Faster Convergence With Less Communication: Broadcast-Based Subgraph Sampling for Decentralized Learning Over Wireless Networks
Decentralized stochastic gradient descent (D-SGD) is a widely adopted optimization algorithm for decentralized training of machine learning models across networked agents. A crucial part of D-SGD is the consensus-based model averaging, which heavily relies on information exchange and fusion among th...
Uloženo v:
| Vydáno v: | IEEE open journal of the Communications Society Ročník 6; s. 1497 - 1511 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2644-125X, 2644-125X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!