A Survey on Progressive Visualization
Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex comput...
Uložené v:
| Vydané v: | IEEE transactions on visualization and computer graphics Ročník 30; číslo 9; s. 6447 - 6467 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.09.2024
Institute of Electrical and Electronics Engineers |
| Predmet: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges. |
|---|---|
| AbstractList | Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges.Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges. Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges. A continuously updated visual browser of the survey data is available at visualsurvey.net/pva. Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges. |
| Author | Kohlhammer, Jorn Angelini, Marco May, Thorsten Fekete, Jean-Daniel Ulmer, Alex |
| Author_xml | – sequence: 1 givenname: Alex orcidid: 0009-0008-3778-8184 surname: Ulmer fullname: Ulmer, Alex email: alex.ulmer@igd.fraunhofer.de organization: Fraunhofer IGD, Darmstadt, Germany – sequence: 2 givenname: Marco orcidid: 0000-0001-9051-6972 surname: Angelini fullname: Angelini, Marco email: angelini@dis.uniroma1.it organization: Link Campus University, Rome, Italy – sequence: 3 givenname: Jean-Daniel orcidid: 0000-0003-3770-8726 surname: Fekete fullname: Fekete, Jean-Daniel email: jean-daniel.fekete@inria.fr organization: CNRS, Inria Saclay, Université Paris-Saclay, Gif-sur-Yvette, France – sequence: 4 givenname: Jorn orcidid: 0000-0003-1706-8979 surname: Kohlhammer fullname: Kohlhammer, Jorn email: joern.kohlhammer@igd.fraunhofer.de organization: Fraunhofer IGD, Darmstadt, Germany – sequence: 5 givenname: Thorsten orcidid: 0000-0001-8027-2687 surname: May fullname: May, Thorsten email: thorsten.may@igd.fraunhofer.de organization: Fraunhofer IGD, Darmstadt, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38145517$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-04361344$$DView record in HAL |
| BookMark | eNp9kF1LwzAUhoNM3If-AEFkN4JedOYkadpcjqGbMFBw7jakaaqRrp1JO5i_3tZtIl54lUN43pdznj7qFGVhEDoHPALA4naxnExHBBM6opRxzuAI9UAwCHCIeaeZcRQFhBPeRX3v3zEGxmJxgro0BhaGEPXQ1Xj4XLuN2Q7LYvjkyldnvLcbM1xaX6vcfqrKlsUpOs5U7s3Z_h2gl_u7xWQWzB-nD5PxPNBUiCpgOsQqyQjmEYNIsEhkivIkzoQwhLIkxSKmWicqxjoUaWJ4yjPgmGgCVLGUDtDNrvdN5XLt7Eq5rSyVlbPxXLZ_mFEOlLENNOz1jl278qM2vpIr67XJc1WYsvaSCMybJYjgDXq5R-tkZdKf5oOGBoh2gHal985kUtvq-_LKKZtLwLIVLlvhshUu98KbJPxJHsr_y1zsMtYY84unEQUu6BdpiYhz |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1111_cgf_70115 crossref_primary_10_1016_j_cag_2025_104234 crossref_primary_10_1111_cgf_70124 crossref_primary_10_1111_cgf_70135 crossref_primary_10_3389_fpubh_2025_1627983 crossref_primary_10_1109_ACCESS_2025_3555163 |
| Cites_doi | 10.1007/978-0-85729-079-3 10.1109/INFVIS.2005.1532133 10.3390/informatics5030031 10.1109/TVCG.2008.11 10.1111/cgf.13728 10.1109/TVCG.2017.2744358 10.1145/3365109.3368793 10.1111/cgf.13205 10.1109/TVCG.2018.2869149 10.1109/2.781635 10.1109/TVCG.2016.2599042 10.1109/TVCG.2019.2934537 10.14778/3137628.3137637 10.1109/TVCG.2006.171 10.1561/0400000002 10.1109/BigData.2013.6691710 10.1109/TVCG.2015.2509990 10.1145/3025453.3025456 10.1145/1753326.1753557 10.1109/TVCG.2016.2607714 10.1109/TVCG.2009.108 10.1109/TVCG.2018.2865018 10.1201/9780429464195 10.1109/INFVIS.2003.1249014 10.1111/cgf.14317 10.1145/2556288.2557195 10.1177/1473871618806555 10.1007/978-3-030-01252-6_29 10.1109/TVCG.2023.3278084 10.1109/PacificVis48177.2020.7614 10.1007/s12650-022-00879-y 10.1109/VL.1996.545307 10.1145/3531229 10.1109/tvcg.2016.2570755 10.1109/PacificVis.2012.6183570 10.1111/cgf.12893 10.1109/TVCG.2014.2346481 10.1109/TVCG.2022.3165348 10.1007/978-3-030-41590-7_9 10.1007/s12650-022-00883-2 10.3390/informatics6010014 10.1609/aaai.v31i1.10628 10.1016/j.jvlc.2017.05.004 10.1007/978-3-319-60492-3_47 10.1002/9781118445112.stat08296 10.1109/TVCG.2009.84 10.1109/TVCG.2014.2346319 10.1109/MCG.2017.6 10.1145/3589290 10.1111/j.1467-8659.2011.01898.x 10.1109/TVCG.2021.3051013 10.1137/16M1080173 10.1109/TVCG.2019.2934256 10.1109/vizsec48167.2019.9161633 10.1111/cgf.14287 10.1109/TVCG.2014.2346452 10.4230/DagRep.8.10.1 10.1109/TVCG.2014.2346574 10.1109/PacificVis48177.2020.9280 10.1109/PacificVis48177.2020.1014 10.1016/S0167-739X(96)00029-5 10.1007/978-3-642-10520-3_7 10.5220/0006269703350341 10.1109/PACIFICVIS.2017.8031587 10.1109/tvcg.2016.2598470 10.1109/MCG.2012.48 10.1145/122718.122748 10.1111/cgf.12791 10.1016/S0097-8493(02)00052-3 10.1111/cgf.12935 10.1145/253260.253291 10.1109/2945.981847 10.1007/978-1-4419-0236-8 10.1111/cgf.12089 10.1109/TVCG.2021.3060500 10.1007/s12650-019-00555-8 10.1109/INFVIS.2004.60 10.1109/iccv.2019.00320 10.1111/cgf.12878 10.1109/TVCG.2011.279 10.4028/www.scientific.net/amm.40-41.948 10.1145/2207676.2208294 10.1109/VISUAL.1993.398860 10.1109/VISUAL.1994.346305 10.1109/TVCG.2021.3114880 10.1109/TVCG.2019.2962404 10.1109/TVCG.2006.145 10.1109/tvcg.2022.3209426 10.1109/INFCOM.1999.752147 10.1111/j.1467-8659.2011.01914.x 10.1109/iv.2013.57 10.1109/TVCG.2015.2462356 10.1201/b17511 10.1007/978-1-4615-1733-7_15 |
| ContentType | Journal Article |
| Copyright | licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION NPM 7X8 1XC VOOES |
| DOI | 10.1109/TVCG.2023.3346641 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0506 |
| EndPage | 6467 |
| ExternalDocumentID | oai:HAL:hal-04361344v1 38145517 10_1109_TVCG_2023_3346641 10373169 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Discount quality for responsible data science: Human-in-the-Loop for Quality Data – fundername: MUR PRIN 2022 grantid: 202248FWFS |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION NPM 7X8 1XC VOOES |
| ID | FETCH-LOGICAL-c399t-4c50abf20674179479fa36b8f99e234bd0983ccba80c59dbe6d6f1602c213a4d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283711000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Sun Nov 23 09:00:38 EST 2025 Sun Sep 28 11:00:18 EDT 2025 Mon Jul 21 05:47:35 EDT 2025 Sat Nov 29 03:31:47 EST 2025 Tue Nov 18 22:08:49 EST 2025 Wed Aug 27 02:34:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | State-of-the-Art Report Progressive Visual Analytics Survey Progressive Visualization Taxonomy |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c399t-4c50abf20674179479fa36b8f99e234bd0983ccba80c59dbe6d6f1602c213a4d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8027-2687 0000-0003-1706-8979 0000-0003-3770-8726 0009-0008-3778-8184 0000-0001-9051-6972 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10373169 |
| PMID | 38145517 |
| PQID | 2906179296 |
| PQPubID | 23479 |
| PageCount | 21 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04361344v1 proquest_miscellaneous_2906179296 pubmed_primary_38145517 ieee_primary_10373169 crossref_citationtrail_10_1109_TVCG_2023_3346641 crossref_primary_10_1109_TVCG_2023_3346641 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2024 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 Nielsen (ref67) 2009 ref45 (ref91) 2016 ref48 ref47 ref42 ref41 ref44 ref43 Fekete (ref21) 2016 ref49 Wald (ref101) 2004 ref8 ref7 ref9 ref4 ref6 ref5 ref100 ref40 Luebke (ref60) 2003 ref35 ref34 ref37 ref36 ref31 ref33 ref32 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref28 ref29 Hogräfer (ref39) ref13 ref12 ref15 ref14 ref97 Micallef (ref63) ref96 ref99 ref10 ref98 ref17 ref16 ref19 ref18 Ko (ref50) Angelini (ref2) ref93 ref92 ref95 ref94 May (ref62) ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 Borodin (ref11) 1998 Giachelle (ref27) ref83 Raveneau (ref78) ref80 ref79 ref108 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref1 ref71 ref70 ref73 ref72 ref110 ref68 ref69 ref64 Griethe (ref30) ref66 ref65 Kamarianakis (ref46) 2022 Angelini (ref3) ref61 |
| References_xml | – ident: ref1 doi: 10.1007/978-0-85729-079-3 – ident: ref36 doi: 10.1109/INFVIS.2005.1532133 – ident: ref5 doi: 10.3390/informatics5030031 – ident: ref26 doi: 10.1109/TVCG.2008.11 – ident: ref68 doi: 10.1111/cgf.13728 – ident: ref73 doi: 10.1109/TVCG.2017.2744358 – ident: ref6 doi: 10.1145/3365109.3368793 – ident: ref7 doi: 10.1111/cgf.13205 – ident: ref45 doi: 10.1109/TVCG.2018.2869149 – ident: ref34 doi: 10.1109/2.781635 – ident: ref24 doi: 10.1109/TVCG.2016.2599042 – year: 2016 ident: ref91 article-title: Tensorflow Playground – ident: ref55 doi: 10.1109/TVCG.2019.2934537 – ident: ref77 doi: 10.14778/3137628.3137637 – ident: ref13 doi: 10.1109/TVCG.2006.171 – ident: ref66 doi: 10.1561/0400000002 – ident: ref41 doi: 10.1109/BigData.2013.6691710 – ident: ref57 doi: 10.1109/TVCG.2015.2509990 – ident: ref64 doi: 10.1145/3025453.3025456 – ident: ref31 doi: 10.1145/1753326.1753557 – ident: ref108 doi: 10.1109/TVCG.2016.2607714 – ident: ref95 doi: 10.1109/TVCG.2009.108 – ident: ref56 doi: 10.1109/TVCG.2018.2865018 – ident: ref51 doi: 10.1201/9780429464195 – ident: ref105 doi: 10.1109/INFVIS.2003.1249014 – ident: ref86 doi: 10.1111/cgf.14317 – ident: ref29 doi: 10.1145/2556288.2557195 – ident: ref15 doi: 10.1177/1473871618806555 – ident: ref106 doi: 10.1007/978-3-030-01252-6_29 – ident: ref38 doi: 10.1109/TVCG.2023.3278084 – ident: ref87 doi: 10.1109/PacificVis48177.2020.7614 – ident: ref90 doi: 10.1007/s12650-022-00879-y – year: 2022 ident: ref46 article-title: Progressive tearing and cutting of soft-bodies in high-performance virtual reality – ident: ref85 doi: 10.1109/VL.1996.545307 – ident: ref37 doi: 10.1145/3531229 – volume-title: Online Computation and Competitive Analysis year: 1998 ident: ref11 – ident: ref74 doi: 10.1109/tvcg.2016.2570755 – ident: ref80 doi: 10.1109/PacificVis.2012.6183570 – ident: ref40 doi: 10.1111/cgf.12893 – ident: ref81 doi: 10.1109/TVCG.2014.2346481 – ident: ref84 doi: 10.1109/TVCG.2022.3165348 – year: 2009 ident: ref67 article-title: Powers of 10: Time scales in user experience – ident: ref97 doi: 10.1007/978-3-030-41590-7_9 – ident: ref109 doi: 10.1007/s12650-022-00883-2 – start-page: 143 volume-title: Proc. Simul. Visualisierung ident: ref30 article-title: The visualization of uncertain data: Methods and problems – year: 2016 ident: ref21 article-title: Progressive analytics: A computation paradigm for exploratory data analysis – volume-title: Level of Detail for 3D Graph. year: 2003 ident: ref60 – ident: ref76 doi: 10.3390/informatics6010014 – ident: ref49 doi: 10.1609/aaai.v31i1.10628 – volume-title: Sequential Analysis year: 2004 ident: ref101 – ident: ref110 doi: 10.1016/j.jvlc.2017.05.004 – ident: ref83 doi: 10.1007/978-3-319-60492-3_47 – ident: ref69 doi: 10.1002/9781118445112.stat08296 – ident: ref19 doi: 10.1109/TVCG.2009.84 – ident: ref25 doi: 10.1109/TVCG.2014.2346319 – start-page: 133 volume-title: Proc. Eurographics Conf. Vis. ident: ref50 article-title: Progressive uniform manifold approximation and projection – ident: ref52 doi: 10.1109/MCG.2017.6 – ident: ref103 doi: 10.1145/3589290 – ident: ref100 doi: 10.1111/j.1467-8659.2011.01898.x – ident: ref75 doi: 10.1109/TVCG.2021.3051013 – ident: ref12 doi: 10.1137/16M1080173 – ident: ref98 doi: 10.1109/TVCG.2019.2934256 – ident: ref93 doi: 10.1109/vizsec48167.2019.9161633 – ident: ref94 doi: 10.1111/cgf.14287 – ident: ref59 doi: 10.1109/TVCG.2014.2346452 – ident: ref20 doi: 10.4230/DagRep.8.10.1 – start-page: 49 volume-title: Proc. Int. EuroVis Workshop Vis. Analytics ident: ref39 article-title: A pipeline for tailored sampling for progressive visual analytics – ident: ref89 doi: 10.1109/TVCG.2014.2346574 – ident: ref48 doi: 10.1109/PacificVis48177.2020.9280 – ident: ref42 doi: 10.1109/PacificVis48177.2020.1014 – ident: ref96 doi: 10.1016/S0167-739X(96)00029-5 – start-page: 25 volume-title: Proc. 10th Int. EuroVis Workshop Vis. Analytics ident: ref2 article-title: On quality indicators for progressive visual analytics – ident: ref79 doi: 10.1007/978-3-642-10520-3_7 – volume-title: Proc. Vis. Data Sci. ident: ref78 article-title: Progressive sequential pattern mining: Steerable visual exploration of patterns with PPMT – ident: ref4 doi: 10.5220/0006269703350341 – ident: ref43 doi: 10.1109/PACIFICVIS.2017.8031587 – ident: ref92 doi: 10.1109/tvcg.2016.2598470 – ident: ref22 doi: 10.1109/MCG.2012.48 – ident: ref54 doi: 10.1145/122718.122748 – ident: ref8 doi: 10.1111/cgf.12791 – ident: ref58 doi: 10.1016/S0097-8493(02)00052-3 – ident: ref9 doi: 10.1111/cgf.12935 – ident: ref35 doi: 10.1145/253260.253291 – ident: ref47 doi: 10.1109/2945.981847 – ident: ref18 doi: 10.1007/978-1-4419-0236-8 – start-page: 89 volume-title: Proc. Simul. Visualisierung ident: ref62 article-title: Fast scalar- & vectorfield visualization using a new progressive grid class – ident: ref16 doi: 10.1111/cgf.12089 – ident: ref99 doi: 10.1109/TVCG.2021.3060500 – ident: ref10 doi: 10.1007/s12650-019-00555-8 – ident: ref104 doi: 10.1109/INFVIS.2004.60 – ident: ref107 doi: 10.1109/iccv.2019.00320 – ident: ref72 doi: 10.1111/cgf.12878 – volume-title: Proc. Int. EuroVis Workshop Vis. Analytics ident: ref3 article-title: Modeling incremental visualizations – ident: ref53 doi: 10.1109/TVCG.2011.279 – ident: ref102 doi: 10.4028/www.scientific.net/amm.40-41.948 – ident: ref23 doi: 10.1145/2207676.2208294 – start-page: 19 volume-title: Proc. Eurographics Conf. Vis. ident: ref63 article-title: The human user in progressive visual analytics – ident: ref88 doi: 10.1109/VISUAL.1993.398860 – ident: ref70 doi: 10.1109/VISUAL.1994.346305 – ident: ref14 doi: 10.1109/TVCG.2021.3114880 – ident: ref44 doi: 10.1109/TVCG.2019.2962404 – ident: ref17 doi: 10.1109/TVCG.2006.145 – ident: ref71 doi: 10.1109/tvcg.2022.3209426 – ident: ref28 doi: 10.1109/INFCOM.1999.752147 – ident: ref33 doi: 10.1111/j.1467-8659.2011.01914.x – start-page: 2 volume-title: Proc. Italian Inf. Retrieval Workshop ident: ref27 article-title: A progressive visual analytics tool for incremental experimental evaluation – ident: ref32 doi: 10.1109/iv.2013.57 – ident: ref82 doi: 10.1109/TVCG.2015.2462356 – ident: ref65 doi: 10.1201/b17511 – ident: ref61 doi: 10.1007/978-1-4615-1733-7_15 |
| SSID | ssj0014489 |
| Score | 2.510512 |
| Snippet | Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization... |
| SourceID | hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6447 |
| SubjectTerms | Computer Science Convergence Data visualization Human-Computer Interaction Progressive visual analytics progressive visualization Rendering (computer graphics) state-of-the-art report survey Surveys Task analysis Taxonomy Visual analytics |
| Title | A Survey on Progressive Visualization |
| URI | https://ieeexplore.ieee.org/document/10373169 https://www.ncbi.nlm.nih.gov/pubmed/38145517 https://www.proquest.com/docview/2906179296 https://inria.hal.science/hal-04361344 |
| Volume | 30 |
| WOSCitedRecordID | wos001283711000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSsRAEC0c8aAH92XciKIXITNJutPLcRCXg4jgwtxCryhIRmYD_96uJDPoQcFbCN1N86pCV6eq3gM4o7nVQqUszjynMTLMxdp5EmstcmFdZnJlK7EJfn8v-n350DSrV70wzrmq-Mx18LHK5duBmeCvsi72tJGUyRa0OGd1s9Y8ZRDuGbIuMORxFsL0JoWZJrL79HJ500Gd8A4hSKeO8jDhpKIhWuA_zqPWK1ZDVjIrv0ec1clzvfbPPa_DahNiRr3aJzZgwZWbsPKNeHALznvR42Q4dZ_RoIwesEQLq2GnLnp5G2GXZd2buQ3P11dPl7dxI5gQmxBnjGNq8kRpj4zsKCxGufSKMC28lC4jVNtECmKMViIxubTaMct8ypLMZClR1JIdWCwHpduDSBvBbc4NZ1LQzKdSp8pzLzRhXBGh2pDMYCtMwyaOohbvRXWrSGSBoBcIetGA3oaL-ZSPmkrjr8GnwRbzcUiCfdu7K_AdkuanhNJpGLSNgH9brca6DScz2xXha8EUiCrdYDIqkNw-IJNJ1obd2qjz2TOP2P9l1QNYDjukdYHZISyOhxN3BEtmOn4bDY-DS_bFceWSX0MA144 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC6iCSQeYh5GNz4ykeQizDoz3dOP4yLqhmwWwY14a_pJhDAr-wL_vV0zs4seFLwNQ3XTfN1DVU9VfR_AD1o6I3TO0iJwmiLDXGp8IKkxohTOF7bUrhab4MOhuL6WF22zet0L472vi898Fx_rXL4b2zn-KjvGnjaSM7kGr1E6q23XWiUN4k1DNiWGPC1ioN4mMfNMHo-uTs67qBTeJQQJ1VEgJvoqGuMF_sgjrf3DeshaaOXpmLP2PWebL1z1B3jfBplJrzkVH-GVrz7BxgPqwc_ws5dczicLf5eMq-QCi7SwHnbhk6ubKfZZNt2ZW_D37HR00k9byYTUxkhjllJbZtoE5GRHaTHKZdCEGRGk9AWhxmVSEGuNFpktpTOeORZylhW2yImmjnyB9Wpc-R1IjBXcldxyJgUtQi5NrgMPwhDGNRG6A9kSNmVbPnGUtfiv6ntFJhWCrhB01YLegaPVkNuGTOM548O4Fys7pMHu9wYK3yFtfk4oXUSjLQT8wWwN1h34vtw7Fb8XTILoyo_nU4X09hGZQrIObDebuhq9PBFfn5j1G7ztj_4M1ODX8PcuvIurpU252R6szyZzvw9v7GJ2M50c1AfzHpcp2e8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Progressive+Visualization&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Ulmer%2C+Alex&rft.au=Angelini%2C+Marco&rft.au=Fekete%2C+Jean-Daniel&rft.au=Kohlhammer%2C+Jorn&rft.date=2024-09-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=30&rft.issue=9&rft.spage=6447&rft_id=info:doi/10.1109%2FTVCG.2023.3346641&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |