Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres
► Drag law for gas–solids flow using particle-resolved simulation of fixed spheres. ► Numerical method PUReIBM based on immersed boundary method with no forcing in fluid. ► PUReIBM is accurate, numerically convergent and consistent with two-fluid theory. ► New drag correlation is proposed that can b...
Gespeichert in:
| Veröffentlicht in: | International journal of multiphase flow Jg. 37; H. 9; S. 1072 - 1092 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier Ltd
01.11.2011
Elsevier |
| Schlagworte: | |
| ISSN: | 0301-9322, 1879-3533 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | ► Drag law for gas–solids flow using particle-resolved simulation of fixed spheres. ► Numerical method PUReIBM based on immersed boundary method with no forcing in fluid. ► PUReIBM is accurate, numerically convergent and consistent with two-fluid theory. ► New drag correlation is proposed that can be used in CFD simulation of fluidized beds.
Gas–solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid–particle force
F on solid volume fraction
ϕ and the Reynolds number based on the mean slip velocity Re
m
. In this work we report particle-resolved direct numerical simulation (DNS) results of interphase momentum transfer in flow past fixed random assemblies of monodisperse spheres with finite fluid inertia using a continuum Navier–Stokes solver. This solver is based on a new formulation we refer to as the Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM). The principal advantage of this formulation is that the fluid stress at the particle surface is calculated directly from the flow solution (velocity and pressure fields), which when integrated over the surfaces of all particles yields the average fluid–particle force. We demonstrate that PUReIBM is a consistent numerical method to study gas–solid flow because it results in a force density on particle surfaces that is reconcilable with the averaged two-fluid theory. The numerical convergence and accuracy of PUReIBM are established through a comprehensive suite of validation tests. The normalized average fluid–particle force
F is obtained as a function of solid volume fraction
ϕ (0.1
⩽
ϕ
⩽
0.5) and mean flow Reynolds number Re
m
(0.01
⩽
Re
m
⩽
300) for random assemblies of monodisperse spheres. These results extend previously reported results of
Hill et al. (2001a,b) to a wider range of
ϕ, Re
m
, and are more accurate than those reported by
Beetstra et al. (2007). Differences between the drag values obtained from PUReIBM and the drag correlation of
Beetstra et al. (2007) are as high as 30% for Re
m
in the range 100–300. We take advantage of PUReIBM’s ability to directly calculate the relative contributions of pressure and viscous stress to the total fluid–particle force, which is useful in developing drag correlations. Using a scaling argument,
Hill et al. (2001b) proposed that the viscous contribution is independent of Re
m
but the pressure contribution is linear in Re
m
(for Re
m
>
50). However, from PUReIBM simulations we find that the viscous contribution is not independent of the mean flow Reynolds number, although the pressure contribution does indeed vary linearly with Re
m
in accord with the analysis of
Hill et al. (2001b). An improved correlation for
F in terms of
ϕ and Re
m
is proposed that corrects the existing correlations in Re
m
range 100–300. Since this drag correlation has been inferred from simulations of fixed particle assemblies, it does not include the effect of mobility of the particles. However, the fixed-bed simulation approach is a good approximation for high Stokes number particles, which are encountered in most gas–solid flows. This improved drag correlation can be used in CFD simulations of fluidized beds that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior. |
|---|---|
| AbstractList | Gas-solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid-particle force F on solid volume fraction [phi] and the Reynolds number based on the mean slip velocity Re sub(m. In this work we report particle-resolved direct numerical simulation (DNS) results of interphase momentum transfer in flow past fixed random assemblies of monodisperse spheres with finite fluid inertia using a continuum Navier-Stokes solver. This solver is based on a new formulation we refer to as the Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM). The principal advantage of this formulation is that the fluid stress at the particle surface is calculated directly from the flow solution (velocity and pressure fields), which when integrated over the surfaces of all particles yields the average fluid-particle force. We demonstrate that PUReIBM is a consistent numerical method to study gas-solid flow because it results in a force density on particle surfaces that is reconcilable with the averaged two-fluid theory. The numerical convergence and accuracy of PUReIBM are established through a comprehensive suite of validation tests. The normalized average fluid-particle force F is obtained as a function of solid volume fraction [phi] (0.1 [less-than-or-equals, slant] [phi] [less-than-or-equals, slant] 0.5) and mean flow Reynolds number Re) sub(m) (0.01 [less-than-or-equals, slant] Re sub(m [less-than-or-equals, slant] 300) for random assemblies of monodisperse spheres. These results extend previously reported results of (Hill et al., 2001a) and (Hill et al., 2001b) to a wider range of [phi], Re) sub(m), and are more accurate than those reported by Beetstra et al. (2007). Differences between the drag values obtained from PUReIBM and the drag correlation of Beetstra et al. (2007) are as high as 30% for Re sub(m in the range 100-300. We take advantage of PUReIBM's ability to directly calculate the relative contributions of pressure and viscous stress to the total fluid-particle force, which is useful in developing drag correlations. Using a scaling argument, Hill et al. (2001b) proposed that the viscous contribution is independent of Re) sub(m) but the pressure contribution is linear in Re sub(m (for Re) sub(m) 50). However, from PUReIBM simulations we find that the viscous contribution is not independent of the mean flow Reynolds number, although the pressure contribution does indeed vary linearly with Re sub(m in accord with the analysis of Hill et al. (2001b). An improved correlation for F in terms of [phi] and Re) sub(m) is proposed that corrects the existing correlations in Re sub(m range 100-300. Since this drag correlation has been inferred from simulations of fixed particle assemblies, it does not include the effect of mobility of the particles. However, the fixed-bed simulation approach is a good approximation for high Stokes number particles, which are encountered in most gas-solid flows. This improved drag correlation can be used in CFD simulations of fluidized beds that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior.) ► Drag law for gas–solids flow using particle-resolved simulation of fixed spheres. ► Numerical method PUReIBM based on immersed boundary method with no forcing in fluid. ► PUReIBM is accurate, numerically convergent and consistent with two-fluid theory. ► New drag correlation is proposed that can be used in CFD simulation of fluidized beds. Gas–solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid–particle force F on solid volume fraction ϕ and the Reynolds number based on the mean slip velocity Re m . In this work we report particle-resolved direct numerical simulation (DNS) results of interphase momentum transfer in flow past fixed random assemblies of monodisperse spheres with finite fluid inertia using a continuum Navier–Stokes solver. This solver is based on a new formulation we refer to as the Particle-resolved Uncontaminated-fluid Reconcilable Immersed Boundary Method (PUReIBM). The principal advantage of this formulation is that the fluid stress at the particle surface is calculated directly from the flow solution (velocity and pressure fields), which when integrated over the surfaces of all particles yields the average fluid–particle force. We demonstrate that PUReIBM is a consistent numerical method to study gas–solid flow because it results in a force density on particle surfaces that is reconcilable with the averaged two-fluid theory. The numerical convergence and accuracy of PUReIBM are established through a comprehensive suite of validation tests. The normalized average fluid–particle force F is obtained as a function of solid volume fraction ϕ (0.1 ⩽ ϕ ⩽ 0.5) and mean flow Reynolds number Re m (0.01 ⩽ Re m ⩽ 300) for random assemblies of monodisperse spheres. These results extend previously reported results of Hill et al. (2001a,b) to a wider range of ϕ, Re m , and are more accurate than those reported by Beetstra et al. (2007). Differences between the drag values obtained from PUReIBM and the drag correlation of Beetstra et al. (2007) are as high as 30% for Re m in the range 100–300. We take advantage of PUReIBM’s ability to directly calculate the relative contributions of pressure and viscous stress to the total fluid–particle force, which is useful in developing drag correlations. Using a scaling argument, Hill et al. (2001b) proposed that the viscous contribution is independent of Re m but the pressure contribution is linear in Re m (for Re m > 50). However, from PUReIBM simulations we find that the viscous contribution is not independent of the mean flow Reynolds number, although the pressure contribution does indeed vary linearly with Re m in accord with the analysis of Hill et al. (2001b). An improved correlation for F in terms of ϕ and Re m is proposed that corrects the existing correlations in Re m range 100–300. Since this drag correlation has been inferred from simulations of fixed particle assemblies, it does not include the effect of mobility of the particles. However, the fixed-bed simulation approach is a good approximation for high Stokes number particles, which are encountered in most gas–solid flows. This improved drag correlation can be used in CFD simulations of fluidized beds that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior. |
| Author | Subramaniam, S. Tenneti, S. Garg, R. |
| Author_xml | – sequence: 1 givenname: S. surname: Tenneti fullname: Tenneti, S. – sequence: 2 givenname: R. surname: Garg fullname: Garg, R. – sequence: 3 givenname: S. surname: Subramaniam fullname: Subramaniam, S. email: shankar@iastate.edu |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24497605$$DView record in Pascal Francis |
| BookMark | eNqNkbtuFDEUhi0UJDaBd3ADotnBl7nsNEgoAYIUiSa95T1zvPHKMx58PAnpUtPyhjwJXjY0qVK5OL8_n9_fKTuZ4oSMvZOikkK2H_aV349LyH6-sYQuxLtKCSkr0VRCihdsJTddv9aN1idsJbSQ614r9YqdEu2FEE1X6xX7dZHsjgd7x11MfIxTHDzNmAj5ztKfh98Ugx843VPGkfhCftrx2absIeA6YRnf4sAHnxAyn5YRkwcbOPmyms0-Tjw6fliu3KLMnf9Z4pYIx23wSIcpzTdYSK_ZS2cD4ZvH84xdf_l8fX65vvr-9dv5p6s16L7PpcRGClU72DolwEKrQcltr7veCaEa0OBqOwBI13ZqAwparFEq5TYd9Ar1GXt_xM4p_liQshk9AYZgJ4wLGdl2UnVa122Jvn2MWiqlXLITeDJz8qNN90bVdd-1oim5i2MOUiRK6Az4_K98TtYHI4U5GDN789SYORgzojHFWMF8fIL5_9KzAZdHAJbvu_WYDIHHCfCoxwzRPxf1Fy2yxq8 |
| CODEN | IJMFBP |
| CitedBy_id | crossref_primary_10_1016_j_powtec_2020_11_070 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104270 crossref_primary_10_1016_j_powtec_2024_119875 crossref_primary_10_1016_j_ijheatmasstransfer_2015_03_046 crossref_primary_10_1016_j_apt_2021_02_016 crossref_primary_10_1016_j_ijmultiphaseflow_2016_07_006 crossref_primary_10_1016_j_jcp_2012_12_015 crossref_primary_10_1007_s11227_020_03371_2 crossref_primary_10_1016_j_partic_2022_11_011 crossref_primary_10_1017_jfm_2014_732 crossref_primary_10_1063_5_0047516 crossref_primary_10_1016_j_compgeo_2019_103210 crossref_primary_10_1017_jfm_2016_228 crossref_primary_10_1063_5_0277994 crossref_primary_10_1061_JGGEFK_GTENG_11843 crossref_primary_10_1016_j_ces_2018_09_024 crossref_primary_10_1016_j_jcp_2024_113524 crossref_primary_10_1017_jfm_2025_268 crossref_primary_10_1016_j_compfluid_2017_05_033 crossref_primary_10_1002_ceat_201600588 crossref_primary_10_1016_j_camwa_2013_04_001 crossref_primary_10_1016_j_cmpb_2024_108090 crossref_primary_10_1007_s00162_021_00593_9 crossref_primary_10_1016_j_powtec_2025_121448 crossref_primary_10_1080_13647830_2023_2178974 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104720 crossref_primary_10_1017_jfm_2015_679 crossref_primary_10_1016_j_jcp_2016_12_027 crossref_primary_10_1016_j_cej_2014_02_040 crossref_primary_10_1016_j_ces_2025_121613 crossref_primary_10_1016_j_cjche_2023_06_002 crossref_primary_10_1002_aic_18308 crossref_primary_10_1017_jfm_2017_705 crossref_primary_10_1080_10618562_2017_1351610 crossref_primary_10_1063_5_0253313 crossref_primary_10_1016_j_apt_2025_104913 crossref_primary_10_1016_j_partic_2023_05_009 crossref_primary_10_1016_j_partic_2024_07_019 crossref_primary_10_1016_j_partic_2020_06_004 crossref_primary_10_1016_j_powtec_2022_117553 crossref_primary_10_1063_5_0200589 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105300 crossref_primary_10_1108_EC_10_2018_0471 crossref_primary_10_1016_j_compfluid_2022_105379 crossref_primary_10_1016_j_cherd_2019_12_002 crossref_primary_10_1002_aic_16910 crossref_primary_10_1016_j_ces_2024_119920 crossref_primary_10_1016_j_ces_2025_121637 crossref_primary_10_1016_j_ces_2019_115428 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104815 crossref_primary_10_1063_5_0290979 crossref_primary_10_1016_j_apt_2020_04_036 crossref_primary_10_1016_j_cej_2022_139689 crossref_primary_10_1016_j_euromechflu_2022_09_003 crossref_primary_10_1016_j_cej_2019_05_194 crossref_primary_10_1016_j_cej_2025_167398 crossref_primary_10_1016_j_ijmultiphaseflow_2024_105111 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103138 crossref_primary_10_1002_ceat_202000516 crossref_primary_10_1016_j_ces_2014_05_039 crossref_primary_10_1017_jfm_2014_194 crossref_primary_10_1080_10618562_2018_1424836 crossref_primary_10_1016_j_partic_2019_11_001 crossref_primary_10_1007_s00707_019_02389_9 crossref_primary_10_1146_annurev_fluid_010816_060028 crossref_primary_10_1002_jps_24594 crossref_primary_10_1016_j_compfluid_2016_10_007 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104524 crossref_primary_10_1016_j_ces_2016_08_014 crossref_primary_10_1007_s00162_020_00538_8 crossref_primary_10_1017_jfm_2020_453 crossref_primary_10_1002_aic_16341 crossref_primary_10_1016_j_icheatmasstransfer_2025_109305 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126687 crossref_primary_10_1016_j_ces_2018_05_030 crossref_primary_10_1063_5_0270235 crossref_primary_10_1016_j_apt_2018_07_014 crossref_primary_10_1016_j_powtec_2016_05_024 crossref_primary_10_1016_j_ces_2013_08_010 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104513 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103533 crossref_primary_10_1016_j_ces_2018_03_038 crossref_primary_10_1016_j_ces_2018_08_027 crossref_primary_10_1016_j_ces_2018_08_026 crossref_primary_10_1017_jfm_2020_1020 crossref_primary_10_1016_j_ces_2019_05_047 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121985 crossref_primary_10_1007_s00707_024_04104_9 crossref_primary_10_1016_j_pecs_2012_10_003 crossref_primary_10_1089_big_2020_0071 crossref_primary_10_1002_aic_15487 crossref_primary_10_1002_aic_15489 crossref_primary_10_1063_5_0279971 crossref_primary_10_1016_j_compfluid_2016_12_017 crossref_primary_10_1016_j_jcp_2024_113281 crossref_primary_10_1016_j_ces_2019_115233 crossref_primary_10_1016_j_powtec_2017_03_020 crossref_primary_10_1016_j_powtec_2018_05_031 crossref_primary_10_1016_j_apt_2022_103880 crossref_primary_10_1016_j_ijheatmasstransfer_2012_11_006 crossref_primary_10_1002_btpr_3056 crossref_primary_10_1016_j_apt_2020_05_010 crossref_primary_10_1017_jfm_2019_467 crossref_primary_10_1146_annurev_chembioeng_110519_075414 crossref_primary_10_1016_j_partic_2020_09_007 crossref_primary_10_1016_j_ces_2021_116469 crossref_primary_10_1016_j_powtec_2023_118569 crossref_primary_10_1017_jfm_2017_295 crossref_primary_10_1002_btpr_2892 crossref_primary_10_1016_j_ijmultiphaseflow_2013_04_006 crossref_primary_10_1016_j_cej_2022_136653 crossref_primary_10_1016_j_powtec_2019_01_028 crossref_primary_10_3390_axioms11040179 crossref_primary_10_1515_revce_2019_0076 crossref_primary_10_1016_j_powtec_2022_118041 crossref_primary_10_1017_jfm_2016_246 crossref_primary_10_1002_aic_18170 crossref_primary_10_1016_j_cherd_2016_04_017 crossref_primary_10_1016_j_powtec_2022_118036 crossref_primary_10_1103_PhysRevFluids_6_104306 crossref_primary_10_1017_jfm_2015_693 crossref_primary_10_1103_PhysRevFluids_7_014301 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105175 crossref_primary_10_1017_jfm_2015_459 crossref_primary_10_1088_1742_6596_3074_1_012031 crossref_primary_10_1016_j_cej_2021_130391 crossref_primary_10_1016_j_powtec_2014_02_038 crossref_primary_10_1016_j_powtec_2019_01_013 crossref_primary_10_1017_flo_2023_20 crossref_primary_10_1002_aic_17639 crossref_primary_10_1260_1756_8277_6_4_317 crossref_primary_10_1017_jfm_2022_486 crossref_primary_10_1016_j_ijheatfluidflow_2021_108873 crossref_primary_10_1016_j_powtec_2021_05_059 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104906 crossref_primary_10_1016_j_pecs_2025_101221 crossref_primary_10_1017_jfm_2015_146 crossref_primary_10_1002_aic_18162 crossref_primary_10_1016_j_ces_2019_06_054 crossref_primary_10_1016_j_powtec_2022_117972 crossref_primary_10_1016_j_jcp_2021_110381 crossref_primary_10_1039_D4RE00086B crossref_primary_10_1051_epjconf_201714015006 crossref_primary_10_1063_1_4941687 crossref_primary_10_1016_j_combustflame_2020_02_016 crossref_primary_10_1016_j_camwa_2024_10_004 crossref_primary_10_1016_j_powtec_2020_05_086 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103731 crossref_primary_10_1016_j_trgeo_2023_101023 crossref_primary_10_1016_j_ces_2024_120528 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103970 crossref_primary_10_1016_j_powtec_2021_02_025 crossref_primary_10_1016_j_powtec_2017_08_035 crossref_primary_10_1016_j_powtec_2022_117292 crossref_primary_10_1017_jfm_2014_330 crossref_primary_10_3390_pharmaceutics16101304 crossref_primary_10_1017_jfm_2021_780 crossref_primary_10_1007_s11012_016_0553_5 crossref_primary_10_1016_j_cep_2021_108491 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105354 crossref_primary_10_1515_cppm_2020_0103 crossref_primary_10_1063_5_0270024 crossref_primary_10_1016_j_ces_2025_122540 crossref_primary_10_1016_j_ces_2023_119371 crossref_primary_10_1016_j_powtec_2015_07_001 crossref_primary_10_1016_j_ces_2018_12_037 crossref_primary_10_1146_annurev_fluid_010313_141344 crossref_primary_10_1016_j_powtec_2021_09_022 crossref_primary_10_1017_jfm_2022_351 crossref_primary_10_1016_j_ijheatmasstransfer_2019_118907 crossref_primary_10_3390_en13184730 crossref_primary_10_1016_j_pecs_2021_100930 crossref_primary_10_1103_PhysRevFluids_6_084306 crossref_primary_10_1016_j_jcp_2020_109783 crossref_primary_10_1007_s11831_023_10001_6 crossref_primary_10_1007_s11831_018_9277_0 crossref_primary_10_1017_jfm_2016_877 crossref_primary_10_1002_aic_14901 crossref_primary_10_1002_aic_16883 crossref_primary_10_1002_aic_16884 crossref_primary_10_1007_s11630_022_1605_x crossref_primary_10_1016_j_powtec_2023_118794 crossref_primary_10_1016_j_ijmultiphaseflow_2017_11_003 crossref_primary_10_1016_j_ijmultiphaseflow_2014_02_009 crossref_primary_10_1016_j_renene_2019_03_095 crossref_primary_10_3390_pr11051369 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104496 crossref_primary_10_1063_5_0215760 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105143 crossref_primary_10_1016_j_partic_2023_07_011 crossref_primary_10_1063_5_0217821 crossref_primary_10_2514_1_J064168 crossref_primary_10_1016_j_ijmultiphaseflow_2015_04_010 crossref_primary_10_1017_jfm_2016_290 crossref_primary_10_1016_j_ces_2018_08_041 crossref_primary_10_1016_j_jcp_2017_02_070 crossref_primary_10_1016_j_ces_2018_04_061 crossref_primary_10_1017_jfm_2022_50 crossref_primary_10_1017_jfm_2020_625 crossref_primary_10_1016_j_sctalk_2023_100213 crossref_primary_10_1016_j_ces_2022_118357 crossref_primary_10_1016_j_euromechflu_2021_09_005 crossref_primary_10_1016_j_cej_2023_144541 crossref_primary_10_1002_aic_17040 crossref_primary_10_1016_j_compfluid_2018_01_023 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104485 crossref_primary_10_1007_s11663_021_02076_y crossref_primary_10_1016_j_ijmultiphaseflow_2025_105131 crossref_primary_10_1016_j_powtec_2020_09_067 crossref_primary_10_1016_j_ijmultiphaseflow_2016_06_007 crossref_primary_10_1016_j_powtec_2016_02_038 crossref_primary_10_1016_j_jcp_2019_01_010 crossref_primary_10_1016_j_ijmultiphaseflow_2017_03_002 crossref_primary_10_1016_j_compfluid_2022_105670 crossref_primary_10_1017_jfm_2018_442 crossref_primary_10_1002_aic_17157 crossref_primary_10_1002_mren201500062 crossref_primary_10_1016_j_ces_2020_116147 crossref_primary_10_1002_aic_16621 crossref_primary_10_1016_j_ces_2020_115616 crossref_primary_10_1016_j_jcp_2018_09_033 crossref_primary_10_1017_jfm_2020_615 crossref_primary_10_1007_s12182_019_00411_2 crossref_primary_10_1002_aic_16061 crossref_primary_10_1002_aic_16184 crossref_primary_10_1016_j_apm_2025_116269 crossref_primary_10_1016_j_powtec_2025_121479 crossref_primary_10_1016_j_powtec_2021_07_050 crossref_primary_10_1103_PhysRevFluids_7_023401 crossref_primary_10_1016_j_cherd_2023_10_030 crossref_primary_10_1016_j_apt_2014_07_019 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103655 crossref_primary_10_1016_j_cej_2021_133485 crossref_primary_10_1016_j_compfluid_2024_106450 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103773 crossref_primary_10_1016_j_renene_2019_04_074 crossref_primary_10_1016_j_powtec_2020_05_049 crossref_primary_10_1016_j_addr_2022_114461 crossref_primary_10_1007_s40571_024_00875_z crossref_primary_10_1016_j_powtec_2014_11_020 crossref_primary_10_1016_j_jcp_2024_113684 crossref_primary_10_1016_j_powtec_2024_119545 crossref_primary_10_1103_PhysRevFluids_8_014303 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104880 crossref_primary_10_1016_j_ces_2014_10_005 crossref_primary_10_1017_jfm_2025_10526 crossref_primary_10_1016_j_ijmultiphaseflow_2018_01_013 crossref_primary_10_1017_jfm_2021_53 crossref_primary_10_1016_j_partic_2024_06_015 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104008 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104469 crossref_primary_10_1016_j_cej_2022_139637 crossref_primary_10_1007_s00707_018_2305_1 crossref_primary_10_1002_cite_202000204 crossref_primary_10_1016_j_ces_2016_06_006 crossref_primary_10_1016_j_powtec_2021_02_059 crossref_primary_10_1002_aic_15197 crossref_primary_10_1016_j_powtec_2019_10_058 crossref_primary_10_1016_j_powtec_2024_119783 crossref_primary_10_1016_j_ces_2020_116245 crossref_primary_10_1016_j_cej_2018_10_182 crossref_primary_10_1016_j_cej_2021_128691 crossref_primary_10_1002_aic_18589 crossref_primary_10_1016_j_powtec_2021_02_052 crossref_primary_10_1016_j_powtec_2024_120408 crossref_primary_10_1016_j_ces_2012_11_017 crossref_primary_10_1007_s10409_022_09026_z crossref_primary_10_1016_j_jcp_2017_07_056 crossref_primary_10_1016_j_jde_2024_11_029 crossref_primary_10_1016_j_ces_2014_04_025 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124432 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104692 crossref_primary_10_1016_j_partic_2025_07_012 crossref_primary_10_1016_j_ijmultiphaseflow_2014_10_001 crossref_primary_10_1016_j_ijmultiphaseflow_2014_10_002 crossref_primary_10_1016_j_ijmultiphaseflow_2018_12_013 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104139 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104854 crossref_primary_10_1016_j_ijmultiphaseflow_2015_12_006 crossref_primary_10_1208_s12249_021_02083_x crossref_primary_10_1016_j_compfluid_2023_106071 crossref_primary_10_1016_j_apm_2018_01_011 crossref_primary_10_1016_j_ijmultiphaseflow_2019_03_013 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103396 crossref_primary_10_1016_j_partic_2016_01_012 crossref_primary_10_1002_aic_15507 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103394 crossref_primary_10_1007_s00707_018_2267_3 crossref_primary_10_1002_aic_15186 crossref_primary_10_1016_j_partic_2022_12_004 crossref_primary_10_1016_j_ijmecsci_2024_109063 crossref_primary_10_1016_j_powtec_2020_10_007 crossref_primary_10_1017_jfm_2018_259 crossref_primary_10_1002_aic_16951 crossref_primary_10_1002_aic_18339 crossref_primary_10_1016_j_powtec_2019_10_045 crossref_primary_10_1016_j_powtec_2024_120312 crossref_primary_10_1016_j_ijmultiphaseflow_2023_104684 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104862 crossref_primary_10_1016_j_powtec_2017_05_039 crossref_primary_10_1016_j_powtec_2021_02_034 crossref_primary_10_1016_j_cpc_2023_108703 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103266 crossref_primary_10_1007_s00707_021_02951_4 crossref_primary_10_1016_j_powtec_2016_09_088 crossref_primary_10_1017_jfm_2023_206 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_065 crossref_primary_10_1016_j_jcp_2019_01_053 crossref_primary_10_1016_j_powtec_2023_118290 crossref_primary_10_1016_j_compfluid_2023_105892 crossref_primary_10_1016_j_powtec_2024_119684 crossref_primary_10_1002_aic_18321 crossref_primary_10_3390_en16010065 crossref_primary_10_1016_j_ces_2021_116645 crossref_primary_10_1002_aic_14645 crossref_primary_10_1016_j_powtec_2025_120849 |
| Cites_doi | 10.1007/s10584-005-3484-7 10.1016/j.jcp.2008.11.034 10.1063/1.1616031 10.1002/aic.12127 10.1016/j.powtec.2007.08.015 10.1146/annurev.fluid.31.1.567 10.1016/S0301-9322(99)00100-7 10.1017/S0022112009994022 10.1063/1.857698 10.1016/S1750-5836(07)00014-X 10.1017/S0022112005006889 10.1017/S0022112094001783 10.1063/1.1288266 10.1017/S0022112082000627 10.1016/0009-2509(74)80200-9 10.1006/jcph.2000.6592 10.1017/S0022112004001326 10.1016/j.ces.2004.07.059 10.1016/0301-9322(82)90047-7 10.1016/j.jcp.2005.03.017 10.1016/j.jcp.2005.04.009 10.1137/040604960 10.1021/i160024a007 10.1016/S0021-9991(03)00077-9 10.1680/geot.1979.29.1.47 10.1002/aic.11065 10.1016/j.powtec.2004.01.018 10.1016/j.powtec.2010.03.023 10.1115/1.3143702 10.1016/j.combustflame.2008.04.017 10.1115/1.2786530 10.2172/10145548 10.1016/j.powtec.2010.03.042 10.1115/1.1530636 10.1017/S0022112004000989 10.1016/0021-9991(85)90148-2 10.1017/S0022112099006485 10.1016/j.jcp.2005.07.010 10.1017/S0022112094001771 10.1137/S1064827502414060 10.1146/annurev.fl.14.010182.001315 10.1017/S002211200900617X 10.1017/S0022112077001414 10.1017/S0022112001005936 10.1002/fld.1565 10.1016/j.powtec.2005.04.002 10.1103/PhysRevE.68.066614 10.1002/aic.690120130 10.1017/S0022112004003295 10.4018/978-1-61520-651-3.ch008 10.1002/aic.11800 10.1006/jcph.2000.6667 10.1023/A:1010414013942 10.1017/S0022112059000222 10.1017/S0022112001005948 10.1021/ie800171p 10.1016/j.jcp.2004.11.012 10.1146/annurev.fl.15.010183.001401 10.1006/jcph.2000.6542 10.1016/0045-7825(92)90085-X |
| ContentType | Journal Article |
| Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7TB 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijmultiphaseflow.2011.05.010 |
| DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1879-3533 |
| EndPage | 1092 |
| ExternalDocumentID | 24497605 10_1016_j_ijmultiphaseflow_2011_05_010 S0301932211001170 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7TB 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c399t-9381024fcbf20cac63c21b9379f0025c3cf4adcc1f6728c2c6e4e122f87c92e3 |
| ISICitedReferencesCount | 370 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295242200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-9322 |
| IngestDate | Sun Sep 28 09:53:23 EDT 2025 Mon Jul 21 09:15:37 EDT 2025 Sat Nov 29 07:21:04 EST 2025 Tue Nov 18 22:16:02 EST 2025 Fri Feb 23 02:25:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Gas–solid flow Immersed boundary method Drag law Particle-resolved direct numerical simulation Gas-solid flow Gas particle flow Particle-resolved direct numerical Digital simulation simulation Velocity distribution Two-phase flow Monodispersed particle Modelling Spherical particle Viscous fluids Drag coefficient |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c399t-9381024fcbf20cac63c21b9379f0025c3cf4adcc1f6728c2c6e4e122f87c92e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1671273346 |
| PQPubID | 23500 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_1671273346 pascalfrancis_primary_24497605 crossref_citationtrail_10_1016_j_ijmultiphaseflow_2011_05_010 crossref_primary_10_1016_j_ijmultiphaseflow_2011_05_010 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2011_05_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-11-01 |
| PublicationDateYYYYMMDD | 2011-11-01 |
| PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | International journal of multiphase flow |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Gidaspow (b0100) 1986; 39 Ten Cate, Derksen, Portela, van den Akker (b0310) 2004; 519 Tenneti, Garg, Hrenya, Fox, Subramaniam (b0315) 2010; 203 Pope (b0240) 2000 Richardson, Zaki (b0245) 1954; 32 Garg, R., Tenneti, S., Mohd-Yusof, J., Subramaniam, S., 2011. Direct numerical simulation of gas–solids flow based on the immersed boundary method. In: Pannala, S., Syamlal, M., O’Brien, T.J. (Eds.), Computational Gas–Solids Flows and Reacting Systems: Theory, Methods and Practice. IGI Global, pp. 245–276. Yusof, J.M., 1996. Interaction of massive particles with turbulence. PhD thesis, Cornell University. Scardovelli, Zaleski (b0255) 1999; 31 Garg, R., 2009. Modeling and simulation of two-phase flows. PhD thesis, Iowa State University. Hill, Koch, Ladd (b0125) 2001; 448 Yi, Jo, Seo, Lee, Ryu (b0340) 2007; 1 Sangani, Acrivos (b0250) 1982; 8 Zhang, Prosperetti (b0365) 2005; 210 Wen, Yu (b0330) 1966; 62 Bagchi, Balachandar (b0030) 2004; 518 Patankar (b0225) 1980 Apte, Martin, Patankar (b0015) 2009; 228 Oguz, Prosperetti (b0210) 2001; 167 Holloway, Yin, Sundaresan (b0135) 2010; 56 Hu, Patankar, Zhu (b0140) 2001; 169 Bagchi, Balachandar (b0025) 2003; 15 Burton, Eaton (b0050) 2005; 545 Cocco, Shaffer, Hays, Reddy Karri, Knowlton (b0060) 2010; 203 Ladd, Verberg (b0180) 2001; 104 Beetstra, van der Hoef, Kuipers (b0035) 2007; 53 Zhang, Prosperetti (b0360) 2003; 70 Drew, Passman (b0075) 1998 . Schiller, L., Naumann, A., 1935. A Drag Coefficient Correlation. V.D.I. Zeitung. Syamlal, M., O’Brien, T.J., 1987. A generalized drag correlation for multiparticle systems. Tech. Rep., Morgantown Energy Technology Center DOE Report. Azar, Lindgren, Larson, Mollersten (b0020) 2006; 74 Kim, Choi (b0150) 2006; 21 Hasimoto (b0115) 1959; 5 Sorensen, Stewart (b0280) 1974; 29 van der Hoef, Beetstra, Kuipers (b0325) 2005; 528 Subramaniam (b0285) 2000; 12 Sharma, Patankar (b0265) 2005; 205 Ginzburg, d’Humières (b0105) 2003; 68 Lee, Leveque (b0190) 2003; 25 Shen, Zheng, Xiao, Xiao (b0270) 2008; 154 Snyder, Stewart (b0275) 1966; 12 Koch (b0160) 1990; 2 Uhlmann (b0320) 2005; 209 Anderson, Jackson (b0010) 1967; 6 Benyahia, Syamlal, O’Brien (b0040) 2005; 156 Bokkers, Annaland, Kuipers (b0045) 2004; 140 Sun, Battaglia, Subramaniam (b0290) 2007; 129 Xu, Wang (b0335) 2006; 27 Zick, Homsy (b0370) 1982; 115 Ladd (b0170) 1994; 271 Yin, Sundaresan (b0350) 2009; 55 Patankar, Singh, Joseph, Glowinski, Pan (b0220) 2000; 26 Kim, Moin (b0155) 1985; 59 Ladd (b0175) 1994; 271 Peskin (b0235) 1981; 14 Takagi, Oguz, Zhang, Prosperetti (b0305) 2005; 187 Muldoon, Acharya (b0200) 2008; 56 Syamlal, M., Rogers, W., O’Brien, T.J., 1993. MFIX documentation: theory guide. Tech. Rep. DOE/METC-95/1013, NTIS/DE95000031, National Energy Technology Laboratory, Department of Energy. Yin, Sundaresan (b0345) 2009; 48 Abanades, Anthony, Lu, Salvador, Alvarez (b0005) 2004; 50 Pai, Subramaniam (b0215) 2009; 628 Leboreiro, Joseph, Hrenya, Snider, Banerjee, Galvin (b0185) 2008; 184 Drew (b0070) 1983; 15 Kashiwa, B., Gaffney, E., 2003. Design basis for CFDLib. Tech. Rep. LA-UR-03-1295, Los Alamos National Lab. Carman (b0055) 1937; 15 Hinch (b0130) 1977; 83 Glowinski, Pan, Hesla, Joseph, Périaux (b0110) 2001; 169 Koch, Sangani (b0165) 1999; 400 Patil, Annaland, Kuipers (b0230) 2005; 60 Garg, R., Galvin, J., Li, T., Pannala, S., 2010. Documentation of open-source MFIX-DEM software for gas–solids flows. Tech. Rep., National Energy Technology Laboratory, Department of Energy. Hill, Koch, Ladd (b0120) 2001; 448 Ergun (b0080) 1952; 48 Cundall, Strack (b0065) 1979; 29 Lucci, Ferrante, Elgobashi (b0195) 2010; 650 Nomura, Hughes (b0205) 1992; 95 Kim (10.1016/j.ijmultiphaseflow.2011.05.010_b0150) 2006; 21 Muldoon (10.1016/j.ijmultiphaseflow.2011.05.010_b0200) 2008; 56 Drew (10.1016/j.ijmultiphaseflow.2011.05.010_b0075) 1998 Oguz (10.1016/j.ijmultiphaseflow.2011.05.010_b0210) 2001; 167 Ergun (10.1016/j.ijmultiphaseflow.2011.05.010_b0080) 1952; 48 Glowinski (10.1016/j.ijmultiphaseflow.2011.05.010_b0110) 2001; 169 Lucci (10.1016/j.ijmultiphaseflow.2011.05.010_b0195) 2010; 650 Pope (10.1016/j.ijmultiphaseflow.2011.05.010_b0240) 2000 Wen (10.1016/j.ijmultiphaseflow.2011.05.010_b0330) 1966; 62 Holloway (10.1016/j.ijmultiphaseflow.2011.05.010_b0135) 2010; 56 Apte (10.1016/j.ijmultiphaseflow.2011.05.010_b0015) 2009; 228 Hill (10.1016/j.ijmultiphaseflow.2011.05.010_b0120) 2001; 448 Peskin (10.1016/j.ijmultiphaseflow.2011.05.010_b0235) 1981; 14 Beetstra (10.1016/j.ijmultiphaseflow.2011.05.010_b0035) 2007; 53 Yi (10.1016/j.ijmultiphaseflow.2011.05.010_b0340) 2007; 1 10.1016/j.ijmultiphaseflow.2011.05.010_b0260 Nomura (10.1016/j.ijmultiphaseflow.2011.05.010_b0205) 1992; 95 van der Hoef (10.1016/j.ijmultiphaseflow.2011.05.010_b0325) 2005; 528 10.1016/j.ijmultiphaseflow.2011.05.010_b0300 Hasimoto (10.1016/j.ijmultiphaseflow.2011.05.010_b0115) 1959; 5 10.1016/j.ijmultiphaseflow.2011.05.010_b0145 Sun (10.1016/j.ijmultiphaseflow.2011.05.010_b0290) 2007; 129 Zhang (10.1016/j.ijmultiphaseflow.2011.05.010_b0360) 2003; 70 Anderson (10.1016/j.ijmultiphaseflow.2011.05.010_b0010) 1967; 6 Bagchi (10.1016/j.ijmultiphaseflow.2011.05.010_b0025) 2003; 15 Azar (10.1016/j.ijmultiphaseflow.2011.05.010_b0020) 2006; 74 Gidaspow (10.1016/j.ijmultiphaseflow.2011.05.010_b0100) 1986; 39 Ginzburg (10.1016/j.ijmultiphaseflow.2011.05.010_b0105) 2003; 68 Zhang (10.1016/j.ijmultiphaseflow.2011.05.010_b0365) 2005; 210 10.1016/j.ijmultiphaseflow.2011.05.010_b0090 Zick (10.1016/j.ijmultiphaseflow.2011.05.010_b0370) 1982; 115 Benyahia (10.1016/j.ijmultiphaseflow.2011.05.010_b0040) 2005; 156 10.1016/j.ijmultiphaseflow.2011.05.010_b0095 10.1016/j.ijmultiphaseflow.2011.05.010_b0295 Bagchi (10.1016/j.ijmultiphaseflow.2011.05.010_b0030) 2004; 518 Cocco (10.1016/j.ijmultiphaseflow.2011.05.010_b0060) 2010; 203 Lee (10.1016/j.ijmultiphaseflow.2011.05.010_b0190) 2003; 25 Yin (10.1016/j.ijmultiphaseflow.2011.05.010_b0350) 2009; 55 Shen (10.1016/j.ijmultiphaseflow.2011.05.010_b0270) 2008; 154 Ladd (10.1016/j.ijmultiphaseflow.2011.05.010_b0175) 1994; 271 Abanades (10.1016/j.ijmultiphaseflow.2011.05.010_b0005) 2004; 50 Kim (10.1016/j.ijmultiphaseflow.2011.05.010_b0155) 1985; 59 Patankar (10.1016/j.ijmultiphaseflow.2011.05.010_b0225) 1980 Yin (10.1016/j.ijmultiphaseflow.2011.05.010_b0345) 2009; 48 Leboreiro (10.1016/j.ijmultiphaseflow.2011.05.010_b0185) 2008; 184 Tenneti (10.1016/j.ijmultiphaseflow.2011.05.010_b0315) 2010; 203 Koch (10.1016/j.ijmultiphaseflow.2011.05.010_b0160) 1990; 2 Xu (10.1016/j.ijmultiphaseflow.2011.05.010_b0335) 2006; 27 Koch (10.1016/j.ijmultiphaseflow.2011.05.010_b0165) 1999; 400 Sharma (10.1016/j.ijmultiphaseflow.2011.05.010_b0265) 2005; 205 Ladd (10.1016/j.ijmultiphaseflow.2011.05.010_b0180) 2001; 104 Scardovelli (10.1016/j.ijmultiphaseflow.2011.05.010_b0255) 1999; 31 Uhlmann (10.1016/j.ijmultiphaseflow.2011.05.010_b0320) 2005; 209 10.1016/j.ijmultiphaseflow.2011.05.010_b0085 Hinch (10.1016/j.ijmultiphaseflow.2011.05.010_b0130) 1977; 83 Patil (10.1016/j.ijmultiphaseflow.2011.05.010_b0230) 2005; 60 Richardson (10.1016/j.ijmultiphaseflow.2011.05.010_b0245) 1954; 32 Ten Cate (10.1016/j.ijmultiphaseflow.2011.05.010_b0310) 2004; 519 Sorensen (10.1016/j.ijmultiphaseflow.2011.05.010_b0280) 1974; 29 Cundall (10.1016/j.ijmultiphaseflow.2011.05.010_b0065) 1979; 29 Burton (10.1016/j.ijmultiphaseflow.2011.05.010_b0050) 2005; 545 Ladd (10.1016/j.ijmultiphaseflow.2011.05.010_b0170) 1994; 271 Subramaniam (10.1016/j.ijmultiphaseflow.2011.05.010_b0285) 2000; 12 Patankar (10.1016/j.ijmultiphaseflow.2011.05.010_b0220) 2000; 26 Drew (10.1016/j.ijmultiphaseflow.2011.05.010_b0070) 1983; 15 Pai (10.1016/j.ijmultiphaseflow.2011.05.010_b0215) 2009; 628 Takagi (10.1016/j.ijmultiphaseflow.2011.05.010_b0305) 2005; 187 Bokkers (10.1016/j.ijmultiphaseflow.2011.05.010_b0045) 2004; 140 Sangani (10.1016/j.ijmultiphaseflow.2011.05.010_b0250) 1982; 8 Hill (10.1016/j.ijmultiphaseflow.2011.05.010_b0125) 2001; 448 Carman (10.1016/j.ijmultiphaseflow.2011.05.010_b0055) 1937; 15 Hu (10.1016/j.ijmultiphaseflow.2011.05.010_b0140) 2001; 169 10.1016/j.ijmultiphaseflow.2011.05.010_b0355 Snyder (10.1016/j.ijmultiphaseflow.2011.05.010_b0275) 1966; 12 |
| References_xml | – volume: 184 start-page: 275 year: 2008 end-page: 290 ident: b0185 article-title: The influence of binary drag laws on MP-PIC simulations of segregating gas-fluidized beds publication-title: Powder Technol. – volume: 650 year: 2010 ident: b0195 article-title: Modulation of isotropic turbulence by particles of taylor length-scale size publication-title: J. Fluid Mech. – volume: 203 start-page: 57 year: 2010 end-page: 69 ident: b0315 article-title: Direct numerical simulation of gas–solid suspensions at moderate Reynolds number: quantifying the coupling between hydrodynamic forces and particle velocity fluctuations publication-title: Powder Technol. – volume: 2 start-page: 1711 year: 1990 end-page: 1723 ident: b0160 article-title: Kinetic theory for a monodisperse gas–solid suspension publication-title: Phys. Fluids A – volume: 48 start-page: 89 year: 1952 end-page: 94 ident: b0080 article-title: Fluid flow through packed columns publication-title: Chem. Eng. Prog. – volume: 15 start-page: 150 year: 1937 end-page: 166 ident: b0055 article-title: Fluid flow through granular beds publication-title: Trans. Inst. Chem. Eng. – volume: 59 start-page: 308 year: 1985 end-page: 323 ident: b0155 article-title: Application of a fractional-step method to incompressible Navier–Stokes equations publication-title: J. Comput. Phys. – volume: 29 start-page: 47 year: 1979 end-page: 65 ident: b0065 article-title: A discrete numerical model for granular assemblies publication-title: Geotechnique – volume: 115 start-page: 13 year: 1982 end-page: 26 ident: b0370 article-title: Stokes flow through periodic arrays of spheres publication-title: J. Fluid Mech. – volume: 25 start-page: 832 year: 2003 end-page: 856 ident: b0190 article-title: An immersed interface method for incompressible Navier–Stokes equations publication-title: SIAM J. Sci. Comput. – volume: 68 start-page: 066614 year: 2003 ident: b0105 article-title: Multireflection boundary conditions for lattice Boltzmann models publication-title: Phys. Rev. E – volume: 32 start-page: 35 year: 1954 end-page: 53 ident: b0245 article-title: Sedimentation and fluidization: Part 1 publication-title: Trans. Inst. Chem. Eng. – volume: 448 start-page: 213 year: 2001 end-page: 241 ident: b0120 article-title: The first effects of fluid inertia on flows in ordered and random arrays of spheres publication-title: J. Fluid Mech. – volume: 154 start-page: 489 year: 2008 end-page: 506 ident: b0270 article-title: A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion publication-title: Combust. Flame – volume: 209 start-page: 448 year: 2005 end-page: 476 ident: b0320 article-title: An immersed boundary method with direct forcing for the simulation of particulate flows publication-title: J. Comput. Phys. – volume: 1 start-page: 31 year: 2007 end-page: 36 ident: b0340 article-title: Continuous operation of the potassium-based dry sorbent CO publication-title: Int. J. Greenhouse Gas Control – volume: 53 start-page: 489 year: 2007 end-page: 501 ident: b0035 article-title: Drag force of intermediate Reynolds number flows past mono- and bidisperse arrays of spheres publication-title: AIChE J. – volume: 156 start-page: 62 year: 2005 end-page: 72 ident: b0040 article-title: Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe publication-title: Powder Technol. – volume: 448 start-page: 243 year: 2001 end-page: 278 ident: b0125 article-title: Moderate-Reynolds-number flows in ordered and random arrays of spheres publication-title: J. Fluid Mech. – volume: 210 start-page: 292 year: 2005 end-page: 324 ident: b0365 article-title: A second-order method for three-dimensional particle flow simulations publication-title: J. Comput. Phys. – volume: 74 start-page: 47 year: 2006 end-page: 79 ident: b0020 article-title: Carbon capture and storage from fossil fuels and biomass – costs and potential role in stabilizing the atmosphere publication-title: Clim. Change – volume: 140 start-page: 176 year: 2004 end-page: 186 ident: b0045 article-title: Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study publication-title: Powder Technol. – volume: 26 start-page: 1509 year: 2000 end-page: 1524 ident: b0220 article-title: A new formulation of the distributed Lagrange multipliers/fictitious domain method for particulate flow publication-title: Intl. J. Multiphase Flow – year: 1998 ident: b0075 article-title: Theory of Multicomponent Fluids – reference: Garg, R., 2009. Modeling and simulation of two-phase flows. PhD thesis, Iowa State University. – volume: 167 start-page: 196 year: 2001 end-page: 216 ident: b0210 article-title: Physalis: a new publication-title: J. Comput. Phys. – reference: Kashiwa, B., Gaffney, E., 2003. Design basis for CFDLib. Tech. Rep. LA-UR-03-1295, Los Alamos National Lab. – volume: 271 start-page: 285 year: 1994 end-page: 309 ident: b0170 article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 1. Theoretical foundation publication-title: J. Fluid Mech. – volume: 62 start-page: 100 year: 1966 end-page: 111 ident: b0330 article-title: Mechanics of fluidization publication-title: Chem. Eng. Prog. Symp. Ser. – volume: 50 start-page: 1614 year: 2004 end-page: 1622 ident: b0005 article-title: Capture of CO publication-title: Environ. Energy Eng. – volume: 83 start-page: 695 year: 1977 end-page: 720 ident: b0130 article-title: An averaged-equation approach to particle interactions in a fluid suspension publication-title: J. Fluid Mech. – volume: 6 start-page: 527 year: 1967 end-page: 539 ident: b0010 article-title: A fluid mechanical description of fluidized beds publication-title: Ind. Eng. Chem. Fundam. – volume: 187 start-page: 371 year: 2005 end-page: 390 ident: b0305 article-title: Physalis: a new method for particle simulation. Part ii: Two-dimensional Navier–Stokes flow around cylinders publication-title: J. Comput. Phys. – reference: Schiller, L., Naumann, A., 1935. A Drag Coefficient Correlation. V.D.I. Zeitung. – volume: 12 start-page: 2413 year: 2000 end-page: 2431 ident: b0285 article-title: Statistical representation of a spray as a point process publication-title: Phys. Fluids – volume: 528 start-page: 233 year: 2005 end-page: 254 ident: b0325 article-title: Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of sphere: results for the permeability and drag force publication-title: J. Fluid Mech. – volume: 55 start-page: 1352 year: 2009 end-page: 1368 ident: b0350 article-title: Fluid–particle drag in low-Reynolds-number polydisperse gas–solid suspensions publication-title: AIChE J. – volume: 70 start-page: 64 year: 2003 end-page: 74 ident: b0360 article-title: A method for particle simulations publication-title: J. Appl. Mech. – volume: 56 start-page: 1995 year: 2010 end-page: 2004 ident: b0135 article-title: Fluid–particle drag in inertial polydisperse gas–solid suspensions publication-title: AIChE J. – volume: 169 start-page: 363 year: 2001 end-page: 426 ident: b0110 article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow publication-title: J. Comput. Phys. – volume: 271 start-page: 311 year: 1994 end-page: 339 ident: b0175 article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 2. Numerical results publication-title: J. Fluid Mech. – volume: 205 start-page: 439 year: 2005 end-page: 457 ident: b0265 article-title: A fast computation technique for the direct numerical simulation of rigid particulate flows publication-title: J. Comput. Phys. – volume: 39 start-page: 1 year: 1986 end-page: 23 ident: b0100 article-title: Hydrodynamics of fluidization and heat transfer: supercomputer modeling publication-title: Appl. Mech. Rev. – volume: 12 start-page: 167 year: 1966 end-page: 173 ident: b0275 article-title: Velocity and pressure profiles for Newtonian creeping flow in regular packed beds of spheres publication-title: AIChE J. – volume: 545 start-page: 67 year: 2005 end-page: 111 ident: b0050 article-title: Fully resolved simulations of particle–turbulence interaction publication-title: J. Fluid Mech. – reference: Garg, R., Galvin, J., Li, T., Pannala, S., 2010. Documentation of open-source MFIX-DEM software for gas–solids flows. Tech. Rep., National Energy Technology Laboratory, Department of Energy. < – volume: 14 start-page: 235 year: 1981 end-page: 259 ident: b0235 article-title: The fluid dynamics of heart valves: experimental, theoretical, and computational methods publication-title: Annu. Rev. Fluid Mech. – volume: 5 start-page: 317 year: 1959 end-page: 328 ident: b0115 article-title: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres publication-title: J. Fluid Mech. – volume: 628 start-page: 181 year: 2009 end-page: 228 ident: b0215 article-title: A comprehensive probability density function formalism for multiphase flows publication-title: J. Fluid Mech. – volume: 129 start-page: 1394 year: 2007 end-page: 1403 ident: b0290 article-title: Hybrid two-fluid dem simulation of gas–solid fluidized beds publication-title: J. Fluid Eng. – volume: 8 start-page: 342 year: 1982 end-page: 360 ident: b0250 article-title: Slow flow through a periodic array of spheres publication-title: Intl. J. Multiphase Flow – volume: 400 start-page: 229 year: 1999 end-page: 263 ident: b0165 article-title: Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations publication-title: J. Fluid Mech. – volume: 48 start-page: 227 year: 2009 end-page: 241 ident: b0345 article-title: Drag law for bidisperse gas–solid suspensions containing equally sized spheres publication-title: Ind. Eng. Chem. Res. – volume: 95 start-page: 115 year: 1992 end-page: 138 ident: b0205 article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body publication-title: Comput. Methods Appl. Mech. Eng. – volume: 203 start-page: 3 year: 2010 end-page: 11 ident: b0060 article-title: Particle clusters in and above fluidized beds publication-title: Powder Technol. – volume: 169 start-page: 427 year: 2001 end-page: 462 ident: b0140 article-title: Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian technique publication-title: J. Comput. Phys. – volume: 228 start-page: 2712 year: 2009 end-page: 2738 ident: b0015 article-title: A numerical method for fully resolved simulation (FRS) of rigid particle flow interactions in complex flows publication-title: J. Comput. Phys. – reference: >. – volume: 518 start-page: 95 year: 2004 end-page: 123 ident: b0030 article-title: Response of the wake of an isolated particle to an isotropic turbulent flow publication-title: J. Fluid Mech. – volume: 29 start-page: 819 year: 1974 end-page: 825 ident: b0280 article-title: Computation of forced-convection in slow flow through ducts and packed-beds. 2. Velocity profile in a simple cubic array of spheres publication-title: Chem. Eng. Sci. – volume: 15 start-page: 3496 year: 2003 end-page: 3513 ident: b0025 article-title: Effect of turbulence on the drag and lift of a particle publication-title: Phys. Fluids – volume: 56 start-page: 1845 year: 2008 end-page: 1884 ident: b0200 article-title: A divergence-free interpolation scheme for the immersed boundary method publication-title: Int. J. Numer. Methods Fluids – volume: 21 start-page: 662 year: 2006 end-page: 680 ident: b0150 article-title: Immersed boundary method for flow around an arbitrarily moving body publication-title: J. Comput. Phys. – reference: Garg, R., Tenneti, S., Mohd-Yusof, J., Subramaniam, S., 2011. Direct numerical simulation of gas–solids flow based on the immersed boundary method. In: Pannala, S., Syamlal, M., O’Brien, T.J. (Eds.), Computational Gas–Solids Flows and Reacting Systems: Theory, Methods and Practice. IGI Global, pp. 245–276. – volume: 15 start-page: 261 year: 1983 end-page: 291 ident: b0070 article-title: Mathematical modeling of two-phase flow publication-title: Annu. Rev. Fluid Mech. – volume: 27 start-page: 1948 year: 2006 end-page: 1980 ident: b0335 article-title: Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation publication-title: SIAM J. Sci. Comput. – volume: 60 start-page: 57 year: 2005 end-page: 72 ident: b0230 article-title: Critical comparisons of hydrodynamic models for gas–solid fluidized beds – Part I: Bubbling gas–solid fluidized beds operated with a jet publication-title: Chem. Eng. Sci. – volume: 31 start-page: 567 year: 1999 end-page: 603 ident: b0255 article-title: Direct numerical simulation of free-surface and interfacial flow publication-title: Annu. Rev. Fluid Mech. – reference: Yusof, J.M., 1996. Interaction of massive particles with turbulence. PhD thesis, Cornell University. – year: 2000 ident: b0240 article-title: Turbulent Flows – volume: 104 start-page: 1191 year: 2001 end-page: 1251 ident: b0180 article-title: Lattice-Boltzmann simulations of particle–fluid suspensions publication-title: J. Stat. Phys. – volume: 519 start-page: 233 year: 2004 end-page: 271 ident: b0310 article-title: Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence publication-title: J. Fluid Mech. – year: 1980 ident: b0225 article-title: Numerical Heat Transfer and Fluid Flow – reference: Syamlal, M., O’Brien, T.J., 1987. A generalized drag correlation for multiparticle systems. Tech. Rep., Morgantown Energy Technology Center DOE Report. – reference: Syamlal, M., Rogers, W., O’Brien, T.J., 1993. MFIX documentation: theory guide. Tech. Rep. DOE/METC-95/1013, NTIS/DE95000031, National Energy Technology Laboratory, Department of Energy. < – volume: 74 start-page: 47 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0020 article-title: Carbon capture and storage from fossil fuels and biomass – costs and potential role in stabilizing the atmosphere publication-title: Clim. Change doi: 10.1007/s10584-005-3484-7 – volume: 228 start-page: 2712 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0015 article-title: A numerical method for fully resolved simulation (FRS) of rigid particle flow interactions in complex flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.11.034 – ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0355 – volume: 15 start-page: 3496 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0025 article-title: Effect of turbulence on the drag and lift of a particle publication-title: Phys. Fluids doi: 10.1063/1.1616031 – volume: 56 start-page: 1995 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0135 article-title: Fluid–particle drag in inertial polydisperse gas–solid suspensions publication-title: AIChE J. doi: 10.1002/aic.12127 – volume: 184 start-page: 275 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0185 article-title: The influence of binary drag laws on MP-PIC simulations of segregating gas-fluidized beds publication-title: Powder Technol. doi: 10.1016/j.powtec.2007.08.015 – volume: 32 start-page: 35 year: 1954 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0245 article-title: Sedimentation and fluidization: Part 1 publication-title: Trans. Inst. Chem. Eng. – volume: 50 start-page: 1614 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0005 article-title: Capture of CO2 from combustion gases in a fluidized bed of CaO publication-title: Environ. Energy Eng. – volume: 31 start-page: 567 year: 1999 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0255 article-title: Direct numerical simulation of free-surface and interfacial flow publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.31.1.567 – volume: 26 start-page: 1509 year: 2000 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0220 article-title: A new formulation of the distributed Lagrange multipliers/fictitious domain method for particulate flow publication-title: Intl. J. Multiphase Flow doi: 10.1016/S0301-9322(99)00100-7 – volume: 650 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0195 article-title: Modulation of isotropic turbulence by particles of taylor length-scale size publication-title: J. Fluid Mech. doi: 10.1017/S0022112009994022 – volume: 2 start-page: 1711 year: 1990 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0160 article-title: Kinetic theory for a monodisperse gas–solid suspension publication-title: Phys. Fluids A doi: 10.1063/1.857698 – volume: 1 start-page: 31 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0340 article-title: Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/S1750-5836(07)00014-X – volume: 545 start-page: 67 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0050 article-title: Fully resolved simulations of particle–turbulence interaction publication-title: J. Fluid Mech. doi: 10.1017/S0022112005006889 – volume: 271 start-page: 311 year: 1994 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0175 article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 2. Numerical results publication-title: J. Fluid Mech. doi: 10.1017/S0022112094001783 – volume: 12 start-page: 2413 year: 2000 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0285 article-title: Statistical representation of a spray as a point process publication-title: Phys. Fluids doi: 10.1063/1.1288266 – volume: 115 start-page: 13 year: 1982 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0370 article-title: Stokes flow through periodic arrays of spheres publication-title: J. Fluid Mech. doi: 10.1017/S0022112082000627 – volume: 29 start-page: 819 year: 1974 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0280 article-title: Computation of forced-convection in slow flow through ducts and packed-beds. 2. Velocity profile in a simple cubic array of spheres publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(74)80200-9 – volume: 169 start-page: 427 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0140 article-title: Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian–Eulerian technique publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6592 – volume: 519 start-page: 233 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0310 article-title: Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112004001326 – volume: 48 start-page: 89 year: 1952 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0080 article-title: Fluid flow through packed columns publication-title: Chem. Eng. Prog. – volume: 60 start-page: 57 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0230 article-title: Critical comparisons of hydrodynamic models for gas–solid fluidized beds – Part I: Bubbling gas–solid fluidized beds operated with a jet publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.07.059 – volume: 8 start-page: 342 year: 1982 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0250 article-title: Slow flow through a periodic array of spheres publication-title: Intl. J. Multiphase Flow doi: 10.1016/0301-9322(82)90047-7 – volume: 209 start-page: 448 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0320 article-title: An immersed boundary method with direct forcing for the simulation of particulate flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.03.017 – volume: 210 start-page: 292 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0365 article-title: A second-order method for three-dimensional particle flow simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.04.009 – volume: 27 start-page: 1948 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0335 article-title: Systematic derivation of jump conditions for the immersed interface method in three-dimensional flow simulation publication-title: SIAM J. Sci. Comput. doi: 10.1137/040604960 – volume: 6 start-page: 527 year: 1967 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0010 article-title: A fluid mechanical description of fluidized beds publication-title: Ind. Eng. Chem. Fundam. doi: 10.1021/i160024a007 – volume: 187 start-page: 371 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0305 article-title: Physalis: a new method for particle simulation. Part ii: Two-dimensional Navier–Stokes flow around cylinders publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00077-9 – volume: 29 start-page: 47 year: 1979 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0065 article-title: A discrete numerical model for granular assemblies publication-title: Geotechnique doi: 10.1680/geot.1979.29.1.47 – volume: 53 start-page: 489 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0035 article-title: Drag force of intermediate Reynolds number flows past mono- and bidisperse arrays of spheres publication-title: AIChE J. doi: 10.1002/aic.11065 – volume: 140 start-page: 176 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0045 article-title: Mixing and segregation in a bidisperse gas–solid fluidised bed: a numerical and experimental study publication-title: Powder Technol. doi: 10.1016/j.powtec.2004.01.018 – volume: 203 start-page: 3 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0060 article-title: Particle clusters in and above fluidized beds publication-title: Powder Technol. doi: 10.1016/j.powtec.2010.03.023 – volume: 39 start-page: 1 year: 1986 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0100 article-title: Hydrodynamics of fluidization and heat transfer: supercomputer modeling publication-title: Appl. Mech. Rev. doi: 10.1115/1.3143702 – volume: 154 start-page: 489 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0270 article-title: A mechanistic investigation of a calcium-based oxygen carrier for chemical looping combustion publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.04.017 – volume: 129 start-page: 1394 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0290 article-title: Hybrid two-fluid dem simulation of gas–solid fluidized beds publication-title: J. Fluid Eng. doi: 10.1115/1.2786530 – ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0295 – volume: 62 start-page: 100 year: 1966 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0330 article-title: Mechanics of fluidization publication-title: Chem. Eng. Prog. Symp. Ser. – ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0300 doi: 10.2172/10145548 – volume: 203 start-page: 57 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0315 article-title: Direct numerical simulation of gas–solid suspensions at moderate Reynolds number: quantifying the coupling between hydrodynamic forces and particle velocity fluctuations publication-title: Powder Technol. doi: 10.1016/j.powtec.2010.03.042 – volume: 70 start-page: 64 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0360 article-title: A method for particle simulations publication-title: J. Appl. Mech. doi: 10.1115/1.1530636 – volume: 518 start-page: 95 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0030 article-title: Response of the wake of an isolated particle to an isotropic turbulent flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112004000989 – volume: 59 start-page: 308 year: 1985 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0155 article-title: Application of a fractional-step method to incompressible Navier–Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(85)90148-2 – volume: 400 start-page: 229 year: 1999 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0165 article-title: Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations publication-title: J. Fluid Mech. doi: 10.1017/S0022112099006485 – ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0145 – volume: 21 start-page: 662 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0150 article-title: Immersed boundary method for flow around an arbitrarily moving body publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.07.010 – volume: 271 start-page: 285 year: 1994 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0170 article-title: Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. 1. Theoretical foundation publication-title: J. Fluid Mech. doi: 10.1017/S0022112094001771 – volume: 25 start-page: 832 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0190 article-title: An immersed interface method for incompressible Navier–Stokes equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827502414060 – volume: 15 start-page: 150 year: 1937 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0055 article-title: Fluid flow through granular beds publication-title: Trans. Inst. Chem. Eng. – ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0090 – volume: 14 start-page: 235 year: 1981 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0235 article-title: The fluid dynamics of heart valves: experimental, theoretical, and computational methods publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.14.010182.001315 – volume: 628 start-page: 181 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0215 article-title: A comprehensive probability density function formalism for multiphase flows publication-title: J. Fluid Mech. doi: 10.1017/S002211200900617X – year: 1980 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0225 – ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0260 – volume: 83 start-page: 695 year: 1977 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0130 article-title: An averaged-equation approach to particle interactions in a fluid suspension publication-title: J. Fluid Mech. doi: 10.1017/S0022112077001414 – volume: 448 start-page: 243 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0125 article-title: Moderate-Reynolds-number flows in ordered and random arrays of spheres publication-title: J. Fluid Mech. doi: 10.1017/S0022112001005936 – volume: 56 start-page: 1845 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0200 article-title: A divergence-free interpolation scheme for the immersed boundary method publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1565 – volume: 156 start-page: 62 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0040 article-title: Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe publication-title: Powder Technol. doi: 10.1016/j.powtec.2005.04.002 – volume: 68 start-page: 066614 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0105 article-title: Multireflection boundary conditions for lattice Boltzmann models publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.066614 – volume: 12 start-page: 167 year: 1966 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0275 article-title: Velocity and pressure profiles for Newtonian creeping flow in regular packed beds of spheres publication-title: AIChE J. doi: 10.1002/aic.690120130 – volume: 528 start-page: 233 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0325 article-title: Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of sphere: results for the permeability and drag force publication-title: J. Fluid Mech. doi: 10.1017/S0022112004003295 – ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0095 doi: 10.4018/978-1-61520-651-3.ch008 – volume: 55 start-page: 1352 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0350 article-title: Fluid–particle drag in low-Reynolds-number polydisperse gas–solid suspensions publication-title: AIChE J. doi: 10.1002/aic.11800 – volume: 167 start-page: 196 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0210 article-title: Physalis: a new o(n) method for the numerical simulation of disperse systems publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6667 – ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0085 – volume: 104 start-page: 1191 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0180 article-title: Lattice-Boltzmann simulations of particle–fluid suspensions publication-title: J. Stat. Phys. doi: 10.1023/A:1010414013942 – volume: 5 start-page: 317 year: 1959 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0115 article-title: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres publication-title: J. Fluid Mech. doi: 10.1017/S0022112059000222 – volume: 448 start-page: 213 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0120 article-title: The first effects of fluid inertia on flows in ordered and random arrays of spheres publication-title: J. Fluid Mech. doi: 10.1017/S0022112001005948 – year: 2000 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0240 – year: 1998 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0075 – volume: 48 start-page: 227 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0345 article-title: Drag law for bidisperse gas–solid suspensions containing equally sized spheres publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie800171p – volume: 205 start-page: 439 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0265 article-title: A fast computation technique for the direct numerical simulation of rigid particulate flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.11.012 – volume: 15 start-page: 261 year: 1983 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0070 article-title: Mathematical modeling of two-phase flow publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.15.010183.001401 – volume: 169 start-page: 363 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0110 article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6542 – volume: 95 start-page: 115 year: 1992 ident: 10.1016/j.ijmultiphaseflow.2011.05.010_b0205 article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(92)90085-X |
| SSID | ssj0005743 |
| Score | 2.5221856 |
| Snippet | ► Drag law for gas–solids flow using particle-resolved simulation of fixed spheres. ► Numerical method PUReIBM based on immersed boundary method with no... Gas-solid momentum transfer is a fundamental problem that is characterized by the dependence of normalized average fluid-particle force F on solid volume... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1072 |
| SubjectTerms | Assemblies Computational fluid dynamics Computational methods in fluid dynamics Correlation Drag Drag law Exact sciences and technology Fluid dynamics Fluid flow Fundamental areas of phenomenology (including applications) Gas–solid flow Immersed boundary method Mathematical analysis Mathematical models Multiphase and particle-laden flows Nonhomogeneous flows Particle-resolved direct numerical simulation Physics Simulation |
| Title | Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres |
| URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2011.05.010 https://www.proquest.com/docview/1671273346 |
| Volume | 37 |
| WOSCitedRecordID | wos000295242200007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-3533 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005743 issn: 0301-9322 databaseCode: AIEXJ dateStart: 19951201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKFxAIIVhAlMfKSGgvVVDivA8cKujy0KogUaTerMSxl1TZpDRttz-BX8LvZBw7j1KByoFLVKW2E3u-eD6PxzMIveQk8vwwdoww8ZnhSD-a2LOZYcUhJ7bvhsJWySb8ySSYzcLPvd7P-izMJvPzPNhuw8V_FTXcA2HLo7P_IO6mUbgBv0HocAWxw_Ugwb9dRhfDLLqqHAjhqUWSymjgJR9eRKUBz04THb-5HK4rS8FCt2LA0rvINkBBlaIb5mu1n5MNy_RS5_mS7FJkxRXUKmVYpy0UBwLOL2Ngs5VfSCkjFWjXxHnrKN_aHTvRKpQ_4zdQpVWjjR2hOi2U7phm30XKEa3ZmoI5bxnJ8B0K01-6BgzpQdcYMPTBLdMygEbuTMoqEowGX9iZYWG5Sjra2jJVKr09TaCMEvNX6bztieyIjtoqg7WarQ6s9_0nn-jZ1_NzOh3PpqeL74bMTiZ38XWqlmvoiAB-gz46Gn0Yzz62zkTqKEfTlZvotPUk_Nsr_IkO3QEhgniFyq6yRxQq9jO9h-7qZQseKaDcRz2eH6PbnWCWx-hG5UzMygfoh4QgBghigCDuQhA3EMQagriCIN6DIFYQxA0EcQtBXAgse4glBHEFQdxCUP6rIfgQTc_G0zfvDZ3xw2BAlFcwdAEQXkewWBCTRQxmDQKzhu2HQpJzZjPhRAljlvB8EjDCPO5wixAR-Cwk3H6E-nmR88cIQ-nYDkyPMGI7gZcE3I6Zkwgvil3uJvYAva7HnTIdDV8mZclo7fY4p7_LjUq5UdOlILcB8pv6CxUX5uCao1rMVLNcNaIUoHtwGyc7-GheAcg6rC9Md4Be1IChoC_kJmCU82JdUsvzLViy2I735IAyT9Gt9pN9hvqr5Zo_R9fZZpWWyxP9FfwCFa7wbg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag+law+for+monodisperse+gas-solid+systems+using+particle-resolved+direct+numerical+simulation+of+flow+past+fixed+assemblies+of+spheres&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Tenneti%2C+S&rft.au=Garg%2C+R&rft.au=Subramaniam%2C+S&rft.date=2011-11-01&rft.issn=0301-9322&rft.volume=37&rft.issue=9&rft.spage=1072&rft.epage=1092&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2011.05.010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |