A Survey on Progressive Visualization

Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex comput...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on visualization and computer graphics Ročník 30; číslo 9; s. 6447 - 6467
Hlavní autori: Ulmer, Alex, Angelini, Marco, Fekete, Jean-Daniel, Kohlhammer, Jorn, May, Thorsten
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.09.2024
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1077-2626, 1941-0506, 1941-0506
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges.
AbstractList Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges.Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges.
Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges. A continuously updated visual browser of the survey data is available at visualsurvey.net/pva.
Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization (PV) and visual analytics (PVA) alleviate this problem by allowing immediate feedback and interaction with large datasets and complex computations, avoiding waiting for complete results by using partial results improving with time. Yet, creating a progressive visualization requires more effort than a regular visualization but also opens up new possibilities, such as steering the computations towards more relevant parts of the data, thus saving computational resources. However, there is currently no comprehensive overview of the design space for progressive visualization systems. We surveyed the related work of PV and derived a new taxonomy for progressive visualizations by systematically categorizing all PV publications that included visualizations with progressive features. Progressive visualizations can be categorized by well-known visualization taxonomies, but we also found that progressive visualizations can be distinguished by the way they manage their data processing, data domain, and visual update. Furthermore, we identified key properties such as uncertainty, steering, visual stability, and real-time processing that are significantly different with progressive applications. We also collected evaluation methodologies reported by the publications and conclude with statistical findings, research gaps, and open challenges.
Author Kohlhammer, Jorn
Angelini, Marco
May, Thorsten
Fekete, Jean-Daniel
Ulmer, Alex
Author_xml – sequence: 1
  givenname: Alex
  orcidid: 0009-0008-3778-8184
  surname: Ulmer
  fullname: Ulmer, Alex
  email: alex.ulmer@igd.fraunhofer.de
  organization: Fraunhofer IGD, Darmstadt, Germany
– sequence: 2
  givenname: Marco
  orcidid: 0000-0001-9051-6972
  surname: Angelini
  fullname: Angelini, Marco
  email: angelini@dis.uniroma1.it
  organization: Link Campus University, Rome, Italy
– sequence: 3
  givenname: Jean-Daniel
  orcidid: 0000-0003-3770-8726
  surname: Fekete
  fullname: Fekete, Jean-Daniel
  email: jean-daniel.fekete@inria.fr
  organization: CNRS, Inria Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
– sequence: 4
  givenname: Jorn
  orcidid: 0000-0003-1706-8979
  surname: Kohlhammer
  fullname: Kohlhammer, Jorn
  email: joern.kohlhammer@igd.fraunhofer.de
  organization: Fraunhofer IGD, Darmstadt, Germany
– sequence: 5
  givenname: Thorsten
  orcidid: 0000-0001-8027-2687
  surname: May
  fullname: May, Thorsten
  email: thorsten.may@igd.fraunhofer.de
  organization: Fraunhofer IGD, Darmstadt, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38145517$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-04361344$$DView record in HAL
BookMark eNp9kF1LwzAUhoNM3If-AEFkN4JedOYkadpcjqGbMFBw7jakaaqRrp1JO5i_3tZtIl54lUN43pdznj7qFGVhEDoHPALA4naxnExHBBM6opRxzuAI9UAwCHCIeaeZcRQFhBPeRX3v3zEGxmJxgro0BhaGEPXQ1Xj4XLuN2Q7LYvjkyldnvLcbM1xaX6vcfqrKlsUpOs5U7s3Z_h2gl_u7xWQWzB-nD5PxPNBUiCpgOsQqyQjmEYNIsEhkivIkzoQwhLIkxSKmWicqxjoUaWJ4yjPgmGgCVLGUDtDNrvdN5XLt7Eq5rSyVlbPxXLZ_mFEOlLENNOz1jl278qM2vpIr67XJc1WYsvaSCMybJYjgDXq5R-tkZdKf5oOGBoh2gHal985kUtvq-_LKKZtLwLIVLlvhshUu98KbJPxJHsr_y1zsMtYY84unEQUu6BdpiYhz
CODEN ITVGEA
CitedBy_id crossref_primary_10_1111_cgf_70115
crossref_primary_10_1016_j_cag_2025_104234
crossref_primary_10_1111_cgf_70124
crossref_primary_10_1111_cgf_70135
crossref_primary_10_3389_fpubh_2025_1627983
crossref_primary_10_1109_ACCESS_2025_3555163
Cites_doi 10.1007/978-0-85729-079-3
10.1109/INFVIS.2005.1532133
10.3390/informatics5030031
10.1109/TVCG.2008.11
10.1111/cgf.13728
10.1109/TVCG.2017.2744358
10.1145/3365109.3368793
10.1111/cgf.13205
10.1109/TVCG.2018.2869149
10.1109/2.781635
10.1109/TVCG.2016.2599042
10.1109/TVCG.2019.2934537
10.14778/3137628.3137637
10.1109/TVCG.2006.171
10.1561/0400000002
10.1109/BigData.2013.6691710
10.1109/TVCG.2015.2509990
10.1145/3025453.3025456
10.1145/1753326.1753557
10.1109/TVCG.2016.2607714
10.1109/TVCG.2009.108
10.1109/TVCG.2018.2865018
10.1201/9780429464195
10.1109/INFVIS.2003.1249014
10.1111/cgf.14317
10.1145/2556288.2557195
10.1177/1473871618806555
10.1007/978-3-030-01252-6_29
10.1109/TVCG.2023.3278084
10.1109/PacificVis48177.2020.7614
10.1007/s12650-022-00879-y
10.1109/VL.1996.545307
10.1145/3531229
10.1109/tvcg.2016.2570755
10.1109/PacificVis.2012.6183570
10.1111/cgf.12893
10.1109/TVCG.2014.2346481
10.1109/TVCG.2022.3165348
10.1007/978-3-030-41590-7_9
10.1007/s12650-022-00883-2
10.3390/informatics6010014
10.1609/aaai.v31i1.10628
10.1016/j.jvlc.2017.05.004
10.1007/978-3-319-60492-3_47
10.1002/9781118445112.stat08296
10.1109/TVCG.2009.84
10.1109/TVCG.2014.2346319
10.1109/MCG.2017.6
10.1145/3589290
10.1111/j.1467-8659.2011.01898.x
10.1109/TVCG.2021.3051013
10.1137/16M1080173
10.1109/TVCG.2019.2934256
10.1109/vizsec48167.2019.9161633
10.1111/cgf.14287
10.1109/TVCG.2014.2346452
10.4230/DagRep.8.10.1
10.1109/TVCG.2014.2346574
10.1109/PacificVis48177.2020.9280
10.1109/PacificVis48177.2020.1014
10.1016/S0167-739X(96)00029-5
10.1007/978-3-642-10520-3_7
10.5220/0006269703350341
10.1109/PACIFICVIS.2017.8031587
10.1109/tvcg.2016.2598470
10.1109/MCG.2012.48
10.1145/122718.122748
10.1111/cgf.12791
10.1016/S0097-8493(02)00052-3
10.1111/cgf.12935
10.1145/253260.253291
10.1109/2945.981847
10.1007/978-1-4419-0236-8
10.1111/cgf.12089
10.1109/TVCG.2021.3060500
10.1007/s12650-019-00555-8
10.1109/INFVIS.2004.60
10.1109/iccv.2019.00320
10.1111/cgf.12878
10.1109/TVCG.2011.279
10.4028/www.scientific.net/amm.40-41.948
10.1145/2207676.2208294
10.1109/VISUAL.1993.398860
10.1109/VISUAL.1994.346305
10.1109/TVCG.2021.3114880
10.1109/TVCG.2019.2962404
10.1109/TVCG.2006.145
10.1109/tvcg.2022.3209426
10.1109/INFCOM.1999.752147
10.1111/j.1467-8659.2011.01914.x
10.1109/iv.2013.57
10.1109/TVCG.2015.2462356
10.1201/b17511
10.1007/978-1-4615-1733-7_15
ContentType Journal Article
Copyright licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: licence_http://creativecommons.org/publicdomain/zero
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7X8
1XC
VOOES
DOI 10.1109/TVCG.2023.3346641
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0506
EndPage 6467
ExternalDocumentID oai:HAL:hal-04361344v1
38145517
10_1109_TVCG_2023_3346641
10373169
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Discount quality for responsible data science: Human-in-the-Loop for Quality Data
– fundername: MUR PRIN 2022
  grantid: 202248FWFS
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
NPM
7X8
1XC
VOOES
ID FETCH-LOGICAL-c399t-4c50abf20674179479fa36b8f99e234bd0983ccba80c59dbe6d6f1602c213a4d3
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001283711000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Sun Nov 23 09:00:38 EST 2025
Sun Sep 28 11:00:18 EDT 2025
Mon Jul 21 05:47:35 EDT 2025
Sat Nov 29 03:31:47 EST 2025
Tue Nov 18 22:08:49 EST 2025
Wed Aug 27 02:34:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords State-of-the-Art Report
Progressive Visual Analytics
Survey
Progressive Visualization
Taxonomy
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-4c50abf20674179479fa36b8f99e234bd0983ccba80c59dbe6d6f1602c213a4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8027-2687
0000-0003-1706-8979
0000-0003-3770-8726
0009-0008-3778-8184
0000-0001-9051-6972
OpenAccessLink https://ieeexplore.ieee.org/document/10373169
PMID 38145517
PQID 2906179296
PQPubID 23479
PageCount 21
ParticipantIDs hal_primary_oai_HAL_hal_04361344v1
proquest_miscellaneous_2906179296
pubmed_primary_38145517
ieee_primary_10373169
crossref_citationtrail_10_1109_TVCG_2023_3346641
crossref_primary_10_1109_TVCG_2023_3346641
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2024
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
Nielsen (ref67) 2009
ref45
(ref91) 2016
ref48
ref47
ref42
ref41
ref44
ref43
Fekete (ref21) 2016
ref49
Wald (ref101) 2004
ref8
ref7
ref9
ref4
ref6
ref5
ref100
ref40
Luebke (ref60) 2003
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref28
ref29
Hogräfer (ref39)
ref13
ref12
ref15
ref14
ref97
Micallef (ref63)
ref96
ref99
ref10
ref98
ref17
ref16
ref19
ref18
Ko (ref50)
Angelini (ref2)
ref93
ref92
ref95
ref94
May (ref62)
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
Borodin (ref11) 1998
Giachelle (ref27)
ref83
Raveneau (ref78)
ref80
ref79
ref108
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref1
ref71
ref70
ref73
ref72
ref110
ref68
ref69
ref64
Griethe (ref30)
ref66
ref65
Kamarianakis (ref46) 2022
Angelini (ref3)
ref61
References_xml – ident: ref1
  doi: 10.1007/978-0-85729-079-3
– ident: ref36
  doi: 10.1109/INFVIS.2005.1532133
– ident: ref5
  doi: 10.3390/informatics5030031
– ident: ref26
  doi: 10.1109/TVCG.2008.11
– ident: ref68
  doi: 10.1111/cgf.13728
– ident: ref73
  doi: 10.1109/TVCG.2017.2744358
– ident: ref6
  doi: 10.1145/3365109.3368793
– ident: ref7
  doi: 10.1111/cgf.13205
– ident: ref45
  doi: 10.1109/TVCG.2018.2869149
– ident: ref34
  doi: 10.1109/2.781635
– ident: ref24
  doi: 10.1109/TVCG.2016.2599042
– year: 2016
  ident: ref91
  article-title: Tensorflow Playground
– ident: ref55
  doi: 10.1109/TVCG.2019.2934537
– ident: ref77
  doi: 10.14778/3137628.3137637
– ident: ref13
  doi: 10.1109/TVCG.2006.171
– ident: ref66
  doi: 10.1561/0400000002
– ident: ref41
  doi: 10.1109/BigData.2013.6691710
– ident: ref57
  doi: 10.1109/TVCG.2015.2509990
– ident: ref64
  doi: 10.1145/3025453.3025456
– ident: ref31
  doi: 10.1145/1753326.1753557
– ident: ref108
  doi: 10.1109/TVCG.2016.2607714
– ident: ref95
  doi: 10.1109/TVCG.2009.108
– ident: ref56
  doi: 10.1109/TVCG.2018.2865018
– ident: ref51
  doi: 10.1201/9780429464195
– ident: ref105
  doi: 10.1109/INFVIS.2003.1249014
– ident: ref86
  doi: 10.1111/cgf.14317
– ident: ref29
  doi: 10.1145/2556288.2557195
– ident: ref15
  doi: 10.1177/1473871618806555
– ident: ref106
  doi: 10.1007/978-3-030-01252-6_29
– ident: ref38
  doi: 10.1109/TVCG.2023.3278084
– ident: ref87
  doi: 10.1109/PacificVis48177.2020.7614
– ident: ref90
  doi: 10.1007/s12650-022-00879-y
– year: 2022
  ident: ref46
  article-title: Progressive tearing and cutting of soft-bodies in high-performance virtual reality
– ident: ref85
  doi: 10.1109/VL.1996.545307
– ident: ref37
  doi: 10.1145/3531229
– volume-title: Online Computation and Competitive Analysis
  year: 1998
  ident: ref11
– ident: ref74
  doi: 10.1109/tvcg.2016.2570755
– ident: ref80
  doi: 10.1109/PacificVis.2012.6183570
– ident: ref40
  doi: 10.1111/cgf.12893
– ident: ref81
  doi: 10.1109/TVCG.2014.2346481
– ident: ref84
  doi: 10.1109/TVCG.2022.3165348
– year: 2009
  ident: ref67
  article-title: Powers of 10: Time scales in user experience
– ident: ref97
  doi: 10.1007/978-3-030-41590-7_9
– ident: ref109
  doi: 10.1007/s12650-022-00883-2
– start-page: 143
  volume-title: Proc. Simul. Visualisierung
  ident: ref30
  article-title: The visualization of uncertain data: Methods and problems
– year: 2016
  ident: ref21
  article-title: Progressive analytics: A computation paradigm for exploratory data analysis
– volume-title: Level of Detail for 3D Graph.
  year: 2003
  ident: ref60
– ident: ref76
  doi: 10.3390/informatics6010014
– ident: ref49
  doi: 10.1609/aaai.v31i1.10628
– volume-title: Sequential Analysis
  year: 2004
  ident: ref101
– ident: ref110
  doi: 10.1016/j.jvlc.2017.05.004
– ident: ref83
  doi: 10.1007/978-3-319-60492-3_47
– ident: ref69
  doi: 10.1002/9781118445112.stat08296
– ident: ref19
  doi: 10.1109/TVCG.2009.84
– ident: ref25
  doi: 10.1109/TVCG.2014.2346319
– start-page: 133
  volume-title: Proc. Eurographics Conf. Vis.
  ident: ref50
  article-title: Progressive uniform manifold approximation and projection
– ident: ref52
  doi: 10.1109/MCG.2017.6
– ident: ref103
  doi: 10.1145/3589290
– ident: ref100
  doi: 10.1111/j.1467-8659.2011.01898.x
– ident: ref75
  doi: 10.1109/TVCG.2021.3051013
– ident: ref12
  doi: 10.1137/16M1080173
– ident: ref98
  doi: 10.1109/TVCG.2019.2934256
– ident: ref93
  doi: 10.1109/vizsec48167.2019.9161633
– ident: ref94
  doi: 10.1111/cgf.14287
– ident: ref59
  doi: 10.1109/TVCG.2014.2346452
– ident: ref20
  doi: 10.4230/DagRep.8.10.1
– start-page: 49
  volume-title: Proc. Int. EuroVis Workshop Vis. Analytics
  ident: ref39
  article-title: A pipeline for tailored sampling for progressive visual analytics
– ident: ref89
  doi: 10.1109/TVCG.2014.2346574
– ident: ref48
  doi: 10.1109/PacificVis48177.2020.9280
– ident: ref42
  doi: 10.1109/PacificVis48177.2020.1014
– ident: ref96
  doi: 10.1016/S0167-739X(96)00029-5
– start-page: 25
  volume-title: Proc. 10th Int. EuroVis Workshop Vis. Analytics
  ident: ref2
  article-title: On quality indicators for progressive visual analytics
– ident: ref79
  doi: 10.1007/978-3-642-10520-3_7
– volume-title: Proc. Vis. Data Sci.
  ident: ref78
  article-title: Progressive sequential pattern mining: Steerable visual exploration of patterns with PPMT
– ident: ref4
  doi: 10.5220/0006269703350341
– ident: ref43
  doi: 10.1109/PACIFICVIS.2017.8031587
– ident: ref92
  doi: 10.1109/tvcg.2016.2598470
– ident: ref22
  doi: 10.1109/MCG.2012.48
– ident: ref54
  doi: 10.1145/122718.122748
– ident: ref8
  doi: 10.1111/cgf.12791
– ident: ref58
  doi: 10.1016/S0097-8493(02)00052-3
– ident: ref9
  doi: 10.1111/cgf.12935
– ident: ref35
  doi: 10.1145/253260.253291
– ident: ref47
  doi: 10.1109/2945.981847
– ident: ref18
  doi: 10.1007/978-1-4419-0236-8
– start-page: 89
  volume-title: Proc. Simul. Visualisierung
  ident: ref62
  article-title: Fast scalar- & vectorfield visualization using a new progressive grid class
– ident: ref16
  doi: 10.1111/cgf.12089
– ident: ref99
  doi: 10.1109/TVCG.2021.3060500
– ident: ref10
  doi: 10.1007/s12650-019-00555-8
– ident: ref104
  doi: 10.1109/INFVIS.2004.60
– ident: ref107
  doi: 10.1109/iccv.2019.00320
– ident: ref72
  doi: 10.1111/cgf.12878
– volume-title: Proc. Int. EuroVis Workshop Vis. Analytics
  ident: ref3
  article-title: Modeling incremental visualizations
– ident: ref53
  doi: 10.1109/TVCG.2011.279
– ident: ref102
  doi: 10.4028/www.scientific.net/amm.40-41.948
– ident: ref23
  doi: 10.1145/2207676.2208294
– start-page: 19
  volume-title: Proc. Eurographics Conf. Vis.
  ident: ref63
  article-title: The human user in progressive visual analytics
– ident: ref88
  doi: 10.1109/VISUAL.1993.398860
– ident: ref70
  doi: 10.1109/VISUAL.1994.346305
– ident: ref14
  doi: 10.1109/TVCG.2021.3114880
– ident: ref44
  doi: 10.1109/TVCG.2019.2962404
– ident: ref17
  doi: 10.1109/TVCG.2006.145
– ident: ref71
  doi: 10.1109/tvcg.2022.3209426
– ident: ref28
  doi: 10.1109/INFCOM.1999.752147
– ident: ref33
  doi: 10.1111/j.1467-8659.2011.01914.x
– start-page: 2
  volume-title: Proc. Italian Inf. Retrieval Workshop
  ident: ref27
  article-title: A progressive visual analytics tool for incremental experimental evaluation
– ident: ref32
  doi: 10.1109/iv.2013.57
– ident: ref82
  doi: 10.1109/TVCG.2015.2462356
– ident: ref65
  doi: 10.1201/b17511
– ident: ref61
  doi: 10.1007/978-1-4615-1733-7_15
SSID ssj0014489
Score 2.510512
Snippet Currently, growing data sources and long-running algorithms impede user attention and interaction with visual analytics applications. Progressive visualization...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6447
SubjectTerms Computer Science
Convergence
Data visualization
Human-Computer Interaction
Progressive visual analytics
progressive visualization
Rendering (computer graphics)
state-of-the-art report
survey
Surveys
Task analysis
Taxonomy
Visual analytics
Title A Survey on Progressive Visualization
URI https://ieeexplore.ieee.org/document/10373169
https://www.ncbi.nlm.nih.gov/pubmed/38145517
https://www.proquest.com/docview/2906179296
https://inria.hal.science/hal-04361344
Volume 30
WOSCitedRecordID wos001283711000043&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JSsRAEC0c8aAH92XciKIXITNJutPLcRCXg4jgwtxCryhIRmYD_96uJDPoQcFbCN1N86pCV6eq3gM4o7nVQqUszjynMTLMxdp5EmstcmFdZnJlK7EJfn8v-n350DSrV70wzrmq-Mx18LHK5duBmeCvsi72tJGUyRa0OGd1s9Y8ZRDuGbIuMORxFsL0JoWZJrL79HJ500Gd8A4hSKeO8jDhpKIhWuA_zqPWK1ZDVjIrv0ec1clzvfbPPa_DahNiRr3aJzZgwZWbsPKNeHALznvR42Q4dZ_RoIwesEQLq2GnLnp5G2GXZd2buQ3P11dPl7dxI5gQmxBnjGNq8kRpj4zsKCxGufSKMC28lC4jVNtECmKMViIxubTaMct8ypLMZClR1JIdWCwHpduDSBvBbc4NZ1LQzKdSp8pzLzRhXBGh2pDMYCtMwyaOohbvRXWrSGSBoBcIetGA3oaL-ZSPmkrjr8GnwRbzcUiCfdu7K_AdkuanhNJpGLSNgH9brca6DScz2xXha8EUiCrdYDIqkNw-IJNJ1obd2qjz2TOP2P9l1QNYDjukdYHZISyOhxN3BEtmOn4bDY-DS_bFceWSX0MA144
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEC6iCSQeYh5GNz4ykeQizDoz3dOP4yLqhmwWwY14a_pJhDAr-wL_vV0zs4seFLwNQ3XTfN1DVU9VfR_AD1o6I3TO0iJwmiLDXGp8IKkxohTOF7bUrhab4MOhuL6WF22zet0L472vi898Fx_rXL4b2zn-KjvGnjaSM7kGr1E6q23XWiUN4k1DNiWGPC1ioN4mMfNMHo-uTs67qBTeJQQJ1VEgJvoqGuMF_sgjrf3DeshaaOXpmLP2PWebL1z1B3jfBplJrzkVH-GVrz7BxgPqwc_ws5dczicLf5eMq-QCi7SwHnbhk6ubKfZZNt2ZW_D37HR00k9byYTUxkhjllJbZtoE5GRHaTHKZdCEGRGk9AWhxmVSEGuNFpktpTOeORZylhW2yImmjnyB9Wpc-R1IjBXcldxyJgUtQi5NrgMPwhDGNRG6A9kSNmVbPnGUtfiv6ntFJhWCrhB01YLegaPVkNuGTOM548O4Fys7pMHu9wYK3yFtfk4oXUSjLQT8wWwN1h34vtw7Fb8XTILoyo_nU4X09hGZQrIObDebuhq9PBFfn5j1G7ztj_4M1ODX8PcuvIurpU252R6szyZzvw9v7GJ2M50c1AfzHpcp2e8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Survey+on+Progressive+Visualization&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Ulmer%2C+Alex&rft.au=Angelini%2C+Marco&rft.au=Fekete%2C+Jean-Daniel&rft.au=Kohlhammer%2C+Jorn&rft.date=2024-09-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=30&rft.issue=9&rft.spage=6447&rft_id=info:doi/10.1109%2FTVCG.2023.3346641&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon