DeepGait: Planning and Control of Quadrupedal Gaits Using Deep Reinforcement Learning

This letter addresses the problem of legged locomotion in non-flat terrain. As legged robots such as quadrupeds are to be deployed in terrains with geometries which are difficult to model and predict, the need arises to equip them with the capability to generalize well to unforeseen situations. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters Jg. 5; H. 2; S. 3699 - 3706
Hauptverfasser: Tsounis, Vassilios, Alge, Mitja, Lee, Joonho, Farshidian, Farbod, Hutter, Marco
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2377-3766, 2377-3766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This letter addresses the problem of legged locomotion in non-flat terrain. As legged robots such as quadrupeds are to be deployed in terrains with geometries which are difficult to model and predict, the need arises to equip them with the capability to generalize well to unforeseen situations. In this work, we propose a novel technique for training neural-network policies for terrain-aware locomotion, which combines state-of-the-art methods for model-based motion planning and reinforcement learning. Our approach is centered on formulating Markov decision processes using the evaluation of dynamic feasibility criteria in place of physical simulation. We thus employ policy-gradient methods to independently train policies which respectively plan and execute foothold and base motions in 3D environments using both proprioceptive and exteroceptive measurements. We apply our method within a challenging suite of simulated terrain scenarios which contain features such as narrow bridges, gaps and stepping-stones, and train policies which succeed in locomoting effectively in all cases.
AbstractList This letter addresses the problem of legged locomotion in non-flat terrain. As legged robots such as quadrupeds are to be deployed in terrains with geometries which are difficult to model and predict, the need arises to equip them with the capability to generalize well to unforeseen situations. In this work, we propose a novel technique for training neural-network policies for terrain-aware locomotion, which combines state-of-the-art methods for model-based motion planning and reinforcement learning. Our approach is centered on formulating Markov decision processes using the evaluation of dynamic feasibility criteria in place of physical simulation. We thus employ policy-gradient methods to independently train policies which respectively plan and execute foothold and base motions in 3D environments using both proprioceptive and exteroceptive measurements. We apply our method within a challenging suite of simulated terrain scenarios which contain features such as narrow bridges, gaps and stepping-stones, and train policies which succeed in locomoting effectively in all cases.
Author Alge, Mitja
Tsounis, Vassilios
Lee, Joonho
Hutter, Marco
Farshidian, Farbod
Author_xml – sequence: 1
  givenname: Vassilios
  orcidid: 0000-0003-3428-8455
  surname: Tsounis
  fullname: Tsounis, Vassilios
  email: tsounisv@ethz.ch
  organization: Robotic Systems Lab, ETH Zürich, Zürich, Switzerland
– sequence: 2
  givenname: Mitja
  surname: Alge
  fullname: Alge, Mitja
  email: algem@ethz.ch
  organization: Robotic Systems Lab, ETH Zürich, Zürich, Switzerland
– sequence: 3
  givenname: Joonho
  orcidid: 0000-0002-5072-7385
  surname: Lee
  fullname: Lee, Joonho
  email: jolee@ethz.ch
  organization: Robotic Systems Lab, ETH Zürich, Zürich, Switzerland
– sequence: 4
  givenname: Farbod
  orcidid: 0000-0001-8269-6272
  surname: Farshidian
  fullname: Farshidian, Farbod
  email: farshidian@mavt.ethz.ch
  organization: Robotic Systems Lab, ETH Zürich, Zürich, Switzerland
– sequence: 5
  givenname: Marco
  orcidid: 0000-0002-4285-4990
  surname: Hutter
  fullname: Hutter, Marco
  email: mahutter@ethz.ch
  organization: Robotic Systems Lab, ETH Zürich, Zürich, Switzerland
BookMark eNp9kMFLwzAUh4MoOOfugpeA582XpE0Tb2PqFArqcOeQtq-S0aU1bQ_-97ZsiHjw9B6P3_d78F2QU197JOSKwYIx0LfpZrngwGHBdaKlhBMy4SJJ5iKR8vTXfk5mbbsDABbzROh4Qrb3iM3auu6OvlbWe-c_qPUFXdW-C3VF65K-9bYIfYOFreiYbOm2HWMjSTfofFmHHPfoO5qiDWPFJTkrbdXi7DinZPv48L56mqcv6-fVMp3nQutuLmWsY2Aolc5FZqOkzFQsIeLcguW5UjKLZF4AyIzZ4R7Zoix4hiLPWIJoxZTcHHqbUH_22HZmV_fBDy8NF0pCLBSPhhQcUnmo2zZgaZrg9jZ8GQZm9GcGf2b0Z47-BkT-QXLX2c6NVqyr_gOvD6BDxJ8_GrhiSolv6px-CA
CODEN IRALC6
CitedBy_id crossref_primary_10_1002_rob_22575
crossref_primary_10_1177_02783649221102473
crossref_primary_10_1109_LRA_2022_3188108
crossref_primary_10_1109_TAI_2023_3316637
crossref_primary_10_3390_electronics13010116
crossref_primary_10_1109_TRO_2021_3106832
crossref_primary_10_3390_machines12120902
crossref_primary_10_1016_j_conengprac_2024_105879
crossref_primary_10_1177_02783649241312698
crossref_primary_10_1177_01423312231152936
crossref_primary_10_7746_jkros_2022_17_4_500
crossref_primary_10_1109_LRA_2021_3133610
crossref_primary_10_1109_TII_2023_3240758
crossref_primary_10_1038_s42256_022_00576_3
crossref_primary_10_1109_LRA_2022_3143567
crossref_primary_10_3390_biomimetics9100592
crossref_primary_10_1038_s41467_025_60982_0
crossref_primary_10_1016_j_robot_2023_104468
crossref_primary_10_3390_molecules28052232
crossref_primary_10_1109_ACCESS_2025_3590587
crossref_primary_10_3390_electronics14071431
crossref_primary_10_1007_s12043_023_02612_2
crossref_primary_10_1109_TRO_2022_3172469
crossref_primary_10_1088_1748_3190_adf385
crossref_primary_10_1109_LRA_2021_3062342
crossref_primary_10_1109_LRA_2021_3088797
crossref_primary_10_1126_scirobotics_abk2822
crossref_primary_10_1002_aisy_202300172
crossref_primary_10_1049_csy2_12020
crossref_primary_10_1007_s42235_022_00269_y
crossref_primary_10_1126_scirobotics_adh5401
crossref_primary_10_1061_JAEEEZ_ASENG_5198
crossref_primary_10_3390_app131911045
crossref_primary_10_3390_s21175907
crossref_primary_10_1109_TNNLS_2021_3112718
crossref_primary_10_1109_LRA_2025_3595037
crossref_primary_10_1109_TRO_2021_3084374
crossref_primary_10_1109_TASE_2024_3503277
crossref_primary_10_1109_ACCESS_2024_3425837
crossref_primary_10_3233_ICA_230724
crossref_primary_10_1007_s00034_021_01675_z
crossref_primary_10_1016_j_neunet_2021_09_017
crossref_primary_10_1109_LRA_2021_3066833
crossref_primary_10_1126_scirobotics_adi9641
crossref_primary_10_3389_frobt_2022_793512
crossref_primary_10_1016_j_robot_2023_104550
crossref_primary_10_1002_rob_22197
crossref_primary_10_1007_s11465_022_0742_y
crossref_primary_10_1109_TRO_2022_3222958
crossref_primary_10_1016_j_robot_2024_104862
crossref_primary_10_1038_s41598_022_19599_2
crossref_primary_10_1109_LRA_2022_3185387
crossref_primary_10_1126_scirobotics_ads6192
crossref_primary_10_3389_fnbot_2021_627157
crossref_primary_10_1088_1361_665X_ac5317
crossref_primary_10_1109_TRO_2023_3302239
crossref_primary_10_1016_j_ast_2022_107980
crossref_primary_10_3389_fevo_2022_954838
crossref_primary_10_1109_ACCESS_2024_3371579
crossref_primary_10_1080_01691864_2024_2442718
crossref_primary_10_1016_j_birob_2021_100029
crossref_primary_10_1109_LRA_2024_3519908
crossref_primary_10_3390_app15063356
crossref_primary_10_7746_jkros_2023_18_2_143
crossref_primary_10_1109_TCDS_2023_3345539
crossref_primary_10_1109_ACCESS_2023_3311141
crossref_primary_10_20965_jrm_2023_p0160
crossref_primary_10_3390_machines12020092
crossref_primary_10_3390_act12020075
crossref_primary_10_1016_j_eswa_2023_120136
crossref_primary_10_1063_5_0273201
crossref_primary_10_1177_16878132241293630
Cites_doi 10.1109/TRO.2020.2964787
10.1177/0278364910388677
10.1109/ICRA.2019.8794144
10.1007/978-3-319-60916-4_17
10.1007/s10514-015-9479-3
10.1109/IROS.2016.7758092
10.1109/LRA.2019.2899434
10.1002/rob.21610
10.1145/3072959.3073602
10.1109/LRA.2018.2798285
10.1109/TRO.2018.2819658
10.1109/Humanoids43949.2019.9035046
10.1109/LRA.2018.2792536
10.1109/ICRA.2018.8460731
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.2979660
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 3706
ExternalDocumentID 10_1109_LRA_2020_2979660
9028188
Genre orig-research
GrantInformation_xml – fundername: Swiss National Science Foundation
  grantid: 166232; 188596
– fundername: European Union's Horizon 2020 research and innovation program
  grantid: 780883
– fundername: National Centre of Competence in Research Robotics
  funderid: 10.13039/501100011021
– fundername: ANYmal Research
– fundername: Intel Labs
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c399t-6659501e689c3ba47fb8560422a0a2c886b46cd006b1a6044adfd2be3cb17eea3
IEDL.DBID RIE
ISICitedReferencesCount 145
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000524331300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Jun 29 15:39:01 EDT 2025
Tue Nov 18 21:26:41 EST 2025
Sat Nov 29 06:03:07 EST 2025
Wed Aug 27 02:30:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-6659501e689c3ba47fb8560422a0a2c886b46cd006b1a6044adfd2be3cb17eea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8269-6272
0000-0002-4285-4990
0000-0003-3428-8455
0000-0002-5072-7385
OpenAccessLink http://hdl.handle.net/20.500.11850/404175
PQID 2386053824
PQPubID 4437225
PageCount 8
ParticipantIDs crossref_primary_10_1109_LRA_2020_2979660
crossref_citationtrail_10_1109_LRA_2020_2979660
proquest_journals_2386053824
ieee_primary_9028188
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
schulman (ref17) 2015
ref14
ref11
ref10
ref2
ref1
sutton (ref15) 2018
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
schulman (ref16) 2017
schulman (ref19) 0
heess (ref12) 2017
References_xml – ident: ref14
  doi: 10.1109/TRO.2020.2964787
– ident: ref6
  doi: 10.1177/0278364910388677
– year: 2017
  ident: ref12
  article-title: Emergence of locomotion behaviours in rich environments
– year: 2015
  ident: ref17
  article-title: High-dimensional continuous control using generalized advantage estimation
– year: 2017
  ident: ref16
  article-title: Proximal policy optimization algorithms
– ident: ref11
  doi: 10.1109/ICRA.2019.8794144
– year: 2018
  ident: ref15
  publication-title: Introduction to Reinforcement Learning
– ident: ref7
  doi: 10.1007/978-3-319-60916-4_17
– ident: ref2
  doi: 10.1007/s10514-015-9479-3
– ident: ref1
  doi: 10.1109/IROS.2016.7758092
– ident: ref10
  doi: 10.1109/LRA.2019.2899434
– ident: ref5
  doi: 10.1002/rob.21610
– ident: ref13
  doi: 10.1145/3072959.3073602
– ident: ref3
  doi: 10.1109/LRA.2018.2798285
– start-page: 1889
  year: 0
  ident: ref19
  article-title: Trust region policy optimization
  publication-title: Proc Int Conf Mach Learn
– ident: ref8
  doi: 10.1109/TRO.2018.2819658
– ident: ref9
  doi: 10.1109/Humanoids43949.2019.9035046
– ident: ref18
  doi: 10.1109/LRA.2018.2792536
– ident: ref4
  doi: 10.1109/ICRA.2018.8460731
SSID ssj0001527395
Score 2.5685241
Snippet This letter addresses the problem of legged locomotion in non-flat terrain. As legged robots such as quadrupeds are to be deployed in terrains with geometries...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3699
SubjectTerms Computer simulation
Deep learning
deep learning in robotics and automation
Legged locomotion
Legged robots
Locomotion
Machine learning
Markov processes
motion and path planning
Motion planning
Optimization
Path planning
Physical simulation
Policies
Robot dynamics
Terrain
Title DeepGait: Planning and Control of Quadrupedal Gaits Using Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9028188
https://www.proquest.com/docview/2386053824
Volume 5
WOSCitedRecordID wos000524331300013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrSUHL4Lb7mYfyXortdWDFi0WeluyyawUpC19ePS3m2S3raAI3pZlvrDMJJuZyeQbgCsZYOYqETmeinWAkvLIEVGIjs8xNHxUfoTCNptg_T4fjeLnEtxs7sIgoi0-w6Z5tGf5aipXJlXWMkwjHudlKDPG8rta23yKYRKLw_VJpBu3HgdtHf9Rt0ljVnBQbnce20rlx__Xbiq9g_99ziHsF84jaefWPoISTo5h7xulYBWGd4izezFe3pJ1PyIiJop08pJ0Ms3Iy0qo-WqGSg9lJBfE1g0QgyQDtFSq0mYNScG--nYCw173tfPgFK0THKk9jqUTGZpA18OIx9JPRcCylGvfJqBUuIJKzqM0iKTSSy71hH4fCJUpmqIvU48hCv8UKpPpBM-ACO2hhDFVngYG1IRormIazcLUz7R8DVprtSay4BU37S3eExtfuHGiDZEYQySFIWpwvUHMck6NP2SrRvEbuULnNaivLZcUi26RaO9DB2c-p8H576gL2DVj54U3dags5yu8hB35sRwv5g0oP312G3ZWfQHt3cmO
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv6Y4nZoHXwTr2jRtU99kOifOoWMD30qaXGUg29iHf79J2k1BEXwr5a4td0lzv8vldwDnkmHmKhE6noo1QEl56IgwQMfnGBg-Kj9EYZtNRJ0Of32Nn0twuTwLg4i2-AyvzKXdy1cjOTepsrphGvE4X4HVgDHq5ae1vjIqhkssDhZ7kW5cb3dvNAKk7hWNo4KF8mvtsc1UfvyB7bLS3P7fB-3AVhE-kpvc37tQwuEebH4jFaxA_xZxfC8Gs2uy6EhExFCRRl6UTkYZeZkLNZmPUelHGckpsZUDxGiSLloyVWnzhqTgX33bh37zrtdoOUXzBEfqmGPmhIYo0PUw5LH0U8GiLOU6umGUCldQyXmYslAqPelST-j7TKhM0RR9mXoRovAPoDwcDfEQiNAxShBT5WlFRg1Ic1WktaMg9TMtX4X6wqyJLJjFTYOL98QiDDdOtCMS44ikcEQVLpYa45xV4w_ZijH8Uq6weRVqC88lxbSbJjr-0PDM55Qd_a51Buut3lM7aT90Ho9hw7wnL8OpQXk2meMJrMmP2WA6ObVj6xPN88uk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepGait%3A+Planning+and+Control+of+Quadrupedal+Gaits+Using+Deep+Reinforcement+Learning&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Tsounis%2C+Vassilios&rft.au=Alge%2C+Mitja&rft.au=Lee%2C+Joonho&rft.au=Farshidian%2C+Farbod&rft.date=2020-04-01&rft.pub=IEEE&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=3699&rft.epage=3706&rft_id=info:doi/10.1109%2FLRA.2020.2979660&rft.externalDocID=9028188
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon