Kiener (10.1016/j.jmps.2022.104906_b38) 2010; 63
Michel (10.1016/j.jmps.2022.104906_b49) 2000; 1
Fleck (10.1016/j.jmps.2022.104906_b17) 1997; 33
Gurtin (10.1016/j.jmps.2022.104906_b26) 2002; 50
Cheong (10.1016/j.jmps.2022.104906_b11) 2005; 21
Busso (10.1016/j.jmps.2022.104906_b10) 2000; 48
Fleck (10.1016/j.jmps.2022.104906_b22) 2015; 31
Idiart (10.1016/j.jmps.2022.104906_b37) 2009; 18
Nye (10.1016/j.jmps.2022.104906_b55) 1953; 1
Kuroda (10.1016/j.jmps.2022.104906_b40) 2008; 56
Shell De Guzman (10.1016/j.jmps.2022.104906_b59) 1993; 308
Fleck (10.1016/j.jmps.2022.104906_b18) 2001; 49
Gurtin (10.1016/j.jmps.2022.104906_b28) 2005; 53
Lebensohn (10.1016/j.jmps.2022.104906_b44) 2009; 57
Asaro (10.1016/j.jmps.2022.104906_b4) 1983; 50
Mayeur (10.1016/j.jmps.2022.104906_b48) 2014; 57
Dunne (10.1016/j.jmps.2022.104906_b15) 2007; 23
Reddy (10.1016/j.jmps.2022.104906_b57) 2013; 93
Hall (10.1016/j.jmps.2022.104906_b30) 1951; 64
Moulinec (10.1016/j.jmps.2022.104906_b53) 1998; 157
Berbenni (10.1016/j.jmps.2022.104906_b7) 2014; 51
Bittencourt (10.1016/j.jmps.2022.104906_b9) 2003; 51
Gao (10.1016/j.jmps.2022.104906_b24) 1999; 47
Fleck (10.1016/j.jmps.2022.104906_b21) 1994; 42
Gurtin (10.1016/j.jmps.2022.104906_b25) 2000; 48
Bittencourt (10.1016/j.jmps.2022.104906_b8) 2014; 53
Hwang (10.1016/j.jmps.2022.104906_b36) 2004; 20
Bargmann (10.1016/j.jmps.2022.104906_b6) 2011; 30
Lebensohn (10.1016/j.jmps.2022.104906_b45) 2016; 97
Dahlberg (10.1016/j.jmps.2022.104906_b14) 2019; 112
Michel (10.1016/j.jmps.2022.104906_b50) 2001; 52
Niordson (10.1016/j.jmps.2022.104906_b54) 2014; 62
Stölken (10.1016/j.jmps.2022.104906_b60) 1998; 46
Han (10.1016/j.jmps.2022.104906_b31) 2005; 53
Lebensohn (10.1016/j.jmps.2022.104906_b43) 2012; 32–33
Ashby (10.1016/j.jmps.2022.104906_b5) 1970; 21
Chong (10.1016/j.jmps.2022.104906_b13) 2001; 16
Ma (10.1016/j.jmps.2022.104906_b47) 2006; 54
Acharya (10.1016/j.jmps.2022.104906_b1) 2000; 48
Fleck (10.1016/j.jmps.2022.104906_b16) 1993; 41
Han (10.1016/j.jmps.2022.104906_b33) 2007; 23
Gurtin (10.1016/j.jmps.2022.104906_b27) 2004; 52
Chiricotto (10.1016/j.jmps.2022.104906_b12) 2012; 72
Antolovich (10.1016/j.jmps.2022.104906_b2) 2014
Armstrong (10.1016/j.jmps.2022.104906_b3) 1961; 9
Fleck (10.1016/j.jmps.2022.104906_b19) 2014; 470
Fleck (10.1016/j.jmps.2022.104906_b20) 2015; 82
Forest (10.1016/j.jmps.2022.104906_b23) 2008; 88
Huang (10.1016/j.jmps.2022.104906_b34) 2000; 48
References_xml – volume: 9
  start-page: 196
  year: 1961
  end-page: 199
  ident: b3
  article-title: On size effects in polycrystal plasticity
  publication-title: J. Mech. Phys. Solids
– volume: 52
  start-page: 2545
  year: 2004
  end-page: 2568
  ident: b27
  article-title: A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin
  publication-title: J. Mech. Phys. Solids
– volume: 157
  start-page: 69
  year: 1998
  end-page: 94
  ident: b53
  article-title: A numerical method for computing the overall response of nonlinear composites with complex microstructure
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 51
  start-page: 281
  year: 2003
  end-page: 310
  ident: b9
  article-title: A comparison of nonlocal continuum and discrete dislocation plasticity predictions
  publication-title: J. Mech. Phys. Solids
– volume: 30
  start-page: 719
  year: 2011
  end-page: 730
  ident: b6
  article-title: Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative micro-stresses
  publication-title: Eur. J. Mech. A/Solids
– volume: 53
  start-page: 1
  year: 2014
  end-page: 16
  ident: b8
  article-title: Dynamic explicit solution for higher-order crystal plasticity theories
  publication-title: Int. J. Plast.
– volume: 16
  start-page: 1052
  year: 2001
  end-page: 1058
  ident: b13
  article-title: Torsion and bending of micron-scaled structures
  publication-title: J. Mater. Res.
– volume: 56
  start-page: 3914
  year: 2008
  end-page: 3926
  ident: b42
  article-title: Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper
  publication-title: Acta Mater.
– volume: 53
  start-page: 1204
  year: 2005
  end-page: 1222
  ident: b32
  article-title: Mechanism-based strain gradient crystal plasticity—II. Analysis
  publication-title: J. Mech. Phys. Solids
– volume: 1
  start-page: 79
  year: 2000
  end-page: 88
  ident: b49
  article-title: A computational method based on augmented lagrangians and fast fourier transforms for composites with high contrast
  publication-title: CMES - Comput. Model. Eng. Sci.
– volume: 23
  start-page: 690
  year: 2007
  end-page: 710
  ident: b33
  article-title: A finite element approach with patch projection for strain gradient plasticity formulations
  publication-title: Int. J. Plast.
– volume: 10
  start-page: 853
  year: 1995
  end-page: 863
  ident: b46
  article-title: Size dependent hardness of silver single crystals
  publication-title: J. Mater. Res.
– volume: 41
  start-page: 1825
  year: 1993
  end-page: 1857
  ident: b16
  article-title: A phenomenological theory for strain gradient effects in plasticity
  publication-title: J. Mech. Phys. Solids
– volume: 49
  start-page: 2723
  year: 2001
  end-page: 2737
  ident: b41
  article-title: N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform
  publication-title: Acta Mater.
– volume: 470
  year: 2014
  ident: b19
  article-title: Strain gradient plasticity under non-proportional loading
  publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci.
– volume: 47
  start-page: 1239
  year: 1999
  end-page: 1263
  ident: b24
  article-title: Mechanism-based strain gradient plasticity - I. Theory
  publication-title: J. Mech. Phys. Solids
– volume: 58
  start-page: 62
  year: 2015
  end-page: 72
  ident: b39
  article-title: A higher-order strain gradient plasticity theory with a corner-like effect
  publication-title: Int. J. Solids Struct.
– volume: 48
  start-page: 989
  year: 2000
  end-page: 1036
  ident: b25
  article-title: On the plasticity of single crystals: Free energy, microforces, plastic-strain gradients
  publication-title: J. Mech. Phys. Solids
– volume: 53
  start-page: 1188
  year: 2005
  end-page: 1203
  ident: b31
  article-title: Mechanism-based strain gradient crystal plasticity—I. Theory
  publication-title: J. Mech. Phys. Solids
– volume: 20
  start-page: 831
  year: 2004
  end-page: 839
  ident: b36
  article-title: The finite deformation theory of Taylor-based nonlocal plasticity
  publication-title: Int. J. Plast.
– volume: 54
  start-page: 2169
  year: 2006
  end-page: 2179
  ident: b47
  article-title: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations
  publication-title: Acta Mater.
– volume: 50
  start-page: 921
  year: 1983
  end-page: 934
  ident: b4
  article-title: Crystal plasticity
  publication-title: J. Appl. Mech.
– volume: 21
  start-page: 399
  year: 1970
  end-page: 424
  ident: b5
  article-title: The deformation of plastically non-homogeneous materials
  publication-title: Phil. Mag.
– volume: 52
  start-page: 139
  year: 2001
  end-page: 160
  ident: b50
  article-title: A computational scheme for linear and non-linear composites with arbitrary phase contrast
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 318
  start-page: 1417
  year: 1994
  end-page: 1423
  ident: b52
  article-title: A fast numerical method for computing the linear and nonlinear mechanical properties of composites
  publication-title: C. R. Acad. Sci. Paris
– volume: 63
  start-page: 500
  year: 2010
  end-page: 503
  ident: b38
  article-title: Cyclic response of copper single crystal micro-beams
  publication-title: Scr. Mater.
– volume: 56
  start-page: 1591
  year: 2008
  end-page: 1608
  ident: b40
  article-title: On the formulations of higher-order strain gradient crystal plasticity models
  publication-title: J. Mech. Phys. Solids
– volume: 97
  start-page: 333
  year: 2016
  end-page: 351
  ident: b45
  article-title: Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms
  publication-title: J. Mech. Phys. Solids
– volume: 308
  start-page: 613
  year: 1993
  end-page: 618
  ident: b59
  article-title: Role of indentation depth on the measured hardness of materials
  publication-title: Materials Research Society Symposium - Proceedings
– volume: 57
  start-page: 1405
  year: 2009
  end-page: 1415
  ident: b44
  article-title: Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals
  publication-title: Acta Mater.
– volume: 32–33
  start-page: 59
  year: 2012
  end-page: 69
  ident: b43
  article-title: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials
  publication-title: Int. J. Plast.
– volume: 48
  start-page: 99
  year: 2000
  end-page: 128
  ident: b34
  article-title: Mechanism-based strain gradient plasticity–II. Analysis
  publication-title: J. Mech. Phys. Solids
– volume: 174
  start-page: 25
  year: 1953
  end-page: 28
  ident: b56
  article-title: The cleavage strength of polycrystals
  publication-title: J. Iron Steel Inst.
– volume: 48
  start-page: 2333
  year: 2000
  end-page: 2361
  ident: b10
  article-title: Gradient-dependent deformation of two-phase single crystals
  publication-title: J. Mech. Phys. Solids
– volume: 48
  start-page: 1565
  year: 2000
  end-page: 1595
  ident: b1
  article-title: Lattice incompatibility and a gradient theory of crystal plasticity
  publication-title: J. Mech. Phys. Solids
– volume: 18
  year: 2009
  ident: b37
  article-title: Size effects in the torsion of thin metal wires
  publication-title: Modelling Simulation Mater. Sci. Eng.
– volume: 51
  start-page: 4157
  year: 2014
  end-page: 4175
  ident: b7
  article-title: A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics
  publication-title: Int. J. Solids Struct.
– volume: 49
  start-page: 2245
  year: 2001
  end-page: 2271
  ident: b18
  article-title: A reformulation of strain gradient plasticity
  publication-title: J. Mech. Phys. Solids
– volume: 88
  start-page: 3549
  year: 2008
  end-page: 3563
  ident: b23
  article-title: Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations
  publication-title: Phil. Mag.
– volume: 50
  start-page: 5
  year: 2002
  end-page: 32
  ident: b26
  article-title: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations
  publication-title: J. Mech. Phys. Solids
– volume: 112
  start-page: 220
  year: 2019
  end-page: 241
  ident: b14
  article-title: Evolution of the length scale in strain gradient plasticity
  publication-title: Int. J. Plast.
– volume: 348
  start-page: 101
  year: 1976
  end-page: 127
  ident: b35
  article-title: Bounds and self-consistent estimates for creep of polycrystalline materials
  publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci.
– volume: 72
  start-page: 1169
  year: 2012
  end-page: 1191
  ident: b12
  article-title: Torsion in strain-gradient plasticity: Energetic scale effects
  publication-title: http://dx.doi.org/10.1137/120863034
– volume: 31
  start-page: 465
  year: 2015
  end-page: 472
  ident: b22
  article-title: Strain gradient plasticity: energetic or dissipative?
  publication-title: Acta Mech. Sinica
– volume: 64
  start-page: 747
  year: 1951
  end-page: 753
  ident: b30
  article-title: The deformation and ageing of mild steel: III discussion of results
  publication-title: Proceedings of the Physical Society. Section B
– volume: 33
  start-page: 295
  year: 1997
  end-page: 361
  ident: b17
  article-title: Strain gradient plasticity
  publication-title: Adv. Appl. Mech.
– volume: 111
  start-page: 168
  year: 2018
  end-page: 187
  ident: b58
  article-title: Gradient crystal plasticity models with a natural length scale in the hardening law
  publication-title: Int. J. Plast.
– year: 2014
  ident: b2
  article-title: Plastic strain localization in metals: Origins and consequences
  publication-title: Prog. Mater. Sci.
– volume: 53
  start-page: 1624
  year: 2005
  end-page: 1649
  ident: b28
  article-title: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations
  publication-title: J. Mech. Phys. Solids
– volume: 93
  start-page: 844
  year: 2013
  end-page: 867
  ident: b57
  article-title: Some theoretical and computational aspects of single-crystal strain-gradient plasticity
  publication-title: ZAMM Z. Angew. Math. Mech.
– volume: 82
  year: 2015
  ident: b20
  article-title: Guidelines for constructing strain gradient plasticity theories
  publication-title: J. Appl. Mech. Trans. ASME
– volume: 42
  start-page: 475
  year: 1994
  end-page: 487
  ident: b21
  article-title: Strain gradient plasticity: Theory and experiment
  publication-title: Acta Metall. Mater.
– volume: 62
  start-page: 31
  year: 2014
  end-page: 47
  ident: b54
  article-title: Computational strain gradient crystal plasticity
  publication-title: J. Mech. Phys. Solids
– volume: 53
  start-page: 1
  year: 2005
  end-page: 31
  ident: b29
  article-title: Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector
  publication-title: J. Mech. Phys. Solids
– volume: 46
  start-page: 5109
  year: 1998
  end-page: 5115
  ident: b60
  article-title: A microbend test method for measuring the plasticity length scale
  publication-title: Acta Mater.
– volume: 23
  start-page: 1061
  year: 2007
  end-page: 1083
  ident: b15
  article-title: Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys
  publication-title: Int. J. Plast.
– volume: 57
  start-page: 29
  year: 2014
  end-page: 51
  ident: b48
  article-title: A comparison of Gurtin type and micropolar theories of generalized single crystal plasticity
  publication-title: Int. J. Plast.
– volume: 21
  start-page: 1797
  year: 2005
  end-page: 1814
  ident: b11
  article-title: A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts
  publication-title: Int. J. Plast.
– volume: 53
  start-page: 4269
  year: 2005
  end-page: 4279
  ident: b51
  article-title: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique
  publication-title: Acta Mater.
– volume: 1
  start-page: 153
  year: 1953
  end-page: 162
  ident: b55
  article-title: Some geometrical relations in dislocated crystals
  publication-title: Acta Metall.
– volume: 20
  start-page: 831
  issue: 4–5
  year: 2004
  ident: 10.1016/j.jmps.2022.104906_b36
  article-title: The finite deformation theory of Taylor-based nonlocal plasticity
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2003.08.001
– volume: 9
  start-page: 196
  issue: 3
  year: 1961
  ident: 10.1016/j.jmps.2022.104906_b3
  article-title: On size effects in polycrystal plasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(61)90018-7
– volume: 51
  start-page: 281
  issue: 2
  year: 2003
  ident: 10.1016/j.jmps.2022.104906_b9
  article-title: A comparison of nonlocal continuum and discrete dislocation plasticity predictions
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(02)00081-9
– volume: 93
  start-page: 844
  issue: 12
  year: 2013
  ident: 10.1016/j.jmps.2022.104906_b57
  article-title: Some theoretical and computational aspects of single-crystal strain-gradient plasticity
  publication-title: ZAMM Z. Angew. Math. Mech.
  doi: 10.1002/zamm.201200101
– volume: 58
  start-page: 62
  year: 2015
  ident: 10.1016/j.jmps.2022.104906_b39
  article-title: A higher-order strain gradient plasticity theory with a corner-like effect
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.12.019
– volume: 54
  start-page: 2169
  issue: 8
  year: 2006
  ident: 10.1016/j.jmps.2022.104906_b47
  article-title: A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2006.01.005
– volume: 49
  start-page: 2245
  issue: 10
  year: 2001
  ident: 10.1016/j.jmps.2022.104906_b18
  article-title: A reformulation of strain gradient plasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(01)00049-7
– volume: 56
  start-page: 1591
  issue: 4
  year: 2008
  ident: 10.1016/j.jmps.2022.104906_b40
  article-title: On the formulations of higher-order strain gradient crystal plasticity models
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2007.07.015
– volume: 10
  start-page: 853
  issue: 4
  year: 1995
  ident: 10.1016/j.jmps.2022.104906_b46
  article-title: Size dependent hardness of silver single crystals
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1995.0853
– volume: 49
  start-page: 2723
  issue: 14
  year: 2001
  ident: 10.1016/j.jmps.2022.104906_b41
  article-title: N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transform
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(01)00172-0
– volume: 88
  start-page: 3549
  issue: 30–32
  year: 2008
  ident: 10.1016/j.jmps.2022.104906_b23
  article-title: Some links between cosserat, strain gradient crystal plasticity and the statistical theory of dislocations
  publication-title: Phil. Mag.
  doi: 10.1080/14786430802154815
– volume: 48
  start-page: 989
  issue: 5
  year: 2000
  ident: 10.1016/j.jmps.2022.104906_b25
  article-title: On the plasticity of single crystals: Free energy, microforces, plastic-strain gradients
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00059-9
– volume: 318
  start-page: 1417
  issue: II
  year: 1994
  ident: 10.1016/j.jmps.2022.104906_b52
  article-title: A fast numerical method for computing the linear and nonlinear mechanical properties of composites
  publication-title: C. R. Acad. Sci. Paris
– volume: 21
  start-page: 1797
  issue: 9
  year: 2005
  ident: 10.1016/j.jmps.2022.104906_b11
  article-title: A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2004.11.001
– volume: 63
  start-page: 500
  issue: 5
  year: 2010
  ident: 10.1016/j.jmps.2022.104906_b38
  article-title: Cyclic response of copper single crystal micro-beams
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2010.05.014
– volume: 42
  start-page: 475
  issue: 2
  year: 1994
  ident: 10.1016/j.jmps.2022.104906_b21
  article-title: Strain gradient plasticity: Theory and experiment
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(94)90502-9
– volume: 53
  start-page: 1204
  issue: 5
  year: 2005
  ident: 10.1016/j.jmps.2022.104906_b32
  article-title: Mechanism-based strain gradient crystal plasticity—II. Analysis
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2005.01.004
– volume: 57
  start-page: 1405
  issue: 5
  year: 2009
  ident: 10.1016/j.jmps.2022.104906_b44
  article-title: Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2008.10.057
– volume: 46
  start-page: 5109
  issue: 14
  year: 1998
  ident: 10.1016/j.jmps.2022.104906_b60
  article-title: A microbend test method for measuring the plasticity length scale
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00153-0
– volume: 21
  start-page: 399
  issue: 170
  year: 1970
  ident: 10.1016/j.jmps.2022.104906_b5
  article-title: The deformation of plastically non-homogeneous materials
  publication-title: Phil. Mag.
  doi: 10.1080/14786437008238426
– volume: 48
  start-page: 2333
  issue: 11
  year: 2000
  ident: 10.1016/j.jmps.2022.104906_b10
  article-title: Gradient-dependent deformation of two-phase single crystals
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(00)00006-5
– volume: 52
  start-page: 2545
  issue: 11
  year: 2004
  ident: 10.1016/j.jmps.2022.104906_b27
  article-title: A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2004.04.010
– volume: 33
  start-page: 295
  year: 1997
  ident: 10.1016/j.jmps.2022.104906_b17
  article-title: Strain gradient plasticity
  publication-title: Adv. Appl. Mech.
  doi: 10.1016/S0065-2156(08)70388-0
– volume: 56
  start-page: 3914
  issue: 15
  year: 2008
  ident: 10.1016/j.jmps.2022.104906_b42
  article-title: Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2008.04.016
– volume: 53
  start-page: 1188
  issue: 5
  year: 2005
  ident: 10.1016/j.jmps.2022.104906_b31
  article-title: Mechanism-based strain gradient crystal plasticity—I. Theory
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2004.08.008
– volume: 57
  start-page: 29
  year: 2014
  ident: 10.1016/j.jmps.2022.104906_b48
  article-title: A comparison of Gurtin type and micropolar theories of generalized single crystal plasticity
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2014.01.010
– volume: 23
  start-page: 1061
  issue: 6
  year: 2007
  ident: 10.1016/j.jmps.2022.104906_b15
  article-title: Lengthscale-dependent, elastically anisotropic, physically-based hcp crystal plasticity: Application to cold-dwell fatigue in Ti alloys
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2006.10.013
– volume: 47
  start-page: 1239
  issue: 6
  year: 1999
  ident: 10.1016/j.jmps.2022.104906_b24
  article-title: Mechanism-based strain gradient plasticity - I. Theory
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00103-3
– volume: 53
  start-page: 1
  year: 2014
  ident: 10.1016/j.jmps.2022.104906_b8
  article-title: Dynamic explicit solution for higher-order crystal plasticity theories
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2013.06.010
– volume: 72
  start-page: 1169
  issue: 4
  year: 2012
  ident: 10.1016/j.jmps.2022.104906_b12
  article-title: Torsion in strain-gradient plasticity: Energetic scale effects
  publication-title: http://dx.doi.org/10.1137/120863034
– volume: 53
  start-page: 1
  issue: 1
  year: 2005
  ident: 10.1016/j.jmps.2022.104906_b29
  article-title: Boundary conditions in small-deformation, single-crystal plasticity that account for the Burgers vector
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2004.06.006
– volume: 52
  start-page: 139
  issue: 12
  year: 2001
  ident: 10.1016/j.jmps.2022.104906_b50
  article-title: A computational scheme for linear and non-linear composites with arbitrary phase contrast
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.275
– volume: 64
  start-page: 747
  issue: 9
  year: 1951
  ident: 10.1016/j.jmps.2022.104906_b30
  article-title: The deformation and ageing of mild steel: III discussion of results
  publication-title: Proceedings of the Physical Society. Section B
  doi: 10.1088/0370-1301/64/9/303
– volume: 82
  issue: 7
  year: 2015
  ident: 10.1016/j.jmps.2022.104906_b20
  article-title: Guidelines for constructing strain gradient plasticity theories
  publication-title: J. Appl. Mech. Trans. ASME
  doi: 10.1115/1.4030323
– volume: 157
  start-page: 69
  issue: 1–2
  year: 1998
  ident: 10.1016/j.jmps.2022.104906_b53
  article-title: A numerical method for computing the overall response of nonlinear composites with complex microstructure
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(97)00218-1
– volume: 23
  start-page: 690
  issue: 4
  year: 2007
  ident: 10.1016/j.jmps.2022.104906_b33
  article-title: A finite element approach with patch projection for strain gradient plasticity formulations
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2006.08.003
– volume: 18
  issue: 1
  year: 2009
  ident: 10.1016/j.jmps.2022.104906_b37
  article-title: Size effects in the torsion of thin metal wires
  publication-title: Modelling Simulation Mater. Sci. Eng.
  doi: 10.1088/0965-0393/18/1/015009
– volume: 470
  issue: 2170
  year: 2014
  ident: 10.1016/j.jmps.2022.104906_b19
  article-title: Strain gradient plasticity under non-proportional loading
  publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci.
– volume: 53
  start-page: 4269
  issue: 15
  year: 2005
  ident: 10.1016/j.jmps.2022.104906_b51
  article-title: Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.05.036
– volume: 1
  start-page: 153
  issue: 2
  year: 1953
  ident: 10.1016/j.jmps.2022.104906_b55
  article-title: Some geometrical relations in dislocated crystals
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(53)90054-6
– volume: 48
  start-page: 1565
  issue: 8
  year: 2000
  ident: 10.1016/j.jmps.2022.104906_b1
  article-title: Lattice incompatibility and a gradient theory of crystal plasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00075-7
– year: 2014
  ident: 10.1016/j.jmps.2022.104906_b2
  article-title: Plastic strain localization in metals: Origins and consequences
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2013.06.001
– volume: 112
  start-page: 220
  year: 2019
  ident: 10.1016/j.jmps.2022.104906_b14
  article-title: Evolution of the length scale in strain gradient plasticity
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.08.016
– volume: 348
  start-page: 101
  issue: 1652
  year: 1976
  ident: 10.1016/j.jmps.2022.104906_b35
  article-title: Bounds and self-consistent estimates for creep of polycrystalline materials
  publication-title: Proc. Royal Soc. A: Math. Phys. Eng. Sci.
– volume: 97
  start-page: 333
  issue: SI
  year: 2016
  ident: 10.1016/j.jmps.2022.104906_b45
  article-title: Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2016.03.023
– volume: 31
  start-page: 465
  issue: 4
  year: 2015
  ident: 10.1016/j.jmps.2022.104906_b22
  article-title: Strain gradient plasticity: energetic or dissipative?
  publication-title: Acta Mech. Sinica
  doi: 10.1007/s10409-015-0468-8
– volume: 41
  start-page: 1825
  issue: 12
  year: 1993
  ident: 10.1016/j.jmps.2022.104906_b16
  article-title: A phenomenological theory for strain gradient effects in plasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/0022-5096(93)90072-N
– volume: 53
  start-page: 1624
  issue: 7
  year: 2005
  ident: 10.1016/j.jmps.2022.104906_b28
  article-title: A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. Part I: Small deformations
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2004.12.008
– volume: 1
  start-page: 79
  issue: 2
  year: 2000
  ident: 10.1016/j.jmps.2022.104906_b49
  article-title: A computational method based on augmented lagrangians and fast fourier transforms for composites with high contrast
  publication-title: CMES - Comput. Model. Eng. Sci.
– volume: 30
  start-page: 719
  issue: 5
  year: 2011
  ident: 10.1016/j.jmps.2022.104906_b6
  article-title: Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative micro-stresses
  publication-title: Eur. J. Mech. A/Solids
  doi: 10.1016/j.euromechsol.2011.04.006
– volume: 50
  start-page: 5
  issue: 1
  year: 2002
  ident: 10.1016/j.jmps.2022.104906_b26
  article-title: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(01)00104-1
– volume: 48
  start-page: 99
  year: 2000
  ident: 10.1016/j.jmps.2022.104906_b34
  article-title: Mechanism-based strain gradient plasticity–II. Analysis
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00022-8
– volume: 32–33
  start-page: 59
  year: 2012
  ident: 10.1016/j.jmps.2022.104906_b43
  article-title: An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2011.12.005
– volume: 174
  start-page: 25
  year: 1953
  ident: 10.1016/j.jmps.2022.104906_b56
  article-title: The cleavage strength of polycrystals
  publication-title: J. Iron Steel Inst.
– volume: 111
  start-page: 168
  year: 2018
  ident: 10.1016/j.jmps.2022.104906_b58
  article-title: Gradient crystal plasticity models with a natural length scale in the hardening law
  publication-title: Int. J. Plast.
  doi: 10.1016/j.ijplas.2018.07.015
– volume: 50
  start-page: 921
  issue: 4b
  year: 1983
  ident: 10.1016/j.jmps.2022.104906_b4
  article-title: Crystal plasticity
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3167205
– volume: 62
  start-page: 31
  issue: 1
  year: 2014
  ident: 10.1016/j.jmps.2022.104906_b54
  article-title: Computational strain gradient crystal plasticity
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2013.08.014
– volume: 308
  start-page: 613
  year: 1993
  ident: 10.1016/j.jmps.2022.104906_b59
  article-title: Role of indentation depth on the measured hardness of materials
– volume: 51
  start-page: 4157
  issue: 23–24
  year: 2014
  ident: 10.1016/j.jmps.2022.104906_b7
  article-title: A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2014.08.009
– volume: 16
  start-page: 1052
  issue: 4
  year: 2001
  ident: 10.1016/j.jmps.2022.104906_b13
  article-title: Torsion and bending of micron-scaled structures
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.2001.0146
SSID ssj0005071
Score 2.4243844
Snippet Strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of geometrically necessary...
in this report strain-gradient (SG) plasticity refers to a class of non-local theories in which gradients of plastic slip determine the storage of...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104906
SubjectTerms A. Dislocations
B. Crystal plasticity
B. Elastic-viscoplastic material
Bauschinger effect
C. Numerical algorithms
crystal plasticity
Cyclic loads
dislocations
elastic-viscoplastic material
Face centered cubic lattice
Fast Fourier transformations
Fourier transforms
Hardening rate
MATERIALS SCIENCE
Mechanical properties
numerical algorithms
Origins
Plastic properties
Polycrystals
Slip
Strain
Strain-gradient plasticity
Title Study of the interplay between lower-order and higher-order energetic strain-gradient effects in polycrystal plasticity
URI https://dx.doi.org/10.1016/j.jmps.2022.104906
https://www.proquest.com/docview/2691513439
https://www.osti.gov/servlets/purl/1865036
Volume 164
WOSCitedRecordID wos000799849900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-4782
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005071
  issn: 0022-5096
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKxwM8ID61sYH8wFuVKnGSxnksaMAmNCExUN8i23VYqiypunRbf8T-M_cmdpJ1YgIkXqIqiZ0259S-ts89JuSdhuZQM0QgkswJMM8nVhMI5FwZxdpnojGe__ElOjnhs1n8dTC4sbkwl3lUFPz6Ol7-V6jhHICNqbN_AXdbKZyAzwA6HAF2OP4R8N-sTTSGlFmtKczFphVk5bgtmlM7btYLB2e10MOcQA9qzDtTmEMissL5uaolYVWr-0DReZlv1GpzgWmUUDUaPWfVrdXhXpSLX-JcY3qxtYNu5lJqBQm8iGzeBvXG52BervNybVWLo0_jTjMkYcxdnllDAOB2OZq2l99rGD3kZu_OI3TqHB2P-5MarBPAmpk2m23TSZts5gHa1dxqvRsT9Ds9QTMpsRgvzpfoys4YrmbH7pbtdt2R44I1w3oZCsxcHj8gOywKYz4kO9Ojw9lxpxlyI8_az2MBk4XVCAa3n_S7SGdYAjB3uv46njl9Sp4YiOi0IdAzMtDFc_K4Z0_5glzVVKJlSgFF2lKJGirRHpUoIEv7VKItlegWlaihElRIe1SiHZVeku8fD08_fHbMRh2Ogvi2cmJfc57OheA6luHcS4MwlFEYTlSq_FRzxcNQpIHPhQoCITn0qXircKVMIVaQ_isyLMpC7xIaCY8xz02VmMhAaCa5SiGK1BGDOnxP7RHPvtREGRd7_BV5YuWKiwSBSBCIpAFij4zaMsvGw-Xeu0OLVWKi0Ca6TIBa95bbR2CxDNovK9SpQSGPwxjIh6sHFu_ENBZQehJDwO3DmOD1Pz50nzzq_j4HZFit1voNeaguq-xi9dbQ9xdk6shK
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+of+the+interplay+between+lower-order+and+higher-order+energetic+strain-gradient+effects+in+polycrystal+plasticity&rft.jtitle=Journal+of+the+mechanics+and+physics+of+solids&rft.au=Christodoulou%2C+Paul+G.&rft.au=Lebensohn%2C+Ricardo+A.&rft.au=Beyerlein%2C+Irene+J.&rft.date=2022-07-01&rft.pub=Elsevier+Ltd&rft.issn=0022-5096&rft.volume=164&rft_id=info:doi/10.1016%2Fj.jmps.2022.104906&rft.externalDocID=S0022509622001089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5096&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5096&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5096&client=summon