A software tool for automatic classification and segmentation of 2D/3D medical images

Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Ročník 702; s. 137 - 140
Hlavní autori: Strzelecki, Michal, Szczypinski, Piotr, Materka, Andrzej, Klepaczko, Artur
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 21.02.2013
Predmet:
ISSN:0168-9002, 1872-9576
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.
AbstractList Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.
Author Klepaczko, Artur
Szczypinski, Piotr
Materka, Andrzej
Strzelecki, Michal
Author_xml – sequence: 1
  givenname: Michal
  surname: Strzelecki
  fullname: Strzelecki, Michal
  email: michal.strzelecki@p.lodz.pl
– sequence: 2
  givenname: Piotr
  surname: Szczypinski
  fullname: Szczypinski, Piotr
– sequence: 3
  givenname: Andrzej
  surname: Materka
  fullname: Materka, Andrzej
– sequence: 4
  givenname: Artur
  surname: Klepaczko
  fullname: Klepaczko, Artur
BookMark eNp9kE1LAzEQhoNUsFb_gKccvew2H202AS9i_QLBi55DTCaSsrupSar4701ZTx6cyzDD-wzzvqdoNsYRELqgpKWEiuW2HcNgWkYoa4lqCRFHaE5lxxq17sQMzatINooQdoJOc96SWqqTc_R6jXP05cskwCXGHvuYsNmXOJgSLLa9yTn4YOsUR2xGhzO8DzCWaRE9Zpsl3-ABXBX1uH7xDvkMHXvTZzj_7Qv0enf7cvPQPD3fP95cPzWWK1WazoKTHIRQxKuVNG9WOMbk2ktlqeRK2E45SUFYwq1yzr-tDLedV8ZxJ8SaL9DldHeX4scectFDyBb63owQ91nTNeUrwTpFqpRNUptizgm83qX6bPrWlOhDhnqrDxnqQ4aaKF0zrJD8A9kwOS_JhP5_9GpCofr_DJB0tgHG6jgksEW7GP7DfwCuOI9_
CitedBy_id crossref_primary_10_1016_j_ejrad_2020_109309
crossref_primary_10_3390_foods13111602
crossref_primary_10_1007_s00217_023_04441_4
crossref_primary_10_1016_j_bbe_2021_02_011
crossref_primary_10_1016_j_oooo_2020_10_007
crossref_primary_10_3390_agronomy13102452
crossref_primary_10_3390_su15087011
crossref_primary_10_1007_s00330_018_5706_6
crossref_primary_10_1016_j_lwt_2025_117502
crossref_primary_10_1186_s12880_021_00718_w
crossref_primary_10_1016_j_artmed_2018_09_003
crossref_primary_10_1016_j_foodcont_2024_110488
crossref_primary_10_1080_08839514_2022_2031824
crossref_primary_10_1016_j_jspr_2020_101668
crossref_primary_10_1055_s_0045_1808089
crossref_primary_10_3168_jds_2013_7518
crossref_primary_10_1007_s00217_021_03832_9
crossref_primary_10_3748_wjg_v28_i24_2733
crossref_primary_10_1002_nbm_3353
crossref_primary_10_1002_acm2_13394
crossref_primary_10_1002_mrm_25743
crossref_primary_10_3390_fractalfract8080490
crossref_primary_10_1371_journal_pone_0273682
crossref_primary_10_3390_agronomy13092277
crossref_primary_10_1016_j_phro_2021_10_007
crossref_primary_10_3390_app15126597
crossref_primary_10_3390_foods11192956
crossref_primary_10_1371_journal_pone_0263006
crossref_primary_10_1371_journal_pone_0267569
crossref_primary_10_1007_s10278_024_01268_7
crossref_primary_10_1007_s44411_025_00212_7
crossref_primary_10_3390_agriculture12101730
crossref_primary_10_1186_s41747_023_00326_z
crossref_primary_10_3390_su17104317
crossref_primary_10_1007_s00259_019_04414_4
crossref_primary_10_1016_j_jbo_2024_100616
crossref_primary_10_3389_fbioe_2023_1105377
crossref_primary_10_1007_s12539_022_00547_7
crossref_primary_10_24326_asphc_2025_5370
crossref_primary_10_1002_jum_16594
crossref_primary_10_1017_S1431927613013408
crossref_primary_10_3390_e22050567
crossref_primary_10_1007_s00259_015_3180_9
crossref_primary_10_1111_jfpe_13724
crossref_primary_10_3389_fendo_2024_1381822
crossref_primary_10_3390_cancers15051380
crossref_primary_10_1186_s12880_024_01483_2
crossref_primary_10_1007_s11282_022_00604_3
crossref_primary_10_1007_s00330_018_5921_1
crossref_primary_10_3390_agriculture14111855
crossref_primary_10_1007_s00217_024_04626_5
crossref_primary_10_1371_journal_pone_0118297
crossref_primary_10_3390_jcm10235571
crossref_primary_10_1111_jfpe_14496
crossref_primary_10_1016_j_suronc_2019_06_006
crossref_primary_10_1016_j_future_2020_04_038
crossref_primary_10_1007_s00217_021_03920_w
crossref_primary_10_1007_s11060_024_04725_z
crossref_primary_10_1038_s41598_024_70559_4
crossref_primary_10_3390_jpm11070611
crossref_primary_10_3390_agriculture13010026
crossref_primary_10_1002_jmrs_631
crossref_primary_10_1016_j_crad_2021_03_017
crossref_primary_10_3390_foods14071138
crossref_primary_10_1007_s00330_018_5698_2
crossref_primary_10_1016_j_ejmp_2019_03_014
crossref_primary_10_1016_j_clinimag_2020_04_016
crossref_primary_10_1016_j_aquatox_2016_03_011
crossref_primary_10_1016_j_ipm_2022_103046
crossref_primary_10_12688_f1000research_10401_1
crossref_primary_10_12688_f1000research_10401_2
crossref_primary_10_1016_j_foodcont_2023_110088
crossref_primary_10_3390_foods11223589
crossref_primary_10_1007_s00330_020_07176_y
crossref_primary_10_1111_jfpe_13976
crossref_primary_10_3389_fphys_2021_755468
crossref_primary_10_1016_j_mehy_2024_111405
crossref_primary_10_1016_j_mri_2018_11_008
crossref_primary_10_1038_s41598_021_92155_6
crossref_primary_10_1038_s41598_024_69464_7
crossref_primary_10_3390_ma13163614
crossref_primary_10_1016_j_acra_2015_04_004
crossref_primary_10_3389_fonc_2019_00242
crossref_primary_10_3348_kjr_2019_0969
crossref_primary_10_1038_s41598_023_31205_7
crossref_primary_10_3390_diagnostics13030442
crossref_primary_10_1007_s11282_021_00517_7
crossref_primary_10_1016_j_jfca_2024_106063
crossref_primary_10_3390_foods12112123
crossref_primary_10_1186_s12931_024_02936_6
crossref_primary_10_1016_j_tranon_2017_04_006
crossref_primary_10_5114_pjr_2022_119473
crossref_primary_10_1016_j_fertnstert_2016_08_014
crossref_primary_10_1016_j_placenta_2022_06_002
crossref_primary_10_3390_agriculture13020498
crossref_primary_10_3390_app13010206
crossref_primary_10_1186_s40644_022_00506_x
crossref_primary_10_1017_S1431927621000532
crossref_primary_10_1016_j_fbp_2023_07_001
crossref_primary_10_1016_j_neurad_2019_05_013
crossref_primary_10_1007_s00217_021_03869_w
crossref_primary_10_1016_j_ecolind_2017_05_001
crossref_primary_10_2478_aucft_2025_0003
crossref_primary_10_1088_1742_6596_1096_1_012095
crossref_primary_10_2478_aucft_2025_0007
crossref_primary_10_3390_medicina56100487
crossref_primary_10_1007_s00217_022_04057_0
crossref_primary_10_2460_ajvr_78_10_1156
crossref_primary_10_1111_cpf_12107
crossref_primary_10_1177_11782234241305886
crossref_primary_10_1016_j_acra_2024_07_005
crossref_primary_10_1097_MD_0000000000004034
crossref_primary_10_1007_s10570_025_06644_2
crossref_primary_10_1016_j_cmpb_2014_01_018
crossref_primary_10_3233_XST_200675
crossref_primary_10_1002_widm_1437
crossref_primary_10_1186_s13104_016_2300_3
crossref_primary_10_3390_sym15020287
crossref_primary_10_1210_clinem_dgab342
crossref_primary_10_3233_XST_211116
crossref_primary_10_3390_agriculture13071310
crossref_primary_10_1210_clinem_dgad082
crossref_primary_10_3390_agriculture13030562
crossref_primary_10_3390_foods13233784
crossref_primary_10_1007_s11548_022_02560_z
crossref_primary_10_1016_j_tranon_2017_09_003
crossref_primary_10_3389_fcvm_2022_797283
crossref_primary_10_3390_diagnostics14040438
crossref_primary_10_1134_S1054661821030135
crossref_primary_10_1093_micmic_ozad042
crossref_primary_10_1016_j_theriogenology_2014_10_009
crossref_primary_10_1002_nbm_3781
crossref_primary_10_1016_j_eswa_2023_120917
crossref_primary_10_1097_MD_0000000000013957
crossref_primary_10_3390_brainsci10090638
crossref_primary_10_1016_j_mri_2025_110356
crossref_primary_10_1134_S1054661818040144
crossref_primary_10_1016_j_jfca_2025_107763
crossref_primary_10_1093_jbmrpl_ziaf126
crossref_primary_10_2478_aucft_2024_0012
crossref_primary_10_4251_wjgo_v17_i1_96439
crossref_primary_10_3348_kjr_2020_0121
crossref_primary_10_1155_2021_5572470
crossref_primary_10_1158_0008_5472_CAN_20_0332
crossref_primary_10_3390_ma13173854
crossref_primary_10_1088_1742_6596_1368_5_052006
crossref_primary_10_3390_diagnostics11050812
crossref_primary_10_1007_s00330_018_5632_7
crossref_primary_10_3390_jcm10091921
crossref_primary_10_3390_fractalfract7030272
crossref_primary_10_3390_agriculture14010054
crossref_primary_10_1016_j_proeng_2017_09_599
crossref_primary_10_1002_cnr2_2132
crossref_primary_10_1002_nbm_3099
crossref_primary_10_1016_j_renene_2024_121320
crossref_primary_10_3390_cancers16081591
crossref_primary_10_1093_jbmr_zjae207
crossref_primary_10_1007_s11042_024_18775_y
crossref_primary_10_1002_JPER_19_0477
crossref_primary_10_1111_jon_12185
crossref_primary_10_1177_00033197221111862
crossref_primary_10_1007_s00432_025_06253_3
crossref_primary_10_1007_s11282_023_00725_3
crossref_primary_10_3389_fonc_2023_1048311
crossref_primary_10_1371_journal_pone_0117835
crossref_primary_10_3390_agriculture13010074
Cites_doi 10.1109/TITB.2008.2007110
10.1016/j.cmpb.2011.06.004
10.1109/ISBI.2010.5490316
10.1002/jmri.22268
10.1016/j.cmpb.2008.08.005
10.1109/ISITC.2007.13
10.1159/000093967
10.1590/S0100-879X2009005000034
10.1145/331499.331504
10.1002/nbm.1803
10.1016/j.nima.2010.12.086
10.1016/j.acra.2009.08.012
10.1016/j.cmpb.2011.03.005
10.1117/12.431074
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1016/j.nima.2012.09.006
DatabaseName CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1872-9576
EndPage 140
ExternalDocumentID 10_1016_j_nima_2012_09_006
S0168900212010212
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SHN
SPC
SPCBC
SPD
SSQ
T5K
TN5
~02
~G-
29N
3O-
53G
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
ADVLN
AEIPS
AFJKZ
AGHFR
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HME
HVGLF
HX~
HZ~
H~9
R2-
SEW
SSZ
VOH
WUQ
~HD
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-7ced83e6690f948abc6d2285f89c18396c79d81e6c03c9ddfb4a3c7f9ad3d6653
ISICitedReferencesCount 206
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314682300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-9002
IngestDate Sat Sep 27 19:56:12 EDT 2025
Sat Nov 29 07:24:57 EST 2025
Tue Nov 18 21:02:06 EST 2025
Fri Feb 23 02:36:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data classification
Texture analysis
Image analysis and processing software
Magnetic resonance imaging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-7ced83e6690f948abc6d2285f89c18396c79d81e6c03c9ddfb4a3c7f9ad3d6653
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1513462790
PQPubID 23500
PageCount 4
ParticipantIDs proquest_miscellaneous_1513462790
crossref_primary_10_1016_j_nima_2012_09_006
crossref_citationtrail_10_1016_j_nima_2012_09_006
elsevier_sciencedirect_doi_10_1016_j_nima_2012_09_006
PublicationCentury 2000
PublicationDate 2013-02-21
PublicationDateYYYYMMDD 2013-02-21
PublicationDate_xml – month: 02
  year: 2013
  text: 2013-02-21
  day: 21
PublicationDecade 2010
PublicationTitle Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gang, Lixu, Lijun, Jianrong (bib17) 2009; 13
Szymanski, Jamison, DeGracia (bib6) 2012; 105
Holli, Lääperi, Harrison, Luukkaala, Toivonen, Ryymin, Dastidar, Soimakallio, Eskola (bib3) 2010; 17
Oliveira, Fernandes, Avelar, Santos, Castellano, Li (bib22) 2009; 42
P. Bourgeat, S. Ourselin P. Stanwell, S. Ramadan, Proceedings of the IEEE Symposium on Biomedical Imaging: From Nano to Macro, 2006, pp. 742–745.
Hecht-Nielsen (bib9) 1989
Santos, Ramiro, Desco, Malpica, Tejedor, Torres, Ledesma-Carbayo, Castilla, García-Barreno (bib21) 2001; 4322
Fukunaga (bib8) 1991
Materka, Strzelecki, Lerski, Schad (bib11) 2000; vol. 40
M. Strzelecki, J. de Certaines, S. Ko, Segmentation of 3D MR liver images using synchronised oscillators network, in: Proceedings of ISITC, Korea, 2007,pp. 259–263.
Strzelecki, Materka (bib13) 2006
De Nunzio, Pastore, Donativi, Castellano, Falini (bib5) 2011; 648
Mayerhoefer, Schima, Trattnig, Pinker, Berger-Kulemann, Ba-Ssalamah (bib18) 2010; 32
Mayerhoefer, Stelzeneder, Bachbauer, Welsch, Mamisch, Szczypinski, Weber, Peters, Fruehwald-Pallamar, Puchner, Trattnig (bib19) 2012; 25
Strzelecki, Materka, Drozdz, Krzeminska-Pakula, Kasprzak (bib12) 2006; 30
Jain, Murty, Flynn (bib10) 1999; 31
T. Williams, G. Vincent, M. Bowes, T. Cootes, S. Balamoody, C. Hutchinson, J. Waterton, C. Taylor, Automatic segmentation of bones and inter-image anatomical correspondence by volumetric statistical modelling of knee MRI, in: Proceedings of the IEEE Symposium on Biomedical Imaging: From Nano to Macro, 2010, pp. 432–435.
Szczypiński, Strzelecki, Materka, Klepaczko (bib1) 2009; 94
Duda, Hart, Stork (bib7) 2001
Blouin, Moreau, Baslé, Shappard (bib20) 2006; 182
Hajek, Dezortova, Materka, Lerski (bib2) 2006
Kociński, Klepaczko, Materka, Chekenya, Lundervold (bib4) 2012; 107
Gang (10.1016/j.nima.2012.09.006_bib17) 2009; 13
Strzelecki (10.1016/j.nima.2012.09.006_bib12) 2006; 30
De Nunzio (10.1016/j.nima.2012.09.006_bib5) 2011; 648
Strzelecki (10.1016/j.nima.2012.09.006_bib13) 2006
Blouin (10.1016/j.nima.2012.09.006_bib20) 2006; 182
Szczypiński (10.1016/j.nima.2012.09.006_bib1) 2009; 94
Jain (10.1016/j.nima.2012.09.006_bib10) 1999; 31
Fukunaga (10.1016/j.nima.2012.09.006_bib8) 1991
Mayerhoefer (10.1016/j.nima.2012.09.006_bib19) 2012; 25
10.1016/j.nima.2012.09.006_bib16
10.1016/j.nima.2012.09.006_bib14
10.1016/j.nima.2012.09.006_bib15
Santos (10.1016/j.nima.2012.09.006_bib21) 2001; 4322
Kociński (10.1016/j.nima.2012.09.006_bib4) 2012; 107
Szymanski (10.1016/j.nima.2012.09.006_bib6) 2012; 105
Oliveira (10.1016/j.nima.2012.09.006_bib22) 2009; 42
Mayerhoefer (10.1016/j.nima.2012.09.006_bib18) 2010; 32
Duda (10.1016/j.nima.2012.09.006_bib7) 2001
Hajek (10.1016/j.nima.2012.09.006_bib2) 2006
Hecht-Nielsen (10.1016/j.nima.2012.09.006_bib9) 1989
Materka (10.1016/j.nima.2012.09.006_bib11) 2000; vol. 40
Holli (10.1016/j.nima.2012.09.006_bib3) 2010; 17
References_xml – volume: 94
  start-page: 66
  year: 2009
  ident: bib1
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 42
  start-page: 1076
  year: 2009
  ident: bib22
  publication-title: Brazilian Journal of Medical and Biological Research
– volume: vol. 40
  year: 2000
  ident: bib11
  publication-title: Texture Analysis in Machine Vision, Series in Machine Perception and Artificial Intelligence
– year: 2006
  ident: bib2
  article-title: Texture Analysis for Magnetic Resonance Imaging
– volume: 648
  start-page: S100
  year: 2011
  ident: bib5
  publication-title: Nuclear Instruments and Methods A
– reference: M. Strzelecki, J. de Certaines, S. Ko, Segmentation of 3D MR liver images using synchronised oscillators network, in: Proceedings of ISITC, Korea, 2007,pp. 259–263.
– volume: 105
  start-page: 81
  year: 2012
  ident: bib6
  publication-title: Computer Methods and Programs in Biomedicine
– reference: T. Williams, G. Vincent, M. Bowes, T. Cootes, S. Balamoody, C. Hutchinson, J. Waterton, C. Taylor, Automatic segmentation of bones and inter-image anatomical correspondence by volumetric statistical modelling of knee MRI, in: Proceedings of the IEEE Symposium on Biomedical Imaging: From Nano to Macro, 2010, pp. 432–435.
– volume: 31
  start-page: 264
  year: 1999
  ident: bib10
  publication-title: ACM Computing Surveys
– volume: 13
  start-page: 94
  year: 2009
  ident: bib17
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– reference: P. Bourgeat, S. Ourselin P. Stanwell, S. Ramadan, Proceedings of the IEEE Symposium on Biomedical Imaging: From Nano to Macro, 2006, pp. 742–745.
– volume: 107
  start-page: 140
  year: 2012
  ident: bib4
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 30
  start-page: 95
  year: 2006
  ident: bib12
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 25
  start-page: 866
  year: 2012
  ident: bib19
  publication-title: NMR in Biomedicine
– year: 2001
  ident: bib7
  article-title: Pattern Classification
– volume: 17
  start-page: 135
  year: 2010
  ident: bib3
  publication-title: Academic Radiology
– year: 2006
  ident: bib13
  article-title: Proceedings of the International Conference ICCGV 2004
– volume: 182
  start-page: 182
  year: 2006
  ident: bib20
  publication-title: Cells Tissues Organs
– year: 1991
  ident: bib8
  article-title: Introduction to Statistical Pattern Recognition
– volume: 32
  start-page: 352
  year: 2010
  ident: bib18
  publication-title: Journal of Magnetic Resonance Imaging
– volume: 4322
  start-page: 1836
  year: 2001
  ident: bib21
  article-title: Automatic detection of cellular necrosis in epithelial cell cultures
  publication-title: Proceedings of SPIE
– year: 1989
  ident: bib9
  article-title: Neurocomputing
– volume: 13
  start-page: 94
  year: 2009
  ident: 10.1016/j.nima.2012.09.006_bib17
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2008.2007110
– volume: 107
  start-page: 140
  year: 2012
  ident: 10.1016/j.nima.2012.09.006_bib4
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2011.06.004
– ident: 10.1016/j.nima.2012.09.006_bib15
  doi: 10.1109/ISBI.2010.5490316
– volume: 32
  start-page: 352
  year: 2010
  ident: 10.1016/j.nima.2012.09.006_bib18
  publication-title: Journal of Magnetic Resonance Imaging
  doi: 10.1002/jmri.22268
– volume: 94
  start-page: 66
  year: 2009
  ident: 10.1016/j.nima.2012.09.006_bib1
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2008.08.005
– ident: 10.1016/j.nima.2012.09.006_bib16
  doi: 10.1109/ISITC.2007.13
– volume: 30
  start-page: 95
  year: 2006
  ident: 10.1016/j.nima.2012.09.006_bib12
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 182
  start-page: 182
  year: 2006
  ident: 10.1016/j.nima.2012.09.006_bib20
  publication-title: Cells Tissues Organs
  doi: 10.1159/000093967
– volume: 42
  start-page: 1076
  year: 2009
  ident: 10.1016/j.nima.2012.09.006_bib22
  publication-title: Brazilian Journal of Medical and Biological Research
  doi: 10.1590/S0100-879X2009005000034
– volume: 31
  start-page: 264
  year: 1999
  ident: 10.1016/j.nima.2012.09.006_bib10
  publication-title: ACM Computing Surveys
  doi: 10.1145/331499.331504
– volume: 25
  start-page: 866
  year: 2012
  ident: 10.1016/j.nima.2012.09.006_bib19
  publication-title: NMR in Biomedicine
  doi: 10.1002/nbm.1803
– year: 1991
  ident: 10.1016/j.nima.2012.09.006_bib8
– year: 2006
  ident: 10.1016/j.nima.2012.09.006_bib2
– volume: vol. 40
  year: 2000
  ident: 10.1016/j.nima.2012.09.006_bib11
– ident: 10.1016/j.nima.2012.09.006_bib14
– year: 2006
  ident: 10.1016/j.nima.2012.09.006_bib13
– volume: 648
  start-page: S100
  year: 2011
  ident: 10.1016/j.nima.2012.09.006_bib5
  publication-title: Nuclear Instruments and Methods A
  doi: 10.1016/j.nima.2010.12.086
– year: 2001
  ident: 10.1016/j.nima.2012.09.006_bib7
– volume: 17
  start-page: 135
  year: 2010
  ident: 10.1016/j.nima.2012.09.006_bib3
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2009.08.012
– year: 1989
  ident: 10.1016/j.nima.2012.09.006_bib9
– volume: 105
  start-page: 81
  year: 2012
  ident: 10.1016/j.nima.2012.09.006_bib6
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2011.03.005
– volume: 4322
  start-page: 1836
  year: 2001
  ident: 10.1016/j.nima.2012.09.006_bib21
  article-title: Automatic detection of cellular necrosis in epithelial cell cultures
  publication-title: Proceedings of SPIE
  doi: 10.1117/12.431074
SSID ssj0000978
Score 2.5006537
Snippet Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms Classification
Data classification
Image analysis and processing software
Magnetic resonance imaging
Medical imaging
Positron emission
Segmentation
Surface layer
Texture
Texture analysis
Three dimensional
Tomography
Title A software tool for automatic classification and segmentation of 2D/3D medical images
URI https://dx.doi.org/10.1016/j.nima.2012.09.006
https://www.proquest.com/docview/1513462790
Volume 702
WOSCitedRecordID wos000314682300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9576
  dateEnd: 20181111
  omitProxy: false
  ssIdentifier: ssj0000978
  issn: 0168-9002
  databaseCode: AIEXJ
  dateStart: 19950115
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF_OnoIv4ieeX6zg2xHNd7KPxZ6oYCn0DvoW0v2Q9nppbdPz7F_vzM4mrT08VPAllJBsws6vM7_szvyGsTfGmECVifaQH3txFqUelmd648hkmY7GsTG-bTaR9fv5aCQGB7c6TS3M5SyrqvzqSiz-q6nhHBgbS2f_wtztoHACfoPR4Qhmh-MfGb57vALX-h0zumoU2LRpkut6TtqsEtkypgeR4e2yuf564SqQLHcMe_DwqEfb7qjJcQE-Z7XLYvsoglzaRPYaxRcwlQYhRO2oKTPd2h_3JBpR5aGmruRd646khHhnt_gtkGzBJyon1K5nm9K1pk5AVk3WgQjYsf62nix203WG9XKDzXyo_7YtA2izRoYbufmxbc49mMzrNhn5Cwy3PC-brM6NnrbBZwYxWm7OqQJoCUF5d20E-1SEXrhdG7letENrqCn4eN-nIKDJ7-eAT5FQK5omMGTuEnLtAYnTOJYQkMjUtQBEayHTt9XEqlrhSjMKou6pfVv-MMQXEVZj3zZYByJxGGaJgPBy2P10Mvq8ZRSCGEXz4q74i_IU95_0O4K1RzUsfzq9z-65Dx_eJcA-YAe6esjuDAgmj9hZlzew5QhbDrDlLWz5r7DlgAm-C1s-NzzsvYt63IGWE2gfs7MPJ6fvP3qu5YcngSnXXia1yiOdpsI3Is7LsUxVGOaJyYVELp_KTKg80Kn0IymUMuO4jGRmRKkilaZJ9IR1qnmlnzKugszkaRlLJVDjMRlriPu-zlUAg4S5PGJBM0-FdHr42JZlVjSJj9MC57bAuS18UcDcHrHj9p4FqcHceHXSTH_h-Czx1ALQcuN9rxtbFeDscQevrPR8vSqAnkdxGmbCf_aPYz9nd7d_lBesA15Cv2S35WU9WS1fOeD9BMPm1GE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+software+tool+for+automatic+classification+and+segmentation+of+2D%2F3D+medical+images&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Strzelecki%2C+Michal&rft.au=Szczypinski%2C+Piotr&rft.au=Materka%2C+Andrzej&rft.au=Klepaczko%2C+Artur&rft.date=2013-02-21&rft.pub=Elsevier+B.V&rft.issn=0168-9002&rft.eissn=1872-9576&rft.volume=702&rft.spage=137&rft.epage=140&rft_id=info:doi/10.1016%2Fj.nima.2012.09.006&rft.externalDocID=S0168900212010212
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon