A software tool for automatic classification and segmentation of 2D/3D medical images
Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and...
Uložené v:
| Vydané v: | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Ročník 702; s. 137 - 140 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
21.02.2013
|
| Predmet: | |
| ISSN: | 0168-9002, 1872-9576 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided. |
|---|---|
| AbstractList | Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided. |
| Author | Klepaczko, Artur Szczypinski, Piotr Materka, Andrzej Strzelecki, Michal |
| Author_xml | – sequence: 1 givenname: Michal surname: Strzelecki fullname: Strzelecki, Michal email: michal.strzelecki@p.lodz.pl – sequence: 2 givenname: Piotr surname: Szczypinski fullname: Szczypinski, Piotr – sequence: 3 givenname: Andrzej surname: Materka fullname: Materka, Andrzej – sequence: 4 givenname: Artur surname: Klepaczko fullname: Klepaczko, Artur |
| BookMark | eNp9kE1LAzEQhoNUsFb_gKccvew2H202AS9i_QLBi55DTCaSsrupSar4701ZTx6cyzDD-wzzvqdoNsYRELqgpKWEiuW2HcNgWkYoa4lqCRFHaE5lxxq17sQMzatINooQdoJOc96SWqqTc_R6jXP05cskwCXGHvuYsNmXOJgSLLa9yTn4YOsUR2xGhzO8DzCWaRE9Zpsl3-ABXBX1uH7xDvkMHXvTZzj_7Qv0enf7cvPQPD3fP95cPzWWK1WazoKTHIRQxKuVNG9WOMbk2ktlqeRK2E45SUFYwq1yzr-tDLedV8ZxJ8SaL9DldHeX4scectFDyBb63owQ91nTNeUrwTpFqpRNUptizgm83qX6bPrWlOhDhnqrDxnqQ4aaKF0zrJD8A9kwOS_JhP5_9GpCofr_DJB0tgHG6jgksEW7GP7DfwCuOI9_ |
| CitedBy_id | crossref_primary_10_1016_j_ejrad_2020_109309 crossref_primary_10_3390_foods13111602 crossref_primary_10_1007_s00217_023_04441_4 crossref_primary_10_1016_j_bbe_2021_02_011 crossref_primary_10_1016_j_oooo_2020_10_007 crossref_primary_10_3390_agronomy13102452 crossref_primary_10_3390_su15087011 crossref_primary_10_1007_s00330_018_5706_6 crossref_primary_10_1016_j_lwt_2025_117502 crossref_primary_10_1186_s12880_021_00718_w crossref_primary_10_1016_j_artmed_2018_09_003 crossref_primary_10_1016_j_foodcont_2024_110488 crossref_primary_10_1080_08839514_2022_2031824 crossref_primary_10_1016_j_jspr_2020_101668 crossref_primary_10_1055_s_0045_1808089 crossref_primary_10_3168_jds_2013_7518 crossref_primary_10_1007_s00217_021_03832_9 crossref_primary_10_3748_wjg_v28_i24_2733 crossref_primary_10_1002_nbm_3353 crossref_primary_10_1002_acm2_13394 crossref_primary_10_1002_mrm_25743 crossref_primary_10_3390_fractalfract8080490 crossref_primary_10_1371_journal_pone_0273682 crossref_primary_10_3390_agronomy13092277 crossref_primary_10_1016_j_phro_2021_10_007 crossref_primary_10_3390_app15126597 crossref_primary_10_3390_foods11192956 crossref_primary_10_1371_journal_pone_0263006 crossref_primary_10_1371_journal_pone_0267569 crossref_primary_10_1007_s10278_024_01268_7 crossref_primary_10_1007_s44411_025_00212_7 crossref_primary_10_3390_agriculture12101730 crossref_primary_10_1186_s41747_023_00326_z crossref_primary_10_3390_su17104317 crossref_primary_10_1007_s00259_019_04414_4 crossref_primary_10_1016_j_jbo_2024_100616 crossref_primary_10_3389_fbioe_2023_1105377 crossref_primary_10_1007_s12539_022_00547_7 crossref_primary_10_24326_asphc_2025_5370 crossref_primary_10_1002_jum_16594 crossref_primary_10_1017_S1431927613013408 crossref_primary_10_3390_e22050567 crossref_primary_10_1007_s00259_015_3180_9 crossref_primary_10_1111_jfpe_13724 crossref_primary_10_3389_fendo_2024_1381822 crossref_primary_10_3390_cancers15051380 crossref_primary_10_1186_s12880_024_01483_2 crossref_primary_10_1007_s11282_022_00604_3 crossref_primary_10_1007_s00330_018_5921_1 crossref_primary_10_3390_agriculture14111855 crossref_primary_10_1007_s00217_024_04626_5 crossref_primary_10_1371_journal_pone_0118297 crossref_primary_10_3390_jcm10235571 crossref_primary_10_1111_jfpe_14496 crossref_primary_10_1016_j_suronc_2019_06_006 crossref_primary_10_1016_j_future_2020_04_038 crossref_primary_10_1007_s00217_021_03920_w crossref_primary_10_1007_s11060_024_04725_z crossref_primary_10_1038_s41598_024_70559_4 crossref_primary_10_3390_jpm11070611 crossref_primary_10_3390_agriculture13010026 crossref_primary_10_1002_jmrs_631 crossref_primary_10_1016_j_crad_2021_03_017 crossref_primary_10_3390_foods14071138 crossref_primary_10_1007_s00330_018_5698_2 crossref_primary_10_1016_j_ejmp_2019_03_014 crossref_primary_10_1016_j_clinimag_2020_04_016 crossref_primary_10_1016_j_aquatox_2016_03_011 crossref_primary_10_1016_j_ipm_2022_103046 crossref_primary_10_12688_f1000research_10401_1 crossref_primary_10_12688_f1000research_10401_2 crossref_primary_10_1016_j_foodcont_2023_110088 crossref_primary_10_3390_foods11223589 crossref_primary_10_1007_s00330_020_07176_y crossref_primary_10_1111_jfpe_13976 crossref_primary_10_3389_fphys_2021_755468 crossref_primary_10_1016_j_mehy_2024_111405 crossref_primary_10_1016_j_mri_2018_11_008 crossref_primary_10_1038_s41598_021_92155_6 crossref_primary_10_1038_s41598_024_69464_7 crossref_primary_10_3390_ma13163614 crossref_primary_10_1016_j_acra_2015_04_004 crossref_primary_10_3389_fonc_2019_00242 crossref_primary_10_3348_kjr_2019_0969 crossref_primary_10_1038_s41598_023_31205_7 crossref_primary_10_3390_diagnostics13030442 crossref_primary_10_1007_s11282_021_00517_7 crossref_primary_10_1016_j_jfca_2024_106063 crossref_primary_10_3390_foods12112123 crossref_primary_10_1186_s12931_024_02936_6 crossref_primary_10_1016_j_tranon_2017_04_006 crossref_primary_10_5114_pjr_2022_119473 crossref_primary_10_1016_j_fertnstert_2016_08_014 crossref_primary_10_1016_j_placenta_2022_06_002 crossref_primary_10_3390_agriculture13020498 crossref_primary_10_3390_app13010206 crossref_primary_10_1186_s40644_022_00506_x crossref_primary_10_1017_S1431927621000532 crossref_primary_10_1016_j_fbp_2023_07_001 crossref_primary_10_1016_j_neurad_2019_05_013 crossref_primary_10_1007_s00217_021_03869_w crossref_primary_10_1016_j_ecolind_2017_05_001 crossref_primary_10_2478_aucft_2025_0003 crossref_primary_10_1088_1742_6596_1096_1_012095 crossref_primary_10_2478_aucft_2025_0007 crossref_primary_10_3390_medicina56100487 crossref_primary_10_1007_s00217_022_04057_0 crossref_primary_10_2460_ajvr_78_10_1156 crossref_primary_10_1111_cpf_12107 crossref_primary_10_1177_11782234241305886 crossref_primary_10_1016_j_acra_2024_07_005 crossref_primary_10_1097_MD_0000000000004034 crossref_primary_10_1007_s10570_025_06644_2 crossref_primary_10_1016_j_cmpb_2014_01_018 crossref_primary_10_3233_XST_200675 crossref_primary_10_1002_widm_1437 crossref_primary_10_1186_s13104_016_2300_3 crossref_primary_10_3390_sym15020287 crossref_primary_10_1210_clinem_dgab342 crossref_primary_10_3233_XST_211116 crossref_primary_10_3390_agriculture13071310 crossref_primary_10_1210_clinem_dgad082 crossref_primary_10_3390_agriculture13030562 crossref_primary_10_3390_foods13233784 crossref_primary_10_1007_s11548_022_02560_z crossref_primary_10_1016_j_tranon_2017_09_003 crossref_primary_10_3389_fcvm_2022_797283 crossref_primary_10_3390_diagnostics14040438 crossref_primary_10_1134_S1054661821030135 crossref_primary_10_1093_micmic_ozad042 crossref_primary_10_1016_j_theriogenology_2014_10_009 crossref_primary_10_1002_nbm_3781 crossref_primary_10_1016_j_eswa_2023_120917 crossref_primary_10_1097_MD_0000000000013957 crossref_primary_10_3390_brainsci10090638 crossref_primary_10_1016_j_mri_2025_110356 crossref_primary_10_1134_S1054661818040144 crossref_primary_10_1016_j_jfca_2025_107763 crossref_primary_10_1093_jbmrpl_ziaf126 crossref_primary_10_2478_aucft_2024_0012 crossref_primary_10_4251_wjgo_v17_i1_96439 crossref_primary_10_3348_kjr_2020_0121 crossref_primary_10_1155_2021_5572470 crossref_primary_10_1158_0008_5472_CAN_20_0332 crossref_primary_10_3390_ma13173854 crossref_primary_10_1088_1742_6596_1368_5_052006 crossref_primary_10_3390_diagnostics11050812 crossref_primary_10_1007_s00330_018_5632_7 crossref_primary_10_3390_jcm10091921 crossref_primary_10_3390_fractalfract7030272 crossref_primary_10_3390_agriculture14010054 crossref_primary_10_1016_j_proeng_2017_09_599 crossref_primary_10_1002_cnr2_2132 crossref_primary_10_1002_nbm_3099 crossref_primary_10_1016_j_renene_2024_121320 crossref_primary_10_3390_cancers16081591 crossref_primary_10_1093_jbmr_zjae207 crossref_primary_10_1007_s11042_024_18775_y crossref_primary_10_1002_JPER_19_0477 crossref_primary_10_1111_jon_12185 crossref_primary_10_1177_00033197221111862 crossref_primary_10_1007_s00432_025_06253_3 crossref_primary_10_1007_s11282_023_00725_3 crossref_primary_10_3389_fonc_2023_1048311 crossref_primary_10_1371_journal_pone_0117835 crossref_primary_10_3390_agriculture13010074 |
| Cites_doi | 10.1109/TITB.2008.2007110 10.1016/j.cmpb.2011.06.004 10.1109/ISBI.2010.5490316 10.1002/jmri.22268 10.1016/j.cmpb.2008.08.005 10.1109/ISITC.2007.13 10.1159/000093967 10.1590/S0100-879X2009005000034 10.1145/331499.331504 10.1002/nbm.1803 10.1016/j.nima.2010.12.086 10.1016/j.acra.2009.08.012 10.1016/j.cmpb.2011.03.005 10.1117/12.431074 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. |
| Copyright_xml | – notice: 2012 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
| DOI | 10.1016/j.nima.2012.09.006 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1872-9576 |
| EndPage | 140 |
| ExternalDocumentID | 10_1016_j_nima_2012_09_006 S0168900212010212 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SHN SPC SPCBC SPD SSQ T5K TN5 ~02 ~G- 29N 3O- 53G 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACLOT ACNNM ACRPL ADMUD ADNMO ADVLN AEIPS AFJKZ AGHFR AGQPQ AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HME HVGLF HX~ HZ~ H~9 R2- SEW SSZ VOH WUQ ~HD 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c399t-7ced83e6690f948abc6d2285f89c18396c79d81e6c03c9ddfb4a3c7f9ad3d6653 |
| ISICitedReferencesCount | 206 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000314682300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-9002 |
| IngestDate | Sat Sep 27 19:56:12 EDT 2025 Sat Nov 29 07:24:57 EST 2025 Tue Nov 18 21:02:06 EST 2025 Fri Feb 23 02:36:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data classification Texture analysis Image analysis and processing software Magnetic resonance imaging |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c399t-7ced83e6690f948abc6d2285f89c18396c79d81e6c03c9ddfb4a3c7f9ad3d6653 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1513462790 |
| PQPubID | 23500 |
| PageCount | 4 |
| ParticipantIDs | proquest_miscellaneous_1513462790 crossref_primary_10_1016_j_nima_2012_09_006 crossref_citationtrail_10_1016_j_nima_2012_09_006 elsevier_sciencedirect_doi_10_1016_j_nima_2012_09_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-02-21 |
| PublicationDateYYYYMMDD | 2013-02-21 |
| PublicationDate_xml | – month: 02 year: 2013 text: 2013-02-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationTitle | Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Gang, Lixu, Lijun, Jianrong (bib17) 2009; 13 Szymanski, Jamison, DeGracia (bib6) 2012; 105 Holli, Lääperi, Harrison, Luukkaala, Toivonen, Ryymin, Dastidar, Soimakallio, Eskola (bib3) 2010; 17 Oliveira, Fernandes, Avelar, Santos, Castellano, Li (bib22) 2009; 42 P. Bourgeat, S. Ourselin P. Stanwell, S. Ramadan, Proceedings of the IEEE Symposium on Biomedical Imaging: From Nano to Macro, 2006, pp. 742–745. Hecht-Nielsen (bib9) 1989 Santos, Ramiro, Desco, Malpica, Tejedor, Torres, Ledesma-Carbayo, Castilla, García-Barreno (bib21) 2001; 4322 Fukunaga (bib8) 1991 Materka, Strzelecki, Lerski, Schad (bib11) 2000; vol. 40 M. Strzelecki, J. de Certaines, S. Ko, Segmentation of 3D MR liver images using synchronised oscillators network, in: Proceedings of ISITC, Korea, 2007,pp. 259–263. Strzelecki, Materka (bib13) 2006 De Nunzio, Pastore, Donativi, Castellano, Falini (bib5) 2011; 648 Mayerhoefer, Schima, Trattnig, Pinker, Berger-Kulemann, Ba-Ssalamah (bib18) 2010; 32 Mayerhoefer, Stelzeneder, Bachbauer, Welsch, Mamisch, Szczypinski, Weber, Peters, Fruehwald-Pallamar, Puchner, Trattnig (bib19) 2012; 25 Strzelecki, Materka, Drozdz, Krzeminska-Pakula, Kasprzak (bib12) 2006; 30 Jain, Murty, Flynn (bib10) 1999; 31 T. Williams, G. Vincent, M. Bowes, T. Cootes, S. Balamoody, C. Hutchinson, J. Waterton, C. Taylor, Automatic segmentation of bones and inter-image anatomical correspondence by volumetric statistical modelling of knee MRI, in: Proceedings of the IEEE Symposium on Biomedical Imaging: From Nano to Macro, 2010, pp. 432–435. Szczypiński, Strzelecki, Materka, Klepaczko (bib1) 2009; 94 Duda, Hart, Stork (bib7) 2001 Blouin, Moreau, Baslé, Shappard (bib20) 2006; 182 Hajek, Dezortova, Materka, Lerski (bib2) 2006 Kociński, Klepaczko, Materka, Chekenya, Lundervold (bib4) 2012; 107 Gang (10.1016/j.nima.2012.09.006_bib17) 2009; 13 Strzelecki (10.1016/j.nima.2012.09.006_bib12) 2006; 30 De Nunzio (10.1016/j.nima.2012.09.006_bib5) 2011; 648 Strzelecki (10.1016/j.nima.2012.09.006_bib13) 2006 Blouin (10.1016/j.nima.2012.09.006_bib20) 2006; 182 Szczypiński (10.1016/j.nima.2012.09.006_bib1) 2009; 94 Jain (10.1016/j.nima.2012.09.006_bib10) 1999; 31 Fukunaga (10.1016/j.nima.2012.09.006_bib8) 1991 Mayerhoefer (10.1016/j.nima.2012.09.006_bib19) 2012; 25 10.1016/j.nima.2012.09.006_bib16 10.1016/j.nima.2012.09.006_bib14 10.1016/j.nima.2012.09.006_bib15 Santos (10.1016/j.nima.2012.09.006_bib21) 2001; 4322 Kociński (10.1016/j.nima.2012.09.006_bib4) 2012; 107 Szymanski (10.1016/j.nima.2012.09.006_bib6) 2012; 105 Oliveira (10.1016/j.nima.2012.09.006_bib22) 2009; 42 Mayerhoefer (10.1016/j.nima.2012.09.006_bib18) 2010; 32 Duda (10.1016/j.nima.2012.09.006_bib7) 2001 Hajek (10.1016/j.nima.2012.09.006_bib2) 2006 Hecht-Nielsen (10.1016/j.nima.2012.09.006_bib9) 1989 Materka (10.1016/j.nima.2012.09.006_bib11) 2000; vol. 40 Holli (10.1016/j.nima.2012.09.006_bib3) 2010; 17 |
| References_xml | – volume: 94 start-page: 66 year: 2009 ident: bib1 publication-title: Computer Methods and Programs in Biomedicine – volume: 42 start-page: 1076 year: 2009 ident: bib22 publication-title: Brazilian Journal of Medical and Biological Research – volume: vol. 40 year: 2000 ident: bib11 publication-title: Texture Analysis in Machine Vision, Series in Machine Perception and Artificial Intelligence – year: 2006 ident: bib2 article-title: Texture Analysis for Magnetic Resonance Imaging – volume: 648 start-page: S100 year: 2011 ident: bib5 publication-title: Nuclear Instruments and Methods A – reference: M. Strzelecki, J. de Certaines, S. Ko, Segmentation of 3D MR liver images using synchronised oscillators network, in: Proceedings of ISITC, Korea, 2007,pp. 259–263. – volume: 105 start-page: 81 year: 2012 ident: bib6 publication-title: Computer Methods and Programs in Biomedicine – reference: T. Williams, G. Vincent, M. Bowes, T. Cootes, S. Balamoody, C. Hutchinson, J. Waterton, C. Taylor, Automatic segmentation of bones and inter-image anatomical correspondence by volumetric statistical modelling of knee MRI, in: Proceedings of the IEEE Symposium on Biomedical Imaging: From Nano to Macro, 2010, pp. 432–435. – volume: 31 start-page: 264 year: 1999 ident: bib10 publication-title: ACM Computing Surveys – volume: 13 start-page: 94 year: 2009 ident: bib17 publication-title: IEEE Transactions on Information Technology in Biomedicine – reference: P. Bourgeat, S. Ourselin P. Stanwell, S. Ramadan, Proceedings of the IEEE Symposium on Biomedical Imaging: From Nano to Macro, 2006, pp. 742–745. – volume: 107 start-page: 140 year: 2012 ident: bib4 publication-title: Computer Methods and Programs in Biomedicine – volume: 30 start-page: 95 year: 2006 ident: bib12 publication-title: Computer Methods and Programs in Biomedicine – volume: 25 start-page: 866 year: 2012 ident: bib19 publication-title: NMR in Biomedicine – year: 2001 ident: bib7 article-title: Pattern Classification – volume: 17 start-page: 135 year: 2010 ident: bib3 publication-title: Academic Radiology – year: 2006 ident: bib13 article-title: Proceedings of the International Conference ICCGV 2004 – volume: 182 start-page: 182 year: 2006 ident: bib20 publication-title: Cells Tissues Organs – year: 1991 ident: bib8 article-title: Introduction to Statistical Pattern Recognition – volume: 32 start-page: 352 year: 2010 ident: bib18 publication-title: Journal of Magnetic Resonance Imaging – volume: 4322 start-page: 1836 year: 2001 ident: bib21 article-title: Automatic detection of cellular necrosis in epithelial cell cultures publication-title: Proceedings of SPIE – year: 1989 ident: bib9 article-title: Neurocomputing – volume: 13 start-page: 94 year: 2009 ident: 10.1016/j.nima.2012.09.006_bib17 publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2008.2007110 – volume: 107 start-page: 140 year: 2012 ident: 10.1016/j.nima.2012.09.006_bib4 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2011.06.004 – ident: 10.1016/j.nima.2012.09.006_bib15 doi: 10.1109/ISBI.2010.5490316 – volume: 32 start-page: 352 year: 2010 ident: 10.1016/j.nima.2012.09.006_bib18 publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.22268 – volume: 94 start-page: 66 year: 2009 ident: 10.1016/j.nima.2012.09.006_bib1 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2008.08.005 – ident: 10.1016/j.nima.2012.09.006_bib16 doi: 10.1109/ISITC.2007.13 – volume: 30 start-page: 95 year: 2006 ident: 10.1016/j.nima.2012.09.006_bib12 publication-title: Computer Methods and Programs in Biomedicine – volume: 182 start-page: 182 year: 2006 ident: 10.1016/j.nima.2012.09.006_bib20 publication-title: Cells Tissues Organs doi: 10.1159/000093967 – volume: 42 start-page: 1076 year: 2009 ident: 10.1016/j.nima.2012.09.006_bib22 publication-title: Brazilian Journal of Medical and Biological Research doi: 10.1590/S0100-879X2009005000034 – volume: 31 start-page: 264 year: 1999 ident: 10.1016/j.nima.2012.09.006_bib10 publication-title: ACM Computing Surveys doi: 10.1145/331499.331504 – volume: 25 start-page: 866 year: 2012 ident: 10.1016/j.nima.2012.09.006_bib19 publication-title: NMR in Biomedicine doi: 10.1002/nbm.1803 – year: 1991 ident: 10.1016/j.nima.2012.09.006_bib8 – year: 2006 ident: 10.1016/j.nima.2012.09.006_bib2 – volume: vol. 40 year: 2000 ident: 10.1016/j.nima.2012.09.006_bib11 – ident: 10.1016/j.nima.2012.09.006_bib14 – year: 2006 ident: 10.1016/j.nima.2012.09.006_bib13 – volume: 648 start-page: S100 year: 2011 ident: 10.1016/j.nima.2012.09.006_bib5 publication-title: Nuclear Instruments and Methods A doi: 10.1016/j.nima.2010.12.086 – year: 2001 ident: 10.1016/j.nima.2012.09.006_bib7 – volume: 17 start-page: 135 year: 2010 ident: 10.1016/j.nima.2012.09.006_bib3 publication-title: Academic Radiology doi: 10.1016/j.acra.2009.08.012 – year: 1989 ident: 10.1016/j.nima.2012.09.006_bib9 – volume: 105 start-page: 81 year: 2012 ident: 10.1016/j.nima.2012.09.006_bib6 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2011.03.005 – volume: 4322 start-page: 1836 year: 2001 ident: 10.1016/j.nima.2012.09.006_bib21 article-title: Automatic detection of cellular necrosis in epithelial cell cultures publication-title: Proceedings of SPIE doi: 10.1117/12.431074 |
| SSID | ssj0000978 |
| Score | 2.5006537 |
| Snippet | Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 137 |
| SubjectTerms | Classification Data classification Image analysis and processing software Magnetic resonance imaging Medical imaging Positron emission Segmentation Surface layer Texture Texture analysis Three dimensional Tomography |
| Title | A software tool for automatic classification and segmentation of 2D/3D medical images |
| URI | https://dx.doi.org/10.1016/j.nima.2012.09.006 https://www.proquest.com/docview/1513462790 |
| Volume | 702 |
| WOSCitedRecordID | wos000314682300040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-9576 dateEnd: 20181111 omitProxy: false ssIdentifier: ssj0000978 issn: 0168-9002 databaseCode: AIEXJ dateStart: 19950115 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF_OnoIv4ieeX6zg2xHNd7KPxZ6oYCn0DvoW0v2Q9nppbdPz7F_vzM4mrT08VPAllJBsws6vM7_szvyGsTfGmECVifaQH3txFqUelmd648hkmY7GsTG-bTaR9fv5aCQGB7c6TS3M5SyrqvzqSiz-q6nhHBgbS2f_wtztoHACfoPR4Qhmh-MfGb57vALX-h0zumoU2LRpkut6TtqsEtkypgeR4e2yuf564SqQLHcMe_DwqEfb7qjJcQE-Z7XLYvsoglzaRPYaxRcwlQYhRO2oKTPd2h_3JBpR5aGmruRd646khHhnt_gtkGzBJyon1K5nm9K1pk5AVk3WgQjYsf62nix203WG9XKDzXyo_7YtA2izRoYbufmxbc49mMzrNhn5Cwy3PC-brM6NnrbBZwYxWm7OqQJoCUF5d20E-1SEXrhdG7letENrqCn4eN-nIKDJ7-eAT5FQK5omMGTuEnLtAYnTOJYQkMjUtQBEayHTt9XEqlrhSjMKou6pfVv-MMQXEVZj3zZYByJxGGaJgPBy2P10Mvq8ZRSCGEXz4q74i_IU95_0O4K1RzUsfzq9z-65Dx_eJcA-YAe6esjuDAgmj9hZlzew5QhbDrDlLWz5r7DlgAm-C1s-NzzsvYt63IGWE2gfs7MPJ6fvP3qu5YcngSnXXia1yiOdpsI3Is7LsUxVGOaJyYVELp_KTKg80Kn0IymUMuO4jGRmRKkilaZJ9IR1qnmlnzKugszkaRlLJVDjMRlriPu-zlUAg4S5PGJBM0-FdHr42JZlVjSJj9MC57bAuS18UcDcHrHj9p4FqcHceHXSTH_h-Czx1ALQcuN9rxtbFeDscQevrPR8vSqAnkdxGmbCf_aPYz9nd7d_lBesA15Cv2S35WU9WS1fOeD9BMPm1GE |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+software+tool+for+automatic+classification+and+segmentation+of+2D%2F3D+medical+images&rft.jtitle=Nuclear+instruments+%26+methods+in+physics+research.+Section+A%2C+Accelerators%2C+spectrometers%2C+detectors+and+associated+equipment&rft.au=Strzelecki%2C+Michal&rft.au=Szczypinski%2C+Piotr&rft.au=Materka%2C+Andrzej&rft.au=Klepaczko%2C+Artur&rft.date=2013-02-21&rft.pub=Elsevier+B.V&rft.issn=0168-9002&rft.eissn=1872-9576&rft.volume=702&rft.spage=137&rft.epage=140&rft_id=info:doi/10.1016%2Fj.nima.2012.09.006&rft.externalDocID=S0168900212010212 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9002&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9002&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9002&client=summon |