Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres

► Drag law for gas–solids flow using particle-resolved simulation of fixed spheres. ► Numerical method PUReIBM based on immersed boundary method with no forcing in fluid. ► PUReIBM is accurate, numerically convergent and consistent with two-fluid theory. ► New drag correlation is proposed that can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of multiphase flow Jg. 37; H. 9; S. 1072 - 1092
Hauptverfasser: Tenneti, S., Garg, R., Subramaniam, S.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier Ltd 01.11.2011
Elsevier
Schlagworte:
ISSN:0301-9322, 1879-3533
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract ► Drag law for gas–solids flow using particle-resolved simulation of fixed spheres. ► Numerical method PUReIBM based on immersed boundary method with no forcing in fluid. ► PUReIBM is accurate, numerically convergent and consistent with two-fluid theory. ► New drag correlation is proposed that can be used in CFD simulation of fluidized beds. Gas–solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid–particle force F on solid volume fraction ϕ and the Reynolds number based on the mean slip velocity Re m . In this work we report particle-resolved direct numerical simulation (DNS) results of interphase momentum transfer in flow past fixed random assemblies of monodisperse spheres with finite fluid inertia using a continuum Navier–Stokes solver. This solver is based on a new formulation we refer to as the Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM). The principal advantage of this formulation is that the fluid stress at the particle surface is calculated directly from the flow solution (velocity and pressure fields), which when integrated over the surfaces of all particles yields the average fluid–particle force. We demonstrate that PUReIBM is a consistent numerical method to study gas–solid flow because it results in a force density on particle surfaces that is reconcilable with the averaged two-fluid theory. The numerical convergence and accuracy of PUReIBM are established through a comprehensive suite of validation tests. The normalized average fluid–particle force F is obtained as a function of solid volume fraction ϕ (0.1 ⩽ ϕ ⩽ 0.5) and mean flow Reynolds number Re m (0.01 ⩽ Re m ⩽ 300) for random assemblies of monodisperse spheres. These results extend previously reported results of Hill et al. (2001a,b) to a wider range of ϕ, Re m , and are more accurate than those reported by Beetstra et al. (2007). Differences between the drag values obtained from PUReIBM and the drag correlation of Beetstra et al. (2007) are as high as 30% for Re m in the range 100–300. We take advantage of PUReIBM’s ability to directly calculate the relative contributions of pressure and viscous stress to the total fluid–particle force, which is useful in developing drag correlations. Using a scaling argument, Hill et al. (2001b) proposed that the viscous contribution is independent of Re m but the pressure contribution is linear in Re m (for Re m > 50). However, from PUReIBM simulations we find that the viscous contribution is not independent of the mean flow Reynolds number, although the pressure contribution does indeed vary linearly with Re m in accord with the analysis of Hill et al. (2001b). An improved correlation for F in terms of ϕ and Re m is proposed that corrects the existing correlations in Re m range 100–300. Since this drag correlation has been inferred from simulations of fixed particle assemblies, it does not include the effect of mobility of the particles. However, the fixed-bed simulation approach is a good approximation for high Stokes number particles, which are encountered in most gas–solid flows. This improved drag correlation can be used in CFD simulations of fluidized beds that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior.
AbstractList Gas-solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid-particle force F on solid volume fraction [phi] and the Reynolds number based on the mean slip velocity Re sub(m. In this work we report particle-resolved direct numerical simulation (DNS) results of interphase momentum transfer in flow past fixed random assemblies of monodisperse spheres with finite fluid inertia using a continuum Navier-Stokes solver. This solver is based on a new formulation we refer to as the Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM). The principal advantage of this formulation is that the fluid stress at the particle surface is calculated directly from the flow solution (velocity and pressure fields), which when integrated over the surfaces of all particles yields the average fluid-particle force. We demonstrate that PUReIBM is a consistent numerical method to study gas-solid flow because it results in a force density on particle surfaces that is reconcilable with the averaged two-fluid theory. The numerical convergence and accuracy of PUReIBM are established through a comprehensive suite of validation tests. The normalized average fluid-particle force F is obtained as a function of solid volume fraction [phi] (0.1 [less-than-or-equals, slant] [phi] [less-than-or-equals, slant] 0.5) and mean flow Reynolds number Re) sub(m) (0.01 [less-than-or-equals, slant] Re sub(m [less-than-or-equals, slant] 300) for random assemblies of monodisperse spheres. These results extend previously reported results of (Hill et al., 2001a) and (Hill et al., 2001b) to a wider range of [phi], Re) sub(m), and are more accurate than those reported by Beetstra et al. (2007). Differences between the drag values obtained from PUReIBM and the drag correlation of Beetstra et al. (2007) are as high as 30% for Re sub(m in the range 100-300. We take advantage of PUReIBM's ability to directly calculate the relative contributions of pressure and viscous stress to the total fluid-particle force, which is useful in developing drag correlations. Using a scaling argument, Hill et al. (2001b) proposed that the viscous contribution is independent of Re) sub(m) but the pressure contribution is linear in Re sub(m (for Re) sub(m) 50). However, from PUReIBM simulations we find that the viscous contribution is not independent of the mean flow Reynolds number, although the pressure contribution does indeed vary linearly with Re sub(m in accord with the analysis of Hill et al. (2001b). An improved correlation for F in terms of [phi] and Re) sub(m) is proposed that corrects the existing correlations in Re sub(m range 100-300. Since this drag correlation has been inferred from simulations of fixed particle assemblies, it does not include the effect of mobility of the particles. However, the fixed-bed simulation approach is a good approximation for high Stokes number particles, which are encountered in most gas-solid flows. This improved drag correlation can be used in CFD simulations of fluidized beds that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior.)
► Drag law for gas–solids flow using particle-resolved simulation of fixed spheres. ► Numerical method PUReIBM based on immersed boundary method with no forcing in fluid. ► PUReIBM is accurate, numerically convergent and consistent with two-fluid theory. ► New drag correlation is proposed that can be used in CFD simulation of fluidized beds. Gas–solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid–particle force F on solid volume fraction ϕ and the Reynolds number based on the mean slip velocity Re m . In this work we report particle-resolved direct numerical simulation (DNS) results of interphase momentum transfer in flow past fixed random assemblies of monodisperse spheres with finite fluid inertia using a continuum Navier–Stokes solver. This solver is based on a new formulation we refer to as the Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM). The principal advantage of this formulation is that the fluid stress at the particle surface is calculated directly from the flow solution (velocity and pressure fields), which when integrated over the surfaces of all particles yields the average fluid–particle force. We demonstrate that PUReIBM is a consistent numerical method to study gas–solid flow because it results in a force density on particle surfaces that is reconcilable with the averaged two-fluid theory. The numerical convergence and accuracy of PUReIBM are established through a comprehensive suite of validation tests. The normalized average fluid–particle force F is obtained as a function of solid volume fraction ϕ (0.1 ⩽ ϕ ⩽ 0.5) and mean flow Reynolds number Re m (0.01 ⩽ Re m ⩽ 300) for random assemblies of monodisperse spheres. These results extend previously reported results of Hill et al. (2001a,b) to a wider range of ϕ, Re m , and are more accurate than those reported by Beetstra et al. (2007). Differences between the drag values obtained from PUReIBM and the drag correlation of Beetstra et al. (2007) are as high as 30% for Re m in the range 100–300. We take advantage of PUReIBM’s ability to directly calculate the relative contributions of pressure and viscous stress to the total fluid–particle force, which is useful in developing drag correlations. Using a scaling argument, Hill et al. (2001b) proposed that the viscous contribution is independent of Re m but the pressure contribution is linear in Re m (for Re m > 50). However, from PUReIBM simulations we find that the viscous contribution is not independent of the mean flow Reynolds number, although the pressure contribution does indeed vary linearly with Re m in accord with the analysis of Hill et al. (2001b). An improved correlation for F in terms of ϕ and Re m is proposed that corrects the existing correlations in Re m range 100–300. Since this drag correlation has been inferred from simulations of fixed particle assemblies, it does not include the effect of mobility of the particles. However, the fixed-bed simulation approach is a good approximation for high Stokes number particles, which are encountered in most gas–solid flows. This improved drag correlation can be used in CFD simulations of fluidized beds that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior.
Author Subramaniam, S.
Tenneti, S.
Garg, R.
Author_xml – sequence: 1
  givenname: S.
  surname: Tenneti
  fullname: Tenneti, S.
– sequence: 2
  givenname: R.
  surname: Garg
  fullname: Garg, R.
– sequence: 3
  givenname: S.
  surname: Subramaniam
  fullname: Subramaniam, S.
  email: shankar@iastate.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24497605$$DView record in Pascal Francis
BookMark eNqNkbtuFDEUhi0UJDaBd3ADotnBl7nsNEgoAYIUiSa95T1zvPHKMx58PAnpUtPyhjwJXjY0qVK5OL8_n9_fKTuZ4oSMvZOikkK2H_aV349LyH6-sYQuxLtKCSkr0VRCihdsJTddv9aN1idsJbSQ614r9YqdEu2FEE1X6xX7dZHsjgd7x11MfIxTHDzNmAj5ztKfh98Ugx843VPGkfhCftrx2absIeA6YRnf4sAHnxAyn5YRkwcbOPmyms0-Tjw6fliu3KLMnf9Z4pYIx23wSIcpzTdYSK_ZS2cD4ZvH84xdf_l8fX65vvr-9dv5p6s16L7PpcRGClU72DolwEKrQcltr7veCaEa0OBqOwBI13ZqAwparFEq5TYd9Ar1GXt_xM4p_liQshk9AYZgJ4wLGdl2UnVa122Jvn2MWiqlXLITeDJz8qNN90bVdd-1oim5i2MOUiRK6Az4_K98TtYHI4U5GDN789SYORgzojHFWMF8fIL5_9KzAZdHAJbvu_WYDIHHCfCoxwzRPxf1Fy2yxq8
CODEN IJMFBP
CitedBy_id crossref_primary_10_1016_j_powtec_2020_11_070
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104270
crossref_primary_10_1016_j_powtec_2024_119875
crossref_primary_10_1016_j_ijheatmasstransfer_2015_03_046
crossref_primary_10_1016_j_apt_2021_02_016
crossref_primary_10_1016_j_ijmultiphaseflow_2016_07_006
crossref_primary_10_1016_j_jcp_2012_12_015
crossref_primary_10_1007_s11227_020_03371_2
crossref_primary_10_1016_j_partic_2022_11_011
crossref_primary_10_1017_jfm_2014_732
crossref_primary_10_1063_5_0047516
crossref_primary_10_1016_j_compgeo_2019_103210
crossref_primary_10_1017_jfm_2016_228
crossref_primary_10_1063_5_0277994
crossref_primary_10_1061_JGGEFK_GTENG_11843
crossref_primary_10_1016_j_ces_2018_09_024
crossref_primary_10_1016_j_jcp_2024_113524
crossref_primary_10_1017_jfm_2025_268
crossref_primary_10_1016_j_compfluid_2017_05_033
crossref_primary_10_1002_ceat_201600588
crossref_primary_10_1016_j_camwa_2013_04_001
crossref_primary_10_1016_j_cmpb_2024_108090
crossref_primary_10_1007_s00162_021_00593_9
crossref_primary_10_1016_j_powtec_2025_121448
crossref_primary_10_1080_13647830_2023_2178974
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104720
crossref_primary_10_1017_jfm_2015_679
crossref_primary_10_1016_j_jcp_2016_12_027
crossref_primary_10_1016_j_cej_2014_02_040
crossref_primary_10_1016_j_ces_2025_121613
crossref_primary_10_1016_j_cjche_2023_06_002
crossref_primary_10_1002_aic_18308
crossref_primary_10_1017_jfm_2017_705
crossref_primary_10_1080_10618562_2017_1351610
crossref_primary_10_1063_5_0253313
crossref_primary_10_1016_j_apt_2025_104913
crossref_primary_10_1016_j_partic_2023_05_009
crossref_primary_10_1016_j_partic_2024_07_019
crossref_primary_10_1016_j_partic_2020_06_004
crossref_primary_10_1016_j_powtec_2022_117553
crossref_primary_10_1063_5_0200589
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105300
crossref_primary_10_1108_EC_10_2018_0471
crossref_primary_10_1016_j_compfluid_2022_105379
crossref_primary_10_1016_j_cherd_2019_12_002
crossref_primary_10_1002_aic_16910
crossref_primary_10_1016_j_ces_2024_119920
crossref_primary_10_1016_j_ces_2025_121637
crossref_primary_10_1016_j_ces_2019_115428
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104815
crossref_primary_10_1063_5_0290979
crossref_primary_10_1016_j_apt_2020_04_036
crossref_primary_10_1016_j_cej_2022_139689
crossref_primary_10_1016_j_euromechflu_2022_09_003
crossref_primary_10_1016_j_cej_2019_05_194
crossref_primary_10_1016_j_cej_2025_167398
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105111
crossref_primary_10_1016_j_ijmultiphaseflow_2019_103138
crossref_primary_10_1002_ceat_202000516
crossref_primary_10_1016_j_ces_2014_05_039
crossref_primary_10_1017_jfm_2014_194
crossref_primary_10_1080_10618562_2018_1424836
crossref_primary_10_1016_j_partic_2019_11_001
crossref_primary_10_1007_s00707_019_02389_9
crossref_primary_10_1146_annurev_fluid_010816_060028
crossref_primary_10_1002_jps_24594
crossref_primary_10_1016_j_compfluid_2016_10_007
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104524
crossref_primary_10_1016_j_ces_2016_08_014
crossref_primary_10_1007_s00162_020_00538_8
crossref_primary_10_1017_jfm_2020_453
crossref_primary_10_1002_aic_16341
crossref_primary_10_1016_j_icheatmasstransfer_2025_109305
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126687
crossref_primary_10_1016_j_ces_2018_05_030
crossref_primary_10_1063_5_0270235
crossref_primary_10_1016_j_apt_2018_07_014
crossref_primary_10_1016_j_powtec_2016_05_024
crossref_primary_10_1016_j_ces_2013_08_010
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104513
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103533
crossref_primary_10_1016_j_ces_2018_03_038
crossref_primary_10_1016_j_ces_2018_08_027
crossref_primary_10_1016_j_ces_2018_08_026
crossref_primary_10_1017_jfm_2020_1020
crossref_primary_10_1016_j_ces_2019_05_047
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121985
crossref_primary_10_1007_s00707_024_04104_9
crossref_primary_10_1016_j_pecs_2012_10_003
crossref_primary_10_1089_big_2020_0071
crossref_primary_10_1002_aic_15487
crossref_primary_10_1002_aic_15489
crossref_primary_10_1063_5_0279971
crossref_primary_10_1016_j_compfluid_2016_12_017
crossref_primary_10_1016_j_jcp_2024_113281
crossref_primary_10_1016_j_ces_2019_115233
crossref_primary_10_1016_j_powtec_2017_03_020
crossref_primary_10_1016_j_powtec_2018_05_031
crossref_primary_10_1016_j_apt_2022_103880
crossref_primary_10_1016_j_ijheatmasstransfer_2012_11_006
crossref_primary_10_1002_btpr_3056
crossref_primary_10_1016_j_apt_2020_05_010
crossref_primary_10_1017_jfm_2019_467
crossref_primary_10_1146_annurev_chembioeng_110519_075414
crossref_primary_10_1016_j_partic_2020_09_007
crossref_primary_10_1016_j_ces_2021_116469
crossref_primary_10_1016_j_powtec_2023_118569
crossref_primary_10_1017_jfm_2017_295
crossref_primary_10_1002_btpr_2892
crossref_primary_10_1016_j_ijmultiphaseflow_2013_04_006
crossref_primary_10_1016_j_cej_2022_136653
crossref_primary_10_1016_j_powtec_2019_01_028
crossref_primary_10_3390_axioms11040179
crossref_primary_10_1515_revce_2019_0076
crossref_primary_10_1016_j_powtec_2022_118041
crossref_primary_10_1017_jfm_2016_246
crossref_primary_10_1002_aic_18170
crossref_primary_10_1016_j_cherd_2016_04_017
crossref_primary_10_1016_j_powtec_2022_118036
crossref_primary_10_1103_PhysRevFluids_6_104306
crossref_primary_10_1017_jfm_2015_693
crossref_primary_10_1103_PhysRevFluids_7_014301
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105175
crossref_primary_10_1017_jfm_2015_459
crossref_primary_10_1088_1742_6596_3074_1_012031
crossref_primary_10_1016_j_cej_2021_130391
crossref_primary_10_1016_j_powtec_2014_02_038
crossref_primary_10_1016_j_powtec_2019_01_013
crossref_primary_10_1017_flo_2023_20
crossref_primary_10_1002_aic_17639
crossref_primary_10_1260_1756_8277_6_4_317
crossref_primary_10_1017_jfm_2022_486
crossref_primary_10_1016_j_ijheatfluidflow_2021_108873
crossref_primary_10_1016_j_powtec_2021_05_059
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104906
crossref_primary_10_1016_j_pecs_2025_101221
crossref_primary_10_1017_jfm_2015_146
crossref_primary_10_1002_aic_18162
crossref_primary_10_1016_j_ces_2019_06_054
crossref_primary_10_1016_j_powtec_2022_117972
crossref_primary_10_1016_j_jcp_2021_110381
crossref_primary_10_1039_D4RE00086B
crossref_primary_10_1051_epjconf_201714015006
crossref_primary_10_1063_1_4941687
crossref_primary_10_1016_j_combustflame_2020_02_016
crossref_primary_10_1016_j_camwa_2024_10_004
crossref_primary_10_1016_j_powtec_2020_05_086
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103731
crossref_primary_10_1016_j_trgeo_2023_101023
crossref_primary_10_1016_j_ces_2024_120528
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103970
crossref_primary_10_1016_j_powtec_2021_02_025
crossref_primary_10_1016_j_powtec_2017_08_035
crossref_primary_10_1016_j_powtec_2022_117292
crossref_primary_10_1017_jfm_2014_330
crossref_primary_10_3390_pharmaceutics16101304
crossref_primary_10_1017_jfm_2021_780
crossref_primary_10_1007_s11012_016_0553_5
crossref_primary_10_1016_j_cep_2021_108491
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105354
crossref_primary_10_1515_cppm_2020_0103
crossref_primary_10_1063_5_0270024
crossref_primary_10_1016_j_ces_2025_122540
crossref_primary_10_1016_j_ces_2023_119371
crossref_primary_10_1016_j_powtec_2015_07_001
crossref_primary_10_1016_j_ces_2018_12_037
crossref_primary_10_1146_annurev_fluid_010313_141344
crossref_primary_10_1016_j_powtec_2021_09_022
crossref_primary_10_1017_jfm_2022_351
crossref_primary_10_1016_j_ijheatmasstransfer_2019_118907
crossref_primary_10_3390_en13184730
crossref_primary_10_1016_j_pecs_2021_100930
crossref_primary_10_1103_PhysRevFluids_6_084306
crossref_primary_10_1016_j_jcp_2020_109783
crossref_primary_10_1007_s11831_023_10001_6
crossref_primary_10_1007_s11831_018_9277_0
crossref_primary_10_1017_jfm_2016_877
crossref_primary_10_1002_aic_14901
crossref_primary_10_1002_aic_16883
crossref_primary_10_1002_aic_16884
crossref_primary_10_1007_s11630_022_1605_x
crossref_primary_10_1016_j_powtec_2023_118794
crossref_primary_10_1016_j_ijmultiphaseflow_2017_11_003
crossref_primary_10_1016_j_ijmultiphaseflow_2014_02_009
crossref_primary_10_1016_j_renene_2019_03_095
crossref_primary_10_3390_pr11051369
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104496
crossref_primary_10_1063_5_0215760
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105143
crossref_primary_10_1016_j_partic_2023_07_011
crossref_primary_10_1063_5_0217821
crossref_primary_10_2514_1_J064168
crossref_primary_10_1016_j_ijmultiphaseflow_2015_04_010
crossref_primary_10_1017_jfm_2016_290
crossref_primary_10_1016_j_ces_2018_08_041
crossref_primary_10_1016_j_jcp_2017_02_070
crossref_primary_10_1016_j_ces_2018_04_061
crossref_primary_10_1017_jfm_2022_50
crossref_primary_10_1017_jfm_2020_625
crossref_primary_10_1016_j_sctalk_2023_100213
crossref_primary_10_1016_j_ces_2022_118357
crossref_primary_10_1016_j_euromechflu_2021_09_005
crossref_primary_10_1016_j_cej_2023_144541
crossref_primary_10_1002_aic_17040
crossref_primary_10_1016_j_compfluid_2018_01_023
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104485
crossref_primary_10_1007_s11663_021_02076_y
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105131
crossref_primary_10_1016_j_powtec_2020_09_067
crossref_primary_10_1016_j_ijmultiphaseflow_2016_06_007
crossref_primary_10_1016_j_powtec_2016_02_038
crossref_primary_10_1016_j_jcp_2019_01_010
crossref_primary_10_1016_j_ijmultiphaseflow_2017_03_002
crossref_primary_10_1016_j_compfluid_2022_105670
crossref_primary_10_1017_jfm_2018_442
crossref_primary_10_1002_aic_17157
crossref_primary_10_1002_mren201500062
crossref_primary_10_1016_j_ces_2020_116147
crossref_primary_10_1002_aic_16621
crossref_primary_10_1016_j_ces_2020_115616
crossref_primary_10_1016_j_jcp_2018_09_033
crossref_primary_10_1017_jfm_2020_615
crossref_primary_10_1007_s12182_019_00411_2
crossref_primary_10_1002_aic_16061
crossref_primary_10_1002_aic_16184
crossref_primary_10_1016_j_apm_2025_116269
crossref_primary_10_1016_j_powtec_2025_121479
crossref_primary_10_1016_j_powtec_2021_07_050
crossref_primary_10_1103_PhysRevFluids_7_023401
crossref_primary_10_1016_j_cherd_2023_10_030
crossref_primary_10_1016_j_apt_2014_07_019
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103655
crossref_primary_10_1016_j_cej_2021_133485
crossref_primary_10_1016_j_compfluid_2024_106450
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103773
crossref_primary_10_1016_j_renene_2019_04_074
crossref_primary_10_1016_j_powtec_2020_05_049
crossref_primary_10_1016_j_addr_2022_114461
crossref_primary_10_1007_s40571_024_00875_z
crossref_primary_10_1016_j_powtec_2014_11_020
crossref_primary_10_1016_j_jcp_2024_113684
crossref_primary_10_1016_j_powtec_2024_119545
crossref_primary_10_1103_PhysRevFluids_8_014303
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104880
crossref_primary_10_1016_j_ces_2014_10_005
crossref_primary_10_1017_jfm_2025_10526
crossref_primary_10_1016_j_ijmultiphaseflow_2018_01_013
crossref_primary_10_1017_jfm_2021_53
crossref_primary_10_1016_j_partic_2024_06_015
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104008
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104469
crossref_primary_10_1016_j_cej_2022_139637
crossref_primary_10_1007_s00707_018_2305_1
crossref_primary_10_1002_cite_202000204
crossref_primary_10_1016_j_ces_2016_06_006
crossref_primary_10_1016_j_powtec_2021_02_059
crossref_primary_10_1002_aic_15197
crossref_primary_10_1016_j_powtec_2019_10_058
crossref_primary_10_1016_j_powtec_2024_119783
crossref_primary_10_1016_j_ces_2020_116245
crossref_primary_10_1016_j_cej_2018_10_182
crossref_primary_10_1016_j_cej_2021_128691
crossref_primary_10_1002_aic_18589
crossref_primary_10_1016_j_powtec_2021_02_052
crossref_primary_10_1016_j_powtec_2024_120408
crossref_primary_10_1016_j_ces_2012_11_017
crossref_primary_10_1007_s10409_022_09026_z
crossref_primary_10_1016_j_jcp_2017_07_056
crossref_primary_10_1016_j_jde_2024_11_029
crossref_primary_10_1016_j_ces_2014_04_025
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124432
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104692
crossref_primary_10_1016_j_partic_2025_07_012
crossref_primary_10_1016_j_ijmultiphaseflow_2014_10_001
crossref_primary_10_1016_j_ijmultiphaseflow_2014_10_002
crossref_primary_10_1016_j_ijmultiphaseflow_2018_12_013
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104139
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104854
crossref_primary_10_1016_j_ijmultiphaseflow_2015_12_006
crossref_primary_10_1208_s12249_021_02083_x
crossref_primary_10_1016_j_compfluid_2023_106071
crossref_primary_10_1016_j_apm_2018_01_011
crossref_primary_10_1016_j_ijmultiphaseflow_2019_03_013
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103396
crossref_primary_10_1016_j_partic_2016_01_012
crossref_primary_10_1002_aic_15507
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103394
crossref_primary_10_1007_s00707_018_2267_3
crossref_primary_10_1002_aic_15186
crossref_primary_10_1016_j_partic_2022_12_004
crossref_primary_10_1016_j_ijmecsci_2024_109063
crossref_primary_10_1016_j_powtec_2020_10_007
crossref_primary_10_1017_jfm_2018_259
crossref_primary_10_1002_aic_16951
crossref_primary_10_1002_aic_18339
crossref_primary_10_1016_j_powtec_2019_10_045
crossref_primary_10_1016_j_powtec_2024_120312
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104684
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104862
crossref_primary_10_1016_j_powtec_2017_05_039
crossref_primary_10_1016_j_powtec_2021_02_034
crossref_primary_10_1016_j_cpc_2023_108703
crossref_primary_10_1016_j_ijmultiphaseflow_2020_103266
crossref_primary_10_1007_s00707_021_02951_4
crossref_primary_10_1016_j_powtec_2016_09_088
crossref_primary_10_1017_jfm_2023_206
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_065
crossref_primary_10_1016_j_jcp_2019_01_053
crossref_primary_10_1016_j_powtec_2023_118290
crossref_primary_10_1016_j_compfluid_2023_105892
crossref_primary_10_1016_j_powtec_2024_119684
crossref_primary_10_1002_aic_18321
crossref_primary_10_3390_en16010065
crossref_primary_10_1016_j_ces_2021_116645
crossref_primary_10_1002_aic_14645
crossref_primary_10_1016_j_powtec_2025_120849
Cites_doi 10.1007/s10584-005-3484-7
10.1016/j.jcp.2008.11.034
10.1063/1.1616031
10.1002/aic.12127
10.1016/j.powtec.2007.08.015
10.1146/annurev.fluid.31.1.567
10.1016/S0301-9322(99)00100-7
10.1017/S0022112009994022
10.1063/1.857698
10.1016/S1750-5836(07)00014-X
10.1017/S0022112005006889
10.1017/S0022112094001783
10.1063/1.1288266
10.1017/S0022112082000627
10.1016/0009-2509(74)80200-9
10.1006/jcph.2000.6592
10.1017/S0022112004001326
10.1016/j.ces.2004.07.059
10.1016/0301-9322(82)90047-7
10.1016/j.jcp.2005.03.017
10.1016/j.jcp.2005.04.009
10.1137/040604960
10.1021/i160024a007
10.1016/S0021-9991(03)00077-9
10.1680/geot.1979.29.1.47
10.1002/aic.11065
10.1016/j.powtec.2004.01.018
10.1016/j.powtec.2010.03.023
10.1115/1.3143702
10.1016/j.combustflame.2008.04.017
10.1115/1.2786530
10.2172/10145548
10.1016/j.powtec.2010.03.042
10.1115/1.1530636
10.1017/S0022112004000989
10.1016/0021-9991(85)90148-2
10.1017/S0022112099006485
10.1016/j.jcp.2005.07.010
10.1017/S0022112094001771
10.1137/S1064827502414060
10.1146/annurev.fl.14.010182.001315
10.1017/S002211200900617X
10.1017/S0022112077001414
10.1017/S0022112001005936
10.1002/fld.1565
10.1016/j.powtec.2005.04.002
10.1103/PhysRevE.68.066614
10.1002/aic.690120130
10.1017/S0022112004003295
10.4018/978-1-61520-651-3.ch008
10.1002/aic.11800
10.1006/jcph.2000.6667
10.1023/A:1010414013942
10.1017/S0022112059000222
10.1017/S0022112001005948
10.1021/ie800171p
10.1016/j.jcp.2004.11.012
10.1146/annurev.fl.15.010183.001401
10.1006/jcph.2000.6542
10.1016/0045-7825(92)90085-X
ContentType Journal Article
Copyright 2011 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2011 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijmultiphaseflow.2011.05.010
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3533
EndPage 1092
ExternalDocumentID 24497605
10_1016_j_ijmultiphaseflow_2011_05_010
S0301932211001170
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7TB
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c399t-9381024fcbf20cac63c21b9379f0025c3cf4adcc1f6728c2c6e4e122f87c92e3
ISICitedReferencesCount 370
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295242200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-9322
IngestDate Sun Sep 28 09:53:23 EDT 2025
Mon Jul 21 09:15:37 EDT 2025
Sat Nov 29 07:21:04 EST 2025
Tue Nov 18 22:16:02 EST 2025
Fri Feb 23 02:25:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Gas–solid flow
Immersed boundary method
Drag law
Particle-resolved direct numerical simulation
Gas-solid flow
Gas particle flow
Particle-resolved direct numerical
Digital simulation
simulation
Velocity distribution
Two-phase flow
Monodispersed particle
Modelling
Spherical particle
Viscous fluids
Drag coefficient
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-9381024fcbf20cac63c21b9379f0025c3cf4adcc1f6728c2c6e4e122f87c92e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1671273346
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_1671273346
pascalfrancis_primary_24497605
crossref_citationtrail_10_1016_j_ijmultiphaseflow_2011_05_010
crossref_primary_10_1016_j_ijmultiphaseflow_2011_05_010
elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2011_05_010
PublicationCentury 2000
PublicationDate 2011-11-01
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle International journal of multiphase flow
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Gidaspow (b0100) 1986; 39
Ten Cate, Derksen, Portela, van den Akker (b0310) 2004; 519
Tenneti, Garg, Hrenya, Fox, Subramaniam (b0315) 2010; 203
Pope (b0240) 2000
Richardson, Zaki (b0245) 1954; 32
Garg, R., Tenneti, S., Mohd-Yusof, J., Subramaniam, S., 2011. Direct numerical simulation of gas–solids flow based on the immersed boundary method. In: Pannala, S., Syamlal, M., O’Brien, T.J. (Eds.), Computational Gas–Solids Flows and Reacting Systems: Theory, Methods and Practice. IGI Global, pp. 245–276.
Yusof, J.M., 1996. Interaction of massive particles with turbulence. PhD thesis, Cornell University.
Scardovelli, Zaleski (b0255) 1999; 31
Garg, R., 2009. Modeling and simulation of two-phase flows. PhD thesis, Iowa State University.
Hill, Koch, Ladd (b0125) 2001; 448
Yi, Jo, Seo, Lee, Ryu (b0340) 2007; 1
Sangani, Acrivos (b0250) 1982; 8
Zhang, Prosperetti (b0365) 2005; 210
Wen, Yu (b0330) 1966; 62
Bagchi, Balachandar (b0030) 2004; 518
Patankar (b0225) 1980
Apte, Martin, Patankar (b0015) 2009; 228
Oguz, Prosperetti (b0210) 2001; 167
Holloway, Yin, Sundaresan (b0135) 2010; 56
Hu, Patankar, Zhu (b0140) 2001; 169
Bagchi, Balachandar (b0025) 2003; 15
Burton, Eaton (b0050) 2005; 545
Cocco, Shaffer, Hays, Reddy Karri, Knowlton (b0060) 2010; 203
Ladd, Verberg (b0180) 2001; 104
Beetstra, van der Hoef, Kuipers (b0035) 2007; 53
Zhang, Prosperetti (b0360) 2003; 70
Drew, Passman (b0075) 1998
.
Schiller, L., Naumann, A., 1935. A Drag Coefficient Correlation. V.D.I. Zeitung.
Syamlal, M., O’Brien, T.J., 1987. A generalized drag correlation for multiparticle systems. Tech. Rep., Morgantown Energy Technology Center DOE Report.
Azar, Lindgren, Larson, Mollersten (b0020) 2006; 74
Kim, Choi (b0150) 2006; 21
Hasimoto (b0115) 1959; 5
Sorensen, Stewart (b0280) 1974; 29
van der Hoef, Beetstra, Kuipers (b0325) 2005; 528
Subramaniam (b0285) 2000; 12
Sharma, Patankar (b0265) 2005; 205
Ginzburg, d’Humières (b0105) 2003; 68
Lee, Leveque (b0190) 2003; 25
Shen, Zheng, Xiao, Xiao (b0270) 2008; 154
Snyder, Stewart (b0275) 1966; 12
Koch (b0160) 1990; 2
Uhlmann (b0320) 2005; 209
Anderson, Jackson (b0010) 1967; 6
Benyahia, Syamlal, O’Brien (b0040) 2005; 156
Bokkers, Annaland, Kuipers (b0045) 2004; 140
Sun, Battaglia, Subramaniam (b0290) 2007; 129
Xu, Wang (b0335) 2006; 27
Zick, Homsy (b0370) 1982; 115
Ladd (b0170) 1994; 271
Yin, Sundaresan (b0350) 2009; 55
Patankar, Singh, Joseph, Glowinski, Pan (b0220) 2000; 26
Kim, Moin (b0155) 1985; 59
Ladd (b0175) 1994; 271
Peskin (b0235) 1981; 14
Takagi, Oguz, Zhang, Prosperetti (b0305) 2005; 187
Muldoon, Acharya (b0200) 2008; 56
Syamlal, M., Rogers, W., O’Brien, T.J., 1993. MFIX documentation: theory guide. Tech. Rep. DOE/METC-95/1013, NTIS/DE95000031, National Energy Technology Laboratory, Department of Energy.
Yin, Sundaresan (b0345) 2009; 48
Abanades, Anthony, Lu, Salvador, Alvarez (b0005) 2004; 50
Pai, Subramaniam (b0215) 2009; 628
Leboreiro, Joseph, Hrenya, Snider, Banerjee, Galvin (b0185) 2008; 184
Drew (b0070) 1983; 15
Kashiwa, B., Gaffney, E., 2003. Design basis for CFDLib. Tech. Rep. LA-UR-03-1295, Los Alamos National Lab.
Carman (b0055) 1937; 15
Hinch (b0130) 1977; 83
Glowinski, Pan, Hesla, Joseph, Périaux (b0110) 2001; 169
Koch, Sangani (b0165) 1999; 400
Patil, Annaland, Kuipers (b0230) 2005; 60
Garg, R., Galvin, J., Li, T., Pannala, S., 2010. Documentation of open-source MFIX-DEM software for gas–solids flows. Tech. Rep., National Energy Technology Laboratory, Department of Energy.
Hill, Koch, Ladd (b0120) 2001; 448
Ergun (b0080) 1952; 48
Cundall, Strack (b0065) 1979; 29
Lucci, Ferrante, Elgobashi (b0195) 2010; 650
Nomura, Hughes (b0205) 1992; 95
Kim (10.1016/j.ijmultiphaseflow.2011.05.010_b0150) 2006; 21
Muldoon (10.1016/j.ijmultiphaseflow.2011.05.010_b0200) 2008; 56
Drew (10.1016/j.ijmultiphaseflow.2011.05.010_b0075) 1998
Oguz (10.1016/j.ijmultiphaseflow.2011.05.010_b0210) 2001; 167
Ergun (10.1016/j.ijmultiphaseflow.2011.05.010_b0080) 1952; 48
Glowinski (10.1016/j.ijmultiphaseflow.2011.05.010_b0110) 2001; 169
Lucci (10.1016/j.ijmultiphaseflow.2011.05.010_b0195) 2010; 650
Pope (10.1016/j.ijmultiphaseflow.2011.05.010_b0240) 2000
Wen (10.1016/j.ijmultiphaseflow.2011.05.010_b0330) 1966; 62
Holloway (10.1016/j.ijmultiphaseflow.2011.05.010_b0135) 2010; 56
Apte (10.1016/j.ijmultiphaseflow.2011.05.010_b0015) 2009; 228
Hill (10.1016/j.ijmultiphaseflow.2011.05.010_b0120) 2001; 448
Peskin (10.1016/j.ijmultiphaseflow.2011.05.010_b0235) 1981; 14
Beetstra (10.1016/j.ijmultiphaseflow.2011.05.010_b0035) 2007; 53
Yi (10.1016/j.ijmultiphaseflow.2011.05.010_b0340) 2007; 1
10.1016/j.ijmultiphaseflow.2011.05.010_b0260
Nomura (10.1016/j.ijmultiphaseflow.2011.05.010_b0205) 1992; 95
van der Hoef (10.1016/j.ijmultiphaseflow.2011.05.010_b0325) 2005; 528
10.1016/j.ijmultiphaseflow.2011.05.010_b0300
Hasimoto (10.1016/j.ijmultiphaseflow.2011.05.010_b0115) 1959; 5
10.1016/j.ijmultiphaseflow.2011.05.010_b0145
Sun (10.1016/j.ijmultiphaseflow.2011.05.010_b0290) 2007; 129
Zhang (10.1016/j.ijmultiphaseflow.2011.05.010_b0360) 2003; 70
Anderson (10.1016/j.ijmultiphaseflow.2011.05.010_b0010) 1967; 6
Bagchi (10.1016/j.ijmultiphaseflow.2011.05.010_b0025) 2003; 15
Azar (10.1016/j.ijmultiphaseflow.2011.05.010_b0020) 2006; 74
Gidaspow (10.1016/j.ijmultiphaseflow.2011.05.010_b0100) 1986; 39
Ginzburg (10.1016/j.ijmultiphaseflow.2011.05.010_b0105) 2003; 68
Zhang (10.1016/j.ijmultiphaseflow.2011.05.010_b0365) 2005; 210
10.1016/j.ijmultiphaseflow.2011.05.010_b0090
Zick (10.1016/j.ijmultiphaseflow.2011.05.010_b0370) 1982; 115
Benyahia (10.1016/j.ijmultiphaseflow.2011.05.010_b0040) 2005; 156
10.1016/j.ijmultiphaseflow.2011.05.010_b0095
10.1016/j.ijmultiphaseflow.2011.05.010_b0295
Bagchi (10.1016/j.ijmultiphaseflow.2011.05.010_b0030) 2004; 518
Cocco (10.1016/j.ijmultiphaseflow.2011.05.010_b0060) 2010; 203
Lee (10.1016/j.ijmultiphaseflow.2011.05.010_b0190) 2003; 25
Yin (10.1016/j.ijmultiphaseflow.2011.05.010_b0350) 2009; 55
Shen (10.1016/j.ijmultiphaseflow.2011.05.010_b0270) 2008; 154
Ladd (10.1016/j.ijmultiphaseflow.2011.05.010_b0175) 1994; 271
Abanades (10.1016/j.ijmultiphaseflow.2011.05.010_b0005) 2004; 50
Kim (10.1016/j.ijmultiphaseflow.2011.05.010_b0155) 1985; 59
Patankar (10.1016/j.ijmultiphaseflow.2011.05.010_b0225) 1980
Yin (10.1016/j.ijmultiphaseflow.2011.05.010_b0345) 2009; 48
Leboreiro (10.1016/j.ijmultiphaseflow.2011.05.010_b0185) 2008; 184
Tenneti (10.1016/j.ijmultiphaseflow.2011.05.010_b0315) 2010; 203
Koch (10.1016/j.ijmultiphaseflow.2011.05.010_b0160) 1990; 2
Xu (10.1016/j.ijmultiphaseflow.2011.05.010_b0335) 2006; 27
Koch (10.1016/j.ijmultiphaseflow.2011.05.010_b0165) 1999; 400
Sharma (10.1016/j.ijmultiphaseflow.2011.05.010_b0265) 2005; 205
Ladd (10.1016/j.ijmultiphaseflow.2011.05.010_b0180) 2001; 104
Scardovelli (10.1016/j.ijmultiphaseflow.2011.05.010_b0255) 1999; 31
Uhlmann (10.1016/j.ijmultiphaseflow.2011.05.010_b0320) 2005; 209
10.1016/j.ijmultiphaseflow.2011.05.010_b0085
Hinch (10.1016/j.ijmultiphaseflow.2011.05.010_b0130) 1977; 83
Patil (10.1016/j.ijmultiphaseflow.2011.05.010_b0230) 2005; 60
Richardson (10.1016/j.ijmultiphaseflow.2011.05.010_b0245) 1954; 32
Ten Cate (10.1016/j.ijmultiphaseflow.2011.05.010_b0310) 2004; 519
Sorensen (10.1016/j.ijmultiphaseflow.2011.05.010_b0280) 1974; 29
Cundall (10.1016/j.ijmultiphaseflow.2011.05.010_b0065) 1979; 29
Burton (10.1016/j.ijmultiphaseflow.2011.05.010_b0050) 2005; 545
Ladd (10.1016/j.ijmultiphaseflow.2011.05.010_b0170) 1994; 271
Subramaniam (10.1016/j.ijmultiphaseflow.2011.05.010_b0285) 2000; 12
Patankar (10.1016/j.ijmultiphaseflow.2011.05.010_b0220) 2000; 26
Drew (10.1016/j.ijmultiphaseflow.2011.05.010_b0070) 1983; 15
Pai (10.1016/j.ijmultiphaseflow.2011.05.010_b0215) 2009; 628
Takagi (10.1016/j.ijmultiphaseflow.2011.05.010_b0305) 2005; 187
Bokkers (10.1016/j.ijmultiphaseflow.2011.05.010_b0045) 2004; 140
Sangani (10.1016/j.ijmultiphaseflow.2011.05.010_b0250) 1982; 8
Hill (10.1016/j.ijmultiphaseflow.2011.05.010_b0125) 2001; 448
Carman (10.1016/j.ijmultiphaseflow.2011.05.010_b0055) 1937; 15
Hu (10.1016/j.ijmultiphaseflow.2011.05.010_b0140) 2001; 169
10.1016/j.ijmultiphaseflow.2011.05.010_b0355
Snyder (10.1016/j.ijmultiphaseflow.2011.05.010_b0275) 1966; 12
References_xml – volume: 184
  start-page: 275
  year: 2008
  end-page: 290
  ident: b0185
  article-title: The influence of binary drag laws on MP-PIC simulations of segregating gas-fluidized beds
  publication-title: Powder Technol.
– volume: 650
  year: 2010
  ident: b0195
  article-title: Modulation of isotropic turbulence by particles of taylor length-scale size
  publication-title: J. Fluid Mech.
– volume: 203
  start-page: 57
  year: 2010
  end-page: 69
  ident: b0315
  article-title: Direct numerical simulation of gas–solid suspensions at moderate Reynolds number: quantifying the coupling between hydrodynamic forces and particle velocity fluctuations
  publication-title: Powder Technol.
– volume: 2
  start-page: 1711
  year: 1990
  end-page: 1723
  ident: b0160
  article-title: Kinetic theory for a monodisperse gas–solid suspension
  publication-title: Phys. Fluids A
– volume: 48
  start-page: 89
  year: 1952
  end-page: 94
  ident: b0080
  article-title: Fluid flow through packed columns
  publication-title: Chem. Eng. Prog.
– volume: 15
  start-page: 150
  year: 1937
  end-page: 166
  ident: b0055
  article-title: Fluid flow through granular beds
  publication-title: Trans. Inst. Chem. Eng.
– volume: 59
  start-page: 308
  year: 1985
  end-page: 323
  ident: b0155
  article-title: Application of a fractional-step method to incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 29
  start-page: 47
  year: 1979
  end-page: 65
  ident: b0065
  article-title: A discrete numerical model for granular assemblies
  publication-title: Geotechnique
– volume: 115
  start-page: 13
  year: 1982
  end-page: 26
  ident: b0370
  article-title: Stokes flow through periodic arrays of spheres
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 832
  year: 2003
  end-page: 856
  ident: b0190
  article-title: An immersed interface method for incompressible Navier–Stokes equations
  publication-title: SIAM J. Sci. Comput.
– volume: 68
  start-page: 066614
  year: 2003
  ident: b0105
  article-title: Multireflection boundary conditions for lattice Boltzmann models
  publication-title: Phys. Rev. E
– volume: 32
  start-page: 35
  year: 1954
  end-page: 53
  ident: b0245
  article-title: Sedimentation and fluidization: Part 1
  publication-title: Trans. Inst. Chem. Eng.
– volume: 448
  start-page: 213
  year: 2001
  end-page: 241
  ident: b0120
  article-title: The first effects of fluid inertia on flows in ordered and random arrays of spheres
  publication-title: J. Fluid Mech.
– volume: 154
  start-page: 489
  year: 2008
  end-page: 506
  ident: b0270
  article-title: A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion
  publication-title: Combust. Flame
– volume: 209
  start-page: 448
  year: 2005
  end-page: 476
  ident: b0320
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J. Comput. Phys.
– volume: 1
  start-page: 31
  year: 2007
  end-page: 36
  ident: b0340
  article-title: Continuous operation of the potassium-based dry sorbent CO
  publication-title: Int. J. Greenhouse Gas Control
– volume: 53
  start-page: 489
  year: 2007
  end-page: 501
  ident: b0035
  article-title: Drag force of intermediate Reynolds number flows past mono- and bidisperse arrays of spheres
  publication-title: AIChE J.
– volume: 156
  start-page: 62
  year: 2005
  end-page: 72
  ident: b0040
  article-title: Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe
  publication-title: Powder Technol.
– volume: 448
  start-page: 243
  year: 2001
  end-page: 278
  ident: b0125
  article-title: Moderate-Reynolds-number flows in ordered and random arrays of spheres
  publication-title: J. Fluid Mech.
– volume: 210
  start-page: 292
  year: 2005
  end-page: 324
  ident: b0365
  article-title: A second-order method for three-dimensional particle flow simulations
  publication-title: J. Comput. Phys.
– volume: 74
  start-page: 47
  year: 2006
  end-page: 79
  ident: b0020
  article-title: Carbon capture and storage from fossil fuels and biomass – costs and potential role in stabilizing the atmosphere
  publication-title: Clim. Change
– volume: 140
  start-page: 176
  year: 2004
  end-page: 186
  ident: b0045
  article-title: Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study
  publication-title: Powder Technol.
– volume: 26
  start-page: 1509
  year: 2000
  end-page: 1524
  ident: b0220
  article-title: A new formulation of the distributed Lagrange multipliers/fictitious domain method for particulate flow
  publication-title: Intl. J. Multiphase Flow
– year: 1998
  ident: b0075
  article-title: Theory of Multicomponent Fluids
– reference: Garg, R., 2009. Modeling and simulation of two-phase flows. PhD thesis, Iowa State University.
– volume: 167
  start-page: 196
  year: 2001
  end-page: 216
  ident: b0210
  article-title: Physalis: a new
  publication-title: J. Comput. Phys.
– reference: Kashiwa, B., Gaffney, E., 2003. Design basis for CFDLib. Tech. Rep. LA-UR-03-1295, Los Alamos National Lab.
– volume: 271
  start-page: 285
  year: 1994
  end-page: 309
  ident: b0170
  article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 1. Theoretical foundation
  publication-title: J. Fluid Mech.
– volume: 62
  start-page: 100
  year: 1966
  end-page: 111
  ident: b0330
  article-title: Mechanics of fluidization
  publication-title: Chem. Eng. Prog. Symp. Ser.
– volume: 50
  start-page: 1614
  year: 2004
  end-page: 1622
  ident: b0005
  article-title: Capture of CO
  publication-title: Environ. Energy Eng.
– volume: 83
  start-page: 695
  year: 1977
  end-page: 720
  ident: b0130
  article-title: An averaged-equation approach to particle interactions in a fluid suspension
  publication-title: J. Fluid Mech.
– volume: 6
  start-page: 527
  year: 1967
  end-page: 539
  ident: b0010
  article-title: A fluid mechanical description of fluidized beds
  publication-title: Ind. Eng. Chem. Fundam.
– volume: 187
  start-page: 371
  year: 2005
  end-page: 390
  ident: b0305
  article-title: Physalis: a new method for particle simulation. Part ii: Two-dimensional Navier–Stokes flow around cylinders
  publication-title: J. Comput. Phys.
– reference: Schiller, L., Naumann, A., 1935. A Drag Coefficient Correlation. V.D.I. Zeitung.
– volume: 12
  start-page: 2413
  year: 2000
  end-page: 2431
  ident: b0285
  article-title: Statistical representation of a spray as a point process
  publication-title: Phys. Fluids
– volume: 528
  start-page: 233
  year: 2005
  end-page: 254
  ident: b0325
  article-title: Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of sphere: results for the permeability and drag force
  publication-title: J. Fluid Mech.
– volume: 55
  start-page: 1352
  year: 2009
  end-page: 1368
  ident: b0350
  article-title: Fluid–particle drag in low-Reynolds-number polydisperse gas–solid suspensions
  publication-title: AIChE J.
– volume: 70
  start-page: 64
  year: 2003
  end-page: 74
  ident: b0360
  article-title: A method for particle simulations
  publication-title: J. Appl. Mech.
– volume: 56
  start-page: 1995
  year: 2010
  end-page: 2004
  ident: b0135
  article-title: Fluid–particle drag in inertial polydisperse gas–solid suspensions
  publication-title: AIChE J.
– volume: 169
  start-page: 363
  year: 2001
  end-page: 426
  ident: b0110
  article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow
  publication-title: J. Comput. Phys.
– volume: 271
  start-page: 311
  year: 1994
  end-page: 339
  ident: b0175
  article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 2. Numerical results
  publication-title: J. Fluid Mech.
– volume: 205
  start-page: 439
  year: 2005
  end-page: 457
  ident: b0265
  article-title: A fast computation technique for the direct numerical simulation of rigid particulate flows
  publication-title: J. Comput. Phys.
– volume: 39
  start-page: 1
  year: 1986
  end-page: 23
  ident: b0100
  article-title: Hydrodynamics of fluidization and heat transfer: supercomputer modeling
  publication-title: Appl. Mech. Rev.
– volume: 12
  start-page: 167
  year: 1966
  end-page: 173
  ident: b0275
  article-title: Velocity and pressure profiles for Newtonian creeping flow in regular packed beds of spheres
  publication-title: AIChE J.
– volume: 545
  start-page: 67
  year: 2005
  end-page: 111
  ident: b0050
  article-title: Fully resolved simulations of particle–turbulence interaction
  publication-title: J. Fluid Mech.
– reference: Garg, R., Galvin, J., Li, T., Pannala, S., 2010. Documentation of open-source MFIX-DEM software for gas–solids flows. Tech. Rep., National Energy Technology Laboratory, Department of Energy. <
– volume: 14
  start-page: 235
  year: 1981
  end-page: 259
  ident: b0235
  article-title: The fluid dynamics of heart valves: experimental, theoretical, and computational methods
  publication-title: Annu. Rev. Fluid Mech.
– volume: 5
  start-page: 317
  year: 1959
  end-page: 328
  ident: b0115
  article-title: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres
  publication-title: J. Fluid Mech.
– volume: 628
  start-page: 181
  year: 2009
  end-page: 228
  ident: b0215
  article-title: A comprehensive probability density function formalism for multiphase flows
  publication-title: J. Fluid Mech.
– volume: 129
  start-page: 1394
  year: 2007
  end-page: 1403
  ident: b0290
  article-title: Hybrid two-fluid dem simulation of gas–solid fluidized beds
  publication-title: J. Fluid Eng.
– volume: 8
  start-page: 342
  year: 1982
  end-page: 360
  ident: b0250
  article-title: Slow flow through a periodic array of spheres
  publication-title: Intl. J. Multiphase Flow
– volume: 400
  start-page: 229
  year: 1999
  end-page: 263
  ident: b0165
  article-title: Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations
  publication-title: J. Fluid Mech.
– volume: 48
  start-page: 227
  year: 2009
  end-page: 241
  ident: b0345
  article-title: Drag law for bidisperse gas–solid suspensions containing equally sized spheres
  publication-title: Ind. Eng. Chem. Res.
– volume: 95
  start-page: 115
  year: 1992
  end-page: 138
  ident: b0205
  article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 203
  start-page: 3
  year: 2010
  end-page: 11
  ident: b0060
  article-title: Particle clusters in and above fluidized beds
  publication-title: Powder Technol.
– volume: 169
  start-page: 427
  year: 2001
  end-page: 462
  ident: b0140
  article-title: Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian technique
  publication-title: J. Comput. Phys.
– volume: 228
  start-page: 2712
  year: 2009
  end-page: 2738
  ident: b0015
  article-title: A numerical method for fully resolved simulation (FRS) of rigid particle flow interactions in complex flows
  publication-title: J. Comput. Phys.
– reference: >.
– volume: 518
  start-page: 95
  year: 2004
  end-page: 123
  ident: b0030
  article-title: Response of the wake of an isolated particle to an isotropic turbulent flow
  publication-title: J. Fluid Mech.
– volume: 29
  start-page: 819
  year: 1974
  end-page: 825
  ident: b0280
  article-title: Computation of forced-convection in slow flow through ducts and packed-beds. 2. Velocity profile in a simple cubic array of spheres
  publication-title: Chem. Eng. Sci.
– volume: 15
  start-page: 3496
  year: 2003
  end-page: 3513
  ident: b0025
  article-title: Effect of turbulence on the drag and lift of a particle
  publication-title: Phys. Fluids
– volume: 56
  start-page: 1845
  year: 2008
  end-page: 1884
  ident: b0200
  article-title: A divergence-free interpolation scheme for the immersed boundary method
  publication-title: Int. J. Numer. Methods Fluids
– volume: 21
  start-page: 662
  year: 2006
  end-page: 680
  ident: b0150
  article-title: Immersed boundary method for flow around an arbitrarily moving body
  publication-title: J. Comput. Phys.
– reference: Garg, R., Tenneti, S., Mohd-Yusof, J., Subramaniam, S., 2011. Direct numerical simulation of gas–solids flow based on the immersed boundary method. In: Pannala, S., Syamlal, M., O’Brien, T.J. (Eds.), Computational Gas–Solids Flows and Reacting Systems: Theory, Methods and Practice. IGI Global, pp. 245–276.
– volume: 15
  start-page: 261
  year: 1983
  end-page: 291
  ident: b0070
  article-title: Mathematical modeling of two-phase flow
  publication-title: Annu. Rev. Fluid Mech.
– volume: 27
  start-page: 1948
  year: 2006
  end-page: 1980
  ident: b0335
  article-title: Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation
  publication-title: SIAM J. Sci. Comput.
– volume: 60
  start-page: 57
  year: 2005
  end-page: 72
  ident: b0230
  article-title: Critical comparisons of hydrodynamic models for gas–solid fluidized beds – Part I: Bubbling gas–solid fluidized beds operated with a jet
  publication-title: Chem. Eng. Sci.
– volume: 31
  start-page: 567
  year: 1999
  end-page: 603
  ident: b0255
  article-title: Direct numerical simulation of free-surface and interfacial flow
  publication-title: Annu. Rev. Fluid Mech.
– reference: Yusof, J.M., 1996. Interaction of massive particles with turbulence. PhD thesis, Cornell University.
– year: 2000
  ident: b0240
  article-title: Turbulent Flows
– volume: 104
  start-page: 1191
  year: 2001
  end-page: 1251
  ident: b0180
  article-title: Lattice-Boltzmann simulations of particle–fluid suspensions
  publication-title: J. Stat. Phys.
– volume: 519
  start-page: 233
  year: 2004
  end-page: 271
  ident: b0310
  article-title: Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence
  publication-title: J. Fluid Mech.
– year: 1980
  ident: b0225
  article-title: Numerical Heat Transfer and Fluid Flow
– reference: Syamlal, M., O’Brien, T.J., 1987. A generalized drag correlation for multiparticle systems. Tech. Rep., Morgantown Energy Technology Center DOE Report.
– reference: Syamlal, M., Rogers, W., O’Brien, T.J., 1993. MFIX documentation: theory guide. Tech. Rep. DOE/METC-95/1013, NTIS/DE95000031, National Energy Technology Laboratory, Department of Energy. <
– volume: 74
  start-page: 47
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0020
  article-title: Carbon capture and storage from fossil fuels and biomass – costs and potential role in stabilizing the atmosphere
  publication-title: Clim. Change
  doi: 10.1007/s10584-005-3484-7
– volume: 228
  start-page: 2712
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0015
  article-title: A numerical method for fully resolved simulation (FRS) of rigid particle flow interactions in complex flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.11.034
– ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0355
– volume: 15
  start-page: 3496
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0025
  article-title: Effect of turbulence on the drag and lift of a particle
  publication-title: Phys. Fluids
  doi: 10.1063/1.1616031
– volume: 56
  start-page: 1995
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0135
  article-title: Fluid–particle drag in inertial polydisperse gas–solid suspensions
  publication-title: AIChE J.
  doi: 10.1002/aic.12127
– volume: 184
  start-page: 275
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0185
  article-title: The influence of binary drag laws on MP-PIC simulations of segregating gas-fluidized beds
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2007.08.015
– volume: 32
  start-page: 35
  year: 1954
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0245
  article-title: Sedimentation and fluidization: Part 1
  publication-title: Trans. Inst. Chem. Eng.
– volume: 50
  start-page: 1614
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0005
  article-title: Capture of CO2 from combustion gases in a fluidized bed of CaO
  publication-title: Environ. Energy Eng.
– volume: 31
  start-page: 567
  year: 1999
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0255
  article-title: Direct numerical simulation of free-surface and interfacial flow
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.31.1.567
– volume: 26
  start-page: 1509
  year: 2000
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0220
  article-title: A new formulation of the distributed Lagrange multipliers/fictitious domain method for particulate flow
  publication-title: Intl. J. Multiphase Flow
  doi: 10.1016/S0301-9322(99)00100-7
– volume: 650
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0195
  article-title: Modulation of isotropic turbulence by particles of taylor length-scale size
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009994022
– volume: 2
  start-page: 1711
  year: 1990
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0160
  article-title: Kinetic theory for a monodisperse gas–solid suspension
  publication-title: Phys. Fluids A
  doi: 10.1063/1.857698
– volume: 1
  start-page: 31
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0340
  article-title: Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/S1750-5836(07)00014-X
– volume: 545
  start-page: 67
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0050
  article-title: Fully resolved simulations of particle–turbulence interaction
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112005006889
– volume: 271
  start-page: 311
  year: 1994
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0175
  article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 2. Numerical results
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094001783
– volume: 12
  start-page: 2413
  year: 2000
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0285
  article-title: Statistical representation of a spray as a point process
  publication-title: Phys. Fluids
  doi: 10.1063/1.1288266
– volume: 115
  start-page: 13
  year: 1982
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0370
  article-title: Stokes flow through periodic arrays of spheres
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112082000627
– volume: 29
  start-page: 819
  year: 1974
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0280
  article-title: Computation of forced-convection in slow flow through ducts and packed-beds. 2. Velocity profile in a simple cubic array of spheres
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(74)80200-9
– volume: 169
  start-page: 427
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0140
  article-title: Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian technique
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6592
– volume: 519
  start-page: 233
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0310
  article-title: Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004001326
– volume: 48
  start-page: 89
  year: 1952
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0080
  article-title: Fluid flow through packed columns
  publication-title: Chem. Eng. Prog.
– volume: 60
  start-page: 57
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0230
  article-title: Critical comparisons of hydrodynamic models for gas–solid fluidized beds – Part I: Bubbling gas–solid fluidized beds operated with a jet
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.07.059
– volume: 8
  start-page: 342
  year: 1982
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0250
  article-title: Slow flow through a periodic array of spheres
  publication-title: Intl. J. Multiphase Flow
  doi: 10.1016/0301-9322(82)90047-7
– volume: 209
  start-page: 448
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0320
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.03.017
– volume: 210
  start-page: 292
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0365
  article-title: A second-order method for three-dimensional particle flow simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.04.009
– volume: 27
  start-page: 1948
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0335
  article-title: Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040604960
– volume: 6
  start-page: 527
  year: 1967
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0010
  article-title: A fluid mechanical description of fluidized beds
  publication-title: Ind. Eng. Chem. Fundam.
  doi: 10.1021/i160024a007
– volume: 187
  start-page: 371
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0305
  article-title: Physalis: a new method for particle simulation. Part ii: Two-dimensional Navier–Stokes flow around cylinders
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00077-9
– volume: 29
  start-page: 47
  year: 1979
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0065
  article-title: A discrete numerical model for granular assemblies
  publication-title: Geotechnique
  doi: 10.1680/geot.1979.29.1.47
– volume: 53
  start-page: 489
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0035
  article-title: Drag force of intermediate Reynolds number flows past mono- and bidisperse arrays of spheres
  publication-title: AIChE J.
  doi: 10.1002/aic.11065
– volume: 140
  start-page: 176
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0045
  article-title: Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2004.01.018
– volume: 203
  start-page: 3
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0060
  article-title: Particle clusters in and above fluidized beds
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2010.03.023
– volume: 39
  start-page: 1
  year: 1986
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0100
  article-title: Hydrodynamics of fluidization and heat transfer: supercomputer modeling
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3143702
– volume: 154
  start-page: 489
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0270
  article-title: A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2008.04.017
– volume: 129
  start-page: 1394
  year: 2007
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0290
  article-title: Hybrid two-fluid dem simulation of gas–solid fluidized beds
  publication-title: J. Fluid Eng.
  doi: 10.1115/1.2786530
– ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0295
– volume: 62
  start-page: 100
  year: 1966
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0330
  article-title: Mechanics of fluidization
  publication-title: Chem. Eng. Prog. Symp. Ser.
– ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0300
  doi: 10.2172/10145548
– volume: 203
  start-page: 57
  year: 2010
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0315
  article-title: Direct numerical simulation of gas–solid suspensions at moderate Reynolds number: quantifying the coupling between hydrodynamic forces and particle velocity fluctuations
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2010.03.042
– volume: 70
  start-page: 64
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0360
  article-title: A method for particle simulations
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.1530636
– volume: 518
  start-page: 95
  year: 2004
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0030
  article-title: Response of the wake of an isolated particle to an isotropic turbulent flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004000989
– volume: 59
  start-page: 308
  year: 1985
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0155
  article-title: Application of a fractional-step method to incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(85)90148-2
– volume: 400
  start-page: 229
  year: 1999
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0165
  article-title: Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099006485
– ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0145
– volume: 21
  start-page: 662
  year: 2006
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0150
  article-title: Immersed boundary method for flow around an arbitrarily moving body
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.07.010
– volume: 271
  start-page: 285
  year: 1994
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0170
  article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 1. Theoretical foundation
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112094001771
– volume: 25
  start-page: 832
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0190
  article-title: An immersed interface method for incompressible Navier–Stokes equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827502414060
– volume: 15
  start-page: 150
  year: 1937
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0055
  article-title: Fluid flow through granular beds
  publication-title: Trans. Inst. Chem. Eng.
– ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0090
– volume: 14
  start-page: 235
  year: 1981
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0235
  article-title: The fluid dynamics of heart valves: experimental, theoretical, and computational methods
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.14.010182.001315
– volume: 628
  start-page: 181
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0215
  article-title: A comprehensive probability density function formalism for multiphase flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/S002211200900617X
– year: 1980
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0225
– ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0260
– volume: 83
  start-page: 695
  year: 1977
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0130
  article-title: An averaged-equation approach to particle interactions in a fluid suspension
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112077001414
– volume: 448
  start-page: 243
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0125
  article-title: Moderate-Reynolds-number flows in ordered and random arrays of spheres
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001005936
– volume: 56
  start-page: 1845
  year: 2008
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0200
  article-title: A divergence-free interpolation scheme for the immersed boundary method
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1565
– volume: 156
  start-page: 62
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0040
  article-title: Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2005.04.002
– volume: 68
  start-page: 066614
  year: 2003
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0105
  article-title: Multireflection boundary conditions for lattice Boltzmann models
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.066614
– volume: 12
  start-page: 167
  year: 1966
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0275
  article-title: Velocity and pressure profiles for Newtonian creeping flow in regular packed beds of spheres
  publication-title: AIChE J.
  doi: 10.1002/aic.690120130
– volume: 528
  start-page: 233
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0325
  article-title: Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of sphere: results for the permeability and drag force
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112004003295
– ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0095
  doi: 10.4018/978-1-61520-651-3.ch008
– volume: 55
  start-page: 1352
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0350
  article-title: Fluid–particle drag in low-Reynolds-number polydisperse gas–solid suspensions
  publication-title: AIChE J.
  doi: 10.1002/aic.11800
– volume: 167
  start-page: 196
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0210
  article-title: Physalis: a new o(n) method for the numerical simulation of disperse systems
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6667
– ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0085
– volume: 104
  start-page: 1191
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0180
  article-title: Lattice-Boltzmann simulations of particle–fluid suspensions
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1010414013942
– volume: 5
  start-page: 317
  year: 1959
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0115
  article-title: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112059000222
– volume: 448
  start-page: 213
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0120
  article-title: The first effects of fluid inertia on flows in ordered and random arrays of spheres
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112001005948
– year: 2000
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0240
– year: 1998
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0075
– volume: 48
  start-page: 227
  year: 2009
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0345
  article-title: Drag law for bidisperse gas–solid suspensions containing equally sized spheres
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie800171p
– volume: 205
  start-page: 439
  year: 2005
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0265
  article-title: A fast computation technique for the direct numerical simulation of rigid particulate flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.11.012
– volume: 15
  start-page: 261
  year: 1983
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0070
  article-title: Mathematical modeling of two-phase flow
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.15.010183.001401
– volume: 169
  start-page: 363
  year: 2001
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0110
  article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6542
– volume: 95
  start-page: 115
  year: 1992
  ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0205
  article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(92)90085-X
SSID ssj0005743
Score 2.5221856
Snippet ► Drag law for gas–solids flow using particle-resolved simulation of fixed spheres. ► Numerical method PUReIBM based on immersed boundary method with no...
Gas-solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid-particle force F on solid volume...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1072
SubjectTerms Assemblies
Computational fluid dynamics
Computational methods in fluid dynamics
Correlation
Drag
Drag law
Exact sciences and technology
Fluid dynamics
Fluid flow
Fundamental areas of phenomenology (including applications)
Gas–solid flow
Immersed boundary method
Mathematical analysis
Mathematical models
Multiphase and particle-laden flows
Nonhomogeneous flows
Particle-resolved direct numerical simulation
Physics
Simulation
Title Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres
URI https://dx.doi.org/10.1016/j.ijmultiphaseflow.2011.05.010
https://www.proquest.com/docview/1671273346
Volume 37
WOSCitedRecordID wos000295242200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-3533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005743
  issn: 0301-9322
  databaseCode: AIEXJ
  dateStart: 19951201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFxAIIVhAlMfKSGgvVVDivA8cKujy0KogUaTerMSxl1TZpDRttz-BX8LvZBw7j1KByoFLVKW2E3u-eD6PxzMIveQk8vwwdoww8ZnhSD-a2LOZYcUhJ7bvhsJWySb8ySSYzcLPvd7P-izMJvPzPNhuw8V_FTXcA2HLo7P_IO6mUbgBv0HocAWxw_Ugwb9dRhfDLLqqHAjhqUWSymjgJR9eRKUBz04THb-5HK4rS8FCt2LA0rvINkBBlaIb5mu1n5MNy_RS5_mS7FJkxRXUKmVYpy0UBwLOL2Ngs5VfSCkjFWjXxHnrKN_aHTvRKpQ_4zdQpVWjjR2hOi2U7phm30XKEa3ZmoI5bxnJ8B0K01-6BgzpQdcYMPTBLdMygEbuTMoqEowGX9iZYWG5Sjra2jJVKr09TaCMEvNX6bztieyIjtoqg7WarQ6s9_0nn-jZ1_NzOh3PpqeL74bMTiZ38XWqlmvoiAB-gz46Gn0Yzz62zkTqKEfTlZvotPUk_Nsr_IkO3QEhgniFyq6yRxQq9jO9h-7qZQseKaDcRz2eH6PbnWCWx-hG5UzMygfoh4QgBghigCDuQhA3EMQagriCIN6DIFYQxA0EcQtBXAgse4glBHEFQdxCUP6rIfgQTc_G0zfvDZ3xw2BAlFcwdAEQXkewWBCTRQxmDQKzhu2HQpJzZjPhRAljlvB8EjDCPO5wixAR-Cwk3H6E-nmR88cIQ-nYDkyPMGI7gZcE3I6Zkwgvil3uJvYAva7HnTIdDV8mZclo7fY4p7_LjUq5UdOlILcB8pv6CxUX5uCao1rMVLNcNaIUoHtwGyc7-GheAcg6rC9Md4Be1IChoC_kJmCU82JdUsvzLViy2I735IAyT9Gt9pN9hvqr5Zo_R9fZZpWWyxP9FfwCFa7wbg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag+law+for+monodisperse+gas-solid+systems+using+particle-resolved+direct+numerical+simulation+of+flow+past+fixed+assemblies+of+spheres&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Tenneti%2C+S&rft.au=Garg%2C+R&rft.au=Subramaniam%2C+S&rft.date=2011-11-01&rft.issn=0301-9322&rft.volume=37&rft.issue=9&rft.spage=1072&rft.epage=1092&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2011.05.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon