Environment-friendly bulk Fe16N2 permanent magnet: Review and prospective

•α″-Fe16N2 was viewed as a mystery material because of inconclusive arguments in 1990s, including many controversial reports at two specific symposia at MMM conferences.•Then the topic was largely dropped by the magnetic research community.•The key controversies around this material have been succes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials Jg. 497; H. C; S. 165962
1. Verfasser: Wang, Jian-Ping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.03.2020
Elsevier BV
Elsevier
Schlagworte:
ISSN:0304-8853, 1873-4766
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •α″-Fe16N2 was viewed as a mystery material because of inconclusive arguments in 1990s, including many controversial reports at two specific symposia at MMM conferences.•Then the topic was largely dropped by the magnetic research community.•The key controversies around this material have been successfully addressed through our long and persistent effort from 2002 to 2012, which was reported at APS Marching Meeting 2010 and INTERMAG 2012.•Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its usage of environment-friendly raw materials, its confirmed giant saturation magnetization and reasonably high magnetic anisotropy constant.•Iron nitride magnet is of great interest as a magnetic material for the applications at relatively low temperature (<150 °C) ranging from speaker magnets, magnets in hard disk drives and all kinds of electrical motors, wind turbines, and other power generation machines.•A perspective review on the synthesis of bulk α″-Fe16N2 compound permanent magnet in past was presented here on the aspects of material processing and magnetic characterizations.•Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires and melt-spun ribbons and a low-temperature nitridation method based on foils and ribbons.•With our recent progress and many good on-going activities by researchers worldwide, we believe that α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate. α″-Fe16N2 had been viewed as a mystery material because of inconclusive arguments in the 1990s, including many controversial reports at two MMM conference symposia, and the topic was then largely dropped by the magnetic research community. The key controversies around this material have now been successfully addressed through our long and persistent efforts from 2002 to 2012, first reported in APS 2010 and then at INTERMAG 2012. Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its use of environment-friendly raw materials, confirmed giant saturation magnetic flux density (2.9 T), and reasonably high magnetic anisotropy constant (1.8 MJ/m3). Its coercivity temperature coefficient (~0.4 Oe/°C) in the range of 27–152 °C is two orders of magnitude lower than that of commercial NdFeB magnets (e.g. N40 ~ −81.9 Oe/K). The iron nitride magnet is of great interest as a magnetic material for applications working at relatively low temperature (<150 °C) and not requesting high coercivity. These applications range from speaker magnets to magnets in hard disk drives, electrical motors, wind turbines, smart phones, audio devices, and other power generation machines. A perspective review on the synthesis of the bulk α″-Fe16N2 compound permanent magnet is presented here on the aspects of material processing and magnetic characterizations. Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires, and melt-spun ribbons, and a low-temperature nitridation method based on foils and ribbons. With our recent progress and many on-going activities by researchers worldwide, we believe that the α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate.
AbstractList α″-Fe16N2 had been viewed as a mystery material because of inconclusive arguments in the 1990s, including many controversial reports at two MMM conference symposia, and the topic was then largely dropped by the magnetic research community. The key controversies around this material have now been successfully addressed through our long and persistent efforts from 2002 to 2012, first reported in APS 2010 and then at INTERMAG 2012. Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its use of environment-friendly raw materials, confirmed giant saturation magnetic flux density (2.9 T), and reasonably high magnetic anisotropy constant (1.8 MJ/m3). Its coercivity temperature coefficient (~0.4 Oe/°C) in the range of 27–152 °C is two orders of magnitude lower than that of commercial NdFeB magnets (e.g. N40 ~ −81.9 Oe/K). The iron nitride magnet is of great interest as a magnetic material for applications working at relatively low temperature (<150 °C) and not requesting high coercivity. These applications range from speaker magnets to magnets in hard disk drives, electrical motors, wind turbines, smart phones, audio devices, and other power generation machines. A perspective review on the synthesis of the bulk α″-Fe16N2 compound permanent magnet is presented here on the aspects of material processing and magnetic characterizations. Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires, and melt-spun ribbons, and a low-temperature nitridation method based on foils and ribbons. With our recent progress and many on-going activities by researchers worldwide, we believe that the α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate.
•α″-Fe16N2 was viewed as a mystery material because of inconclusive arguments in 1990s, including many controversial reports at two specific symposia at MMM conferences.•Then the topic was largely dropped by the magnetic research community.•The key controversies around this material have been successfully addressed through our long and persistent effort from 2002 to 2012, which was reported at APS Marching Meeting 2010 and INTERMAG 2012.•Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its usage of environment-friendly raw materials, its confirmed giant saturation magnetization and reasonably high magnetic anisotropy constant.•Iron nitride magnet is of great interest as a magnetic material for the applications at relatively low temperature (<150 °C) ranging from speaker magnets, magnets in hard disk drives and all kinds of electrical motors, wind turbines, and other power generation machines.•A perspective review on the synthesis of bulk α″-Fe16N2 compound permanent magnet in past was presented here on the aspects of material processing and magnetic characterizations.•Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires and melt-spun ribbons and a low-temperature nitridation method based on foils and ribbons.•With our recent progress and many good on-going activities by researchers worldwide, we believe that α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate. α″-Fe16N2 had been viewed as a mystery material because of inconclusive arguments in the 1990s, including many controversial reports at two MMM conference symposia, and the topic was then largely dropped by the magnetic research community. The key controversies around this material have now been successfully addressed through our long and persistent efforts from 2002 to 2012, first reported in APS 2010 and then at INTERMAG 2012. Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its use of environment-friendly raw materials, confirmed giant saturation magnetic flux density (2.9 T), and reasonably high magnetic anisotropy constant (1.8 MJ/m3). Its coercivity temperature coefficient (~0.4 Oe/°C) in the range of 27–152 °C is two orders of magnitude lower than that of commercial NdFeB magnets (e.g. N40 ~ −81.9 Oe/K). The iron nitride magnet is of great interest as a magnetic material for applications working at relatively low temperature (<150 °C) and not requesting high coercivity. These applications range from speaker magnets to magnets in hard disk drives, electrical motors, wind turbines, smart phones, audio devices, and other power generation machines. A perspective review on the synthesis of the bulk α″-Fe16N2 compound permanent magnet is presented here on the aspects of material processing and magnetic characterizations. Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires, and melt-spun ribbons, and a low-temperature nitridation method based on foils and ribbons. With our recent progress and many on-going activities by researchers worldwide, we believe that the α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate.
ArticleNumber 165962
Author Wang, Jian-Ping
Author_xml – sequence: 1
  givenname: Jian-Ping
  surname: Wang
  fullname: Wang, Jian-Ping
  email: jpwang@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
BackLink https://www.osti.gov/biblio/1874086$$D View this record in Osti.gov
BookMark eNp9kEtLxDAUhYMoOD7-gKui6455NZOKG5HxAaIgug5pcqOp03RMMyP-e1PqyoWrLHLO5TvfAdoNfQCETgieE0zEeTtvu66bU0zqORFVLegOmhG5YCVfCLGLZphhXkpZsX10MAwtxphwKWbofhm2Pvahg5BKFz0Eu_oums3qo7gBIh5psYbY6ZC_i06_BUgXxTNsPXwVOthiHfthDSb5LRyhPadXAxz_vofo9Wb5cn1XPjzd3l9fPZSG1XUqOTWNlY7X2lBsaEO0I5QwRxpMGrLAnHLbWOtMLWVdQWW4AFE71lhgwlWaHaLT6W4_JK8G4xOYd9OHkDFUnsyxFDl0NoUy4OcGhqTafhND5lKUMb4geT3NKTqlTJ4xRHBqHX2n47ciWI1eVatGr2r0qiavuST_lDKCTr4PKWq_-r96OVUh-8kO44gPwYD1caS3vf-v_gN3_ZUt
CitedBy_id crossref_primary_10_1038_s41563_024_01829_9
crossref_primary_10_1016_j_jallcom_2024_177260
crossref_primary_10_1063_5_0243499
crossref_primary_10_35848_1347_4065_ad1012
crossref_primary_10_1016_j_jmmm_2022_169696
crossref_primary_10_1016_j_jmmm_2025_173454
crossref_primary_10_1016_j_jmmm_2025_173277
crossref_primary_10_1063_9_0000354
crossref_primary_10_1109_TMAG_2022_3151109
crossref_primary_10_1007_s11051_020_4758_0
crossref_primary_10_1063_9_0000916
crossref_primary_10_1016_j_mtla_2024_102316
crossref_primary_10_1016_j_jmmm_2023_171458
crossref_primary_10_1063_9_0000837
crossref_primary_10_3390_cryst14070624
crossref_primary_10_1088_1741_4326_aba453
crossref_primary_10_1016_j_jallcom_2023_170258
crossref_primary_10_1016_j_jmmm_2020_167388
crossref_primary_10_1039_D4NR04035J
crossref_primary_10_1039_D1QM00224D
crossref_primary_10_1016_j_jmmm_2021_167928
crossref_primary_10_3390_ma17133110
crossref_primary_10_1063_9_0000580
crossref_primary_10_1093_nsr_nwae107
crossref_primary_10_1016_j_actamat_2022_118064
crossref_primary_10_1016_j_ceramint_2024_03_183
crossref_primary_10_1016_j_physb_2024_415759
crossref_primary_10_1063_5_0098628
crossref_primary_10_1063_9_0000202
crossref_primary_10_1016_j_jmmm_2022_169345
crossref_primary_10_1063_9_0000929
crossref_primary_10_1103_PhysRevApplied_18_044006
crossref_primary_10_1002_adfm_202424988
crossref_primary_10_3390_app132011529
crossref_primary_10_3390_en17235861
crossref_primary_10_1063_9_0000606
crossref_primary_10_1063_9_0000628
crossref_primary_10_1016_j_mtphys_2022_100675
crossref_primary_10_1063_9_0000902
crossref_primary_10_1002_aelm_202200515
crossref_primary_10_1039_D2CP01734B
crossref_primary_10_1088_1741_4326_abcdb6
crossref_primary_10_1002_adem_202000311
crossref_primary_10_1063_5_0148954
crossref_primary_10_1088_1361_648X_acd319
crossref_primary_10_1016_j_joule_2025_101849
crossref_primary_10_1063_5_0033577
crossref_primary_10_1016_j_mtcomm_2024_110538
Cites_doi 10.1007/s11837-012-0351-z
10.7567/APEX.6.073007
10.1063/1.4792706
10.1063/1.4704368
10.1021/ie50369a030
10.1103/PhysRevB.86.174422
10.1063/1.4847315
10.1063/1.4798959
10.1063/1.356925
10.1007/s11661-012-1278-2
10.1063/1.358157
10.1063/1.3565403
10.3379/jmsjmag.25.927
10.2320/matertrans.M2019019
10.1002/adma.201002180
10.1038/nature11475
10.1016/j.actamat.2018.07.049
10.1039/C5NR07859H
10.1002/pssr.201900089
10.1109/TMAG.2011.2166975
10.1016/j.actamat.2019.01.034
10.1016/j.actamat.2016.10.061
10.1039/c3nr06867f
10.1007/s11661-002-0380-2
10.1103/PhysRevB.84.245310
10.1016/j.apt.2016.09.017
10.1016/j.jmmm.2014.12.015
10.1002/adem.201500455
10.1063/1.358482
10.1016/j.jmmm.2018.04.034
10.1063/1.1654030
10.1109/TMAG.2011.2170156
10.2497/jjspm.46.151
10.1039/C9NA00008A
10.1088/1367-2630/12/6/063032
10.1038/srep25436
10.1126/science.1080216
10.1063/1.3560051
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Mar 1, 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 1, 2020
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
OTOTI
DOI 10.1016/j.jmmm.2019.165962
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-4766
ExternalDocumentID 1874086
10_1016_j_jmmm_2019_165962
S0304885319325454
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29K
5VS
9DU
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
HMV
HZ~
NDZJH
R2-
SEW
SMS
SPG
WUQ
XXG
~HD
7SR
7U5
8BQ
8FD
JG9
L7M
AALMO
ABPIF
OTOTI
ID FETCH-LOGICAL-c399t-42cbd8f49ac20c2b1af1213f1b01b170424dbddfc98895e5c46e69f3bde36f5a3
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501596800116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-8853
IngestDate Fri May 19 00:40:32 EDT 2023
Sun Nov 09 07:03:37 EST 2025
Sat Nov 29 07:23:39 EST 2025
Tue Nov 18 22:34:58 EST 2025
Fri Feb 23 02:49:33 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Bulk iron nitride magnet
α″-Fe16N2
Permanent magnet
Rare-earth-free magnet
Iron nitride
Magnetic energy product
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-42cbd8f49ac20c2b1af1213f1b01b170424dbddfc98895e5c46e69f3bde36f5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
OpenAccessLink https://www.osti.gov/biblio/1874086
PQID 2334711482
PQPubID 2045450
ParticipantIDs osti_scitechconnect_1874086
proquest_journals_2334711482
crossref_primary_10_1016_j_jmmm_2019_165962
crossref_citationtrail_10_1016_j_jmmm_2019_165962
elsevier_sciencedirect_doi_10_1016_j_jmmm_2019_165962
PublicationCentury 2000
PublicationDate 2020-03-01
2020-03-00
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Journal of magnetism and magnetic materials
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Coey (b0030) 2011; 47
Liu, Guo, Zhang, Wu, Ma, Wang (b0200) 2019; 1
Cui, Kramer, Zhou, Liu, Gabay, Hadjipanayis, Balasubramanian, Sellmyer (b0050) 2018; 158
Kim, Takahashi (b0080) 1972; 20
Horie, Ogi, Tameka, Okuyama, Iwaki, Li (b0155) 2016; 27
Lewis, Jiménez-Villacorta (b0010) 2013; 44
Ji, Allard, Lara-Curzio, Wang (b0100) 2011; 98
Jiang, Al Mehedi, Fu, Wang, Allard, Wang (b0055) 2016; 6
Zulhijah, Nandiyanto, Ogi, Iwaki, Nakamura, Okuyama (b0145) 2015; 381
Ji, Lauter, Zhang, Ambaye, Wang (b0110) 2013; 102
Tong, Tao, Wang, Lu, Lu (b0195) 2003; 299
Prosperi, Bevan, Ugalde, Tudor, Furlan, Dove, Lucia, Zakotnik (b0020) 2018; 460
Sugita, Takahashi, Komuro, Mitsuoka, Sakuma (b0085) 1994; 76
Kojima, Kameoka, Mizuguchi, Takanashi, Tsai (b0215) 2019; 60
Ji, Wu, Wang (b0090) 2011; 109
Jack (b0180) 1994; 76
Li, Yang, Jamali, Shi, Kang, Jiang, Zhang, Li, Okatov, Faleev, Kalitsov, Yu, Voyles, Mryasov, Wang (b0045) 2019; 13
Hattori, Kamiya, Kato (b0140) 2001; 25
Wang, Ji, Liu, Xu, Sánchez-Hanke, Wu, De Groot, Allard, Lara-Curzio (b0040) 2012
Ji, Liu, Wang (b0095) 2010; 12
Wehrenberg, Zande, Simizu, Obermyer, Sankar, Thadhani (b0120) 2012; 111
Gutfleisch, Willard, Brück, Chen, Sankar, Liu (b0005) 2011; 23
Jiang, Dabade, Allard, Lara-Curzio, James, Wang (b0065) 2016; 6
Zulhijah, Dani Nandiyanto, Ogi, Iwaki, Nakamura, Okuyama (b0170) 2014; 6
Jack (b0070) 1951; 208
Huang, Wallace, Simizu, Pedziwiatr, Obermyer, Sankar (b0185) 1994; 75
Mehedi, Jiang, Ma, Wang (b0190) 2019; 167
Jiang, Liu, Suri, Kennedy, Thadhani, Flannigan, Wang (b0060) 2016; 18
Nagatomi, Kikkawa, Hinomura, Nasu, Kanamaru (b0135) 1999; 46
Ogawa, Ogata, Gallage, Kobayashi, Hayashi, Kusano, Yamamoto, Kohara, Doi, Takano, Takahashi (b0150) 2013; 6
Chu, Majumdar (b0025) 2012; 488
Ogi, Dani Nandiyanto, Kisakibaru, Iwaki, Nakamura, Okuyama (b0165) 2013; 113
Kramer, McCallum, Anderson, Constantinides (b0015) 2012; 64
Wang, Ji, Liu, Xu, Sanchez-Hanke (b0035) 2010
Ogi, Dani Nandiyanto, Kisakibaru, Iwaki, Nakamura, Okuyama (b0175) 2013; 113
Kartikowati, Suhendi, Zulhijah, Ogi, Iwaki, Okuyama (b0130) 2016; 8
Dirba, Schwöbel, Diop, Duerrschnabel, Molina-Luna, Hofmann, Komissinskiy, Kleebe, Gutfleisch (b0160) 2017; 123
Yang, Allard, Ji, Zhang, Yu, Wang (b0115) 2013; 103
van Voorthuysen, Boerma, Chechenin (b0075) 2002; 33
Ji, Osofsky, Lauter, Allard, Li, Jensen, Ambaye, Lara-Curzio, Wang (b0105) 2011; 84
Raney (b0210) 1940; 32
Sims, Butler, Richter, Koepernik, AşIoǧlu, Friedrich, Blügel (b0125) 2012; 86
J. Liu, J.-P. Wang, et al., to be published.
Jiang (10.1016/j.jmmm.2019.165962_b0065) 2016; 6
Raney (10.1016/j.jmmm.2019.165962_b0210) 1940; 32
Nagatomi (10.1016/j.jmmm.2019.165962_b0135) 1999; 46
10.1016/j.jmmm.2019.165962_b0205
Hattori (10.1016/j.jmmm.2019.165962_b0140) 2001; 25
Mehedi (10.1016/j.jmmm.2019.165962_b0190) 2019; 167
Cui (10.1016/j.jmmm.2019.165962_b0050) 2018; 158
Ji (10.1016/j.jmmm.2019.165962_b0095) 2010; 12
Kim (10.1016/j.jmmm.2019.165962_b0080) 1972; 20
Kramer (10.1016/j.jmmm.2019.165962_b0015) 2012; 64
Dirba (10.1016/j.jmmm.2019.165962_b0160) 2017; 123
Chu (10.1016/j.jmmm.2019.165962_b0025) 2012; 488
Ji (10.1016/j.jmmm.2019.165962_b0100) 2011; 98
Tong (10.1016/j.jmmm.2019.165962_b0195) 2003; 299
Kojima (10.1016/j.jmmm.2019.165962_b0215) 2019; 60
Horie (10.1016/j.jmmm.2019.165962_b0155) 2016; 27
Wang (10.1016/j.jmmm.2019.165962_b0035) 2010
van Voorthuysen (10.1016/j.jmmm.2019.165962_b0075) 2002; 33
Wang (10.1016/j.jmmm.2019.165962_b0040) 2012
Ogawa (10.1016/j.jmmm.2019.165962_b0150) 2013; 6
Ogi (10.1016/j.jmmm.2019.165962_b0165) 2013; 113
Ogi (10.1016/j.jmmm.2019.165962_b0175) 2013; 113
Jack (10.1016/j.jmmm.2019.165962_b0070) 1951; 208
Zulhijah (10.1016/j.jmmm.2019.165962_b0145) 2015; 381
Jiang (10.1016/j.jmmm.2019.165962_b0055) 2016; 6
Coey (10.1016/j.jmmm.2019.165962_b0030) 2011; 47
Prosperi (10.1016/j.jmmm.2019.165962_b0020) 2018; 460
Kartikowati (10.1016/j.jmmm.2019.165962_b0130) 2016; 8
Ji (10.1016/j.jmmm.2019.165962_b0105) 2011; 84
Huang (10.1016/j.jmmm.2019.165962_b0185) 1994; 75
Yang (10.1016/j.jmmm.2019.165962_b0115) 2013; 103
Li (10.1016/j.jmmm.2019.165962_b0045) 2019; 13
Jack (10.1016/j.jmmm.2019.165962_b0180) 1994; 76
Ji (10.1016/j.jmmm.2019.165962_b0110) 2013; 102
Liu (10.1016/j.jmmm.2019.165962_b0200) 2019; 1
Wehrenberg (10.1016/j.jmmm.2019.165962_b0120) 2012; 111
Sugita (10.1016/j.jmmm.2019.165962_b0085) 1994; 76
Ji (10.1016/j.jmmm.2019.165962_b0090) 2011; 109
Jiang (10.1016/j.jmmm.2019.165962_b0060) 2016; 18
Sims (10.1016/j.jmmm.2019.165962_b0125) 2012; 86
Zulhijah (10.1016/j.jmmm.2019.165962_b0170) 2014; 6
Lewis (10.1016/j.jmmm.2019.165962_b0010) 2013; 44
Gutfleisch (10.1016/j.jmmm.2019.165962_b0005) 2011; 23
References_xml – volume: 299
  start-page: 686
  year: 2003
  end-page: 688
  ident: b0195
  article-title: Nitriding iron at lower temperatures
  publication-title: Science (80-)
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  ident: b0025
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
– volume: 167
  start-page: 80
  year: 2019
  end-page: 88
  ident: b0190
  article-title: Nitriding and martensitic phase transformation of the copper and boron doped iron nitride magnet
  publication-title: Acta Mater.
– start-page: 1710
  year: 2012
  end-page: 1717
  ident: b0040
  article-title: Fabrication of Fe
  publication-title: IEEE Trans. Magn.
– volume: 6
  year: 2016
  ident: b0065
  article-title: Synthesis of α″-Fe
  publication-title: Phys. Rev. Appl
– volume: 113
  start-page: 164301
  year: 2013
  ident: b0165
  article-title: Facile synthesis of single-phase spherical α″-Fe
  publication-title: J. Appl. Phys.
– volume: 111
  year: 2012
  ident: b0120
  article-title: Shock compression response of α″-Fe
  publication-title: J. Appl. Phys.
– volume: 20
  start-page: 492
  year: 1972
  end-page: 494
  ident: b0080
  article-title: New magnetic material having ultrahigh magnetic moment
  publication-title: Appl. Phys. Lett.
– volume: 44
  start-page: 2
  year: 2013
  end-page: 20
  ident: b0010
  article-title: Perspectives on permanent magnetic materials for energy conversion and power generation
  publication-title: Metall. Mater. Trans. A
– volume: 13
  start-page: 1900089
  year: 2019
  ident: b0045
  article-title: Heavy-metal-free, low-damping, and non-interface perpendicular Fe
  publication-title: Phys. Status Solidi Rapid Res. Lett.
– volume: 109
  start-page: 07B767
  year: 2011
  ident: b0090
  article-title: Epitaxial high saturation magnetization FeN thin films on Fe(0 0 1) seeded GaAs(0 0 1) single crystal wafer using facing target sputterings
  publication-title: J. Appl. Phys.
– volume: 158
  start-page: 118
  year: 2018
  end-page: 137
  ident: b0050
  article-title: Current progress and future challenges in rare-earth-free permanent magnets
  publication-title: Acta Mater.
– volume: 103
  year: 2013
  ident: b0115
  article-title: The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe
  publication-title: Appl. Phys. Lett.
– volume: 76
  start-page: 6620
  year: 1994
  end-page: 6625
  ident: b0180
  article-title: The synthesis, structure, and characterization of α″-Fe
  publication-title: J. Appl. Phys.
– volume: 460
  start-page: 448
  year: 2018
  end-page: 453
  ident: b0020
  article-title: Performance comparison of motors fitted with magnet-to-magnet recycled or conventionally manufactured sintered NdFeB
  publication-title: J. Magn. Magn. Mater.
– volume: 102
  year: 2013
  ident: b0110
  article-title: Strain induced giant magnetism in epitaxial Fe
  publication-title: Appl. Phys. Lett.
– volume: 25
  start-page: 927
  year: 2001
  end-page: 930
  ident: b0140
  article-title: Magnetic properties of Fe
  publication-title: J. Magn. Soc. Jpn.
– volume: 23
  start-page: 821
  year: 2011
  end-page: 842
  ident: b0005
  article-title: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient
  publication-title: Adv. Mater.
– volume: 33
  start-page: 2593
  year: 2002
  end-page: 2598
  ident: b0075
  article-title: Low-temperature extension of the lehrer diagram and the iron-nitrogen phase diagram
  publication-title: Metall. Mater. Trans. A
– volume: 8
  start-page: 2648
  year: 2016
  end-page: 2655
  ident: b0130
  article-title: Effect of magnetic field strength on the alignment of α″-Fe
  publication-title: Nanoscale.
– volume: 113
  start-page: 164301
  year: 2013
  ident: b0175
  article-title: Facile synthesis of single-phase spherical α″-Fe
  publication-title: J. Appl. Phys.
– volume: 46
  start-page: 151
  year: 1999
  end-page: 155
  ident: b0135
  article-title: Synthesis of iron nitrides FexN (x: 2, 2-3, 4, 16/2) by nitrogenizing .ALPHA.-Fe in ammonia gas, and magnetic properties of the bulk sample of Fe
  publication-title: J. Jpn. Soc. Powder Metall.
– volume: 98
  year: 2011
  ident: b0100
  article-title: N site ordering effect on partially ordered Fe[sub 16]N[sub 2]
  publication-title: Appl. Phys. Lett.
– volume: 123
  start-page: 214
  year: 2017
  end-page: 222
  ident: b0160
  article-title: Synthesis, morphology, thermal stability and magnetic properties of α″-Fe
  publication-title: Acta Mater.
– volume: 18
  start-page: 1009
  year: 2016
  end-page: 1016
  ident: b0060
  article-title: Preparation of an α″-Fe
  publication-title: Adv. Eng. Mater.
– volume: 381
  start-page: 89
  year: 2015
  end-page: 98
  ident: b0145
  article-title: Effect of oxidation on α″-Fe
  publication-title: J. Magn. Magn. Mater.
– reference: J. Liu, J.-P. Wang, et al., to be published.
– volume: 75
  start-page: 6574
  year: 1994
  ident: b0185
  article-title: Synthesis and characterization of Fe
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 25436
  year: 2016
  ident: b0055
  article-title: Synthesis of Fe
  publication-title: Sci. Rep.
– volume: 6
  year: 2013
  ident: b0150
  article-title: Challenge to the synthesis of α″-Fe
  publication-title: Appl. Phys Express
– volume: 84
  year: 2011
  ident: b0105
  article-title: Perpendicular magnetic anisotropy and high spin-polarization ratio in epitaxial Fe-N thin films
  publication-title: Phys. Rev. B
– volume: 32
  start-page: 1199
  year: 1940
  end-page: 1203
  ident: b0210
  article-title: Catalysts from alloys
  publication-title: Ind. Eng. Chem.
– year: 2010
  ident: b0035
  article-title: Origin of giant saturation magnetization in Fe
  publication-title: APS March Meeting
– volume: 6
  start-page: 6487
  year: 2014
  ident: b0170
  article-title: Gas phase preparation of spherical core–shell α″-Fe
  publication-title: Nanoscale
– volume: 208
  start-page: 216
  year: 1951
  end-page: 224
  ident: b0070
  article-title: The occurrence and the crystal structure of formula-iron nitride; a new type of interstitial alloy formed during the tempering of nitrogen-martensite
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 64
  start-page: 752
  year: 2012
  end-page: 763
  ident: b0015
  article-title: Prospects for non-rare earth permanent magnets for traction motors and generators
  publication-title: JOM
– volume: 12
  year: 2010
  ident: b0095
  article-title: Theory of giant saturation magnetization in α″-Fe
  publication-title: New J. Phys.
– volume: 1
  start-page: 1337
  year: 2019
  end-page: 1342
  ident: b0200
  article-title: Synthesis of α″-Fe
  publication-title: Nanoscale Adv.
– volume: 47
  start-page: 4671
  year: 2011
  end-page: 4681
  ident: b0030
  article-title: Hard magnetic materials: a perspective
  publication-title: IEEE Trans. Magn.
– volume: 76
  start-page: 6637
  year: 1994
  end-page: 6641
  ident: b0085
  article-title: Magnetic and Mössbauer studies of single-crystal Fe
  publication-title: J. Appl. Phys.
– volume: 86
  start-page: 1
  year: 2012
  end-page: 7
  ident: b0125
  article-title: Theoretical investigation into the possibility of very large moments in Fe
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 27
  start-page: 2520
  year: 2016
  end-page: 2525
  ident: b0155
  article-title: High-purity core-shell α″-Fe
  publication-title: Adv. Powder Technol.
– volume: 60
  start-page: 1066
  year: 2019
  end-page: 1071
  ident: b0215
  article-title: FeNi and Fe
  publication-title: Mater. Trans.
– volume: 64
  start-page: 752
  year: 2012
  ident: 10.1016/j.jmmm.2019.165962_b0015
  article-title: Prospects for non-rare earth permanent magnets for traction motors and generators
  publication-title: JOM
  doi: 10.1007/s11837-012-0351-z
– volume: 6
  year: 2013
  ident: 10.1016/j.jmmm.2019.165962_b0150
  article-title: Challenge to the synthesis of α″-Fe16N2 compound nanoparticle with high saturation magnetization for rare earth free new permanent magnetic material
  publication-title: Appl. Phys Express
  doi: 10.7567/APEX.6.073007
– volume: 102
  year: 2013
  ident: 10.1016/j.jmmm.2019.165962_b0110
  article-title: Strain induced giant magnetism in epitaxial Fe16N2 thin film
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4792706
– volume: 111
  year: 2012
  ident: 10.1016/j.jmmm.2019.165962_b0120
  article-title: Shock compression response of α″-Fe16N2 nanoparticles
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4704368
– volume: 32
  start-page: 1199
  year: 1940
  ident: 10.1016/j.jmmm.2019.165962_b0210
  article-title: Catalysts from alloys
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50369a030
– volume: 86
  start-page: 1
  year: 2012
  ident: 10.1016/j.jmmm.2019.165962_b0125
  article-title: Theoretical investigation into the possibility of very large moments in Fe16N2
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.86.174422
– volume: 103
  year: 2013
  ident: 10.1016/j.jmmm.2019.165962_b0115
  article-title: The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe16N2 thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4847315
– volume: 113
  start-page: 164301
  year: 2013
  ident: 10.1016/j.jmmm.2019.165962_b0175
  article-title: Facile synthesis of single-phase spherical α″-Fe16N2/Al2O3 core-shell nanoparticles via a gas-phase method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4798959
– volume: 75
  start-page: 6574
  year: 1994
  ident: 10.1016/j.jmmm.2019.165962_b0185
  article-title: Synthesis and characterization of Fe16N2 in bulk form
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.356925
– year: 2010
  ident: 10.1016/j.jmmm.2019.165962_b0035
  article-title: Origin of giant saturation magnetization in Fe16N2: Beyong slater-pauling curve and a 40-year mystery in magnetic materials and magnetism
– volume: 44
  start-page: 2
  year: 2013
  ident: 10.1016/j.jmmm.2019.165962_b0010
  article-title: Perspectives on permanent magnetic materials for energy conversion and power generation
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-012-1278-2
– volume: 76
  start-page: 6637
  year: 1994
  ident: 10.1016/j.jmmm.2019.165962_b0085
  article-title: Magnetic and Mössbauer studies of single-crystal Fe16N2 and Fe-N martensite films epitaxially grown by molecular beam epitaxy (invited)
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.358157
– volume: 109
  start-page: 07B767
  year: 2011
  ident: 10.1016/j.jmmm.2019.165962_b0090
  article-title: Epitaxial high saturation magnetization FeN thin films on Fe(0 0 1) seeded GaAs(0 0 1) single crystal wafer using facing target sputterings
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3565403
– volume: 25
  start-page: 927
  year: 2001
  ident: 10.1016/j.jmmm.2019.165962_b0140
  article-title: Magnetic properties of Fe16N2 fine particles
  publication-title: J. Magn. Soc. Jpn.
  doi: 10.3379/jmsjmag.25.927
– volume: 113
  start-page: 164301
  year: 2013
  ident: 10.1016/j.jmmm.2019.165962_b0165
  article-title: Facile synthesis of single-phase spherical α″-Fe16N2/Al2O3 core-shell nanoparticles via a gas-phase method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4798959
– volume: 60
  start-page: 1066
  year: 2019
  ident: 10.1016/j.jmmm.2019.165962_b0215
  article-title: FeNi and Fe16N2 magnets prepared using leaching
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.M2019019
– volume: 23
  start-page: 821
  year: 2011
  ident: 10.1016/j.jmmm.2019.165962_b0005
  article-title: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201002180
– volume: 488
  start-page: 294
  year: 2012
  ident: 10.1016/j.jmmm.2019.165962_b0025
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 158
  start-page: 118
  year: 2018
  ident: 10.1016/j.jmmm.2019.165962_b0050
  article-title: Current progress and future challenges in rare-earth-free permanent magnets
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2018.07.049
– volume: 208
  start-page: 216
  year: 1951
  ident: 10.1016/j.jmmm.2019.165962_b0070
  article-title: The occurrence and the crystal structure of formula-iron nitride; a new type of interstitial alloy formed during the tempering of nitrogen-martensite
  publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 8
  start-page: 2648
  year: 2016
  ident: 10.1016/j.jmmm.2019.165962_b0130
  article-title: Effect of magnetic field strength on the alignment of α″-Fe16N2 nanoparticle films
  publication-title: Nanoscale.
  doi: 10.1039/C5NR07859H
– volume: 13
  start-page: 1900089
  year: 2019
  ident: 10.1016/j.jmmm.2019.165962_b0045
  article-title: Heavy-metal-free, low-damping, and non-interface perpendicular Fe16N2 thin film and magnetoresistance device
  publication-title: Phys. Status Solidi Rapid Res. Lett.
  doi: 10.1002/pssr.201900089
– volume: 47
  start-page: 4671
  year: 2011
  ident: 10.1016/j.jmmm.2019.165962_b0030
  article-title: Hard magnetic materials: a perspective
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2166975
– volume: 167
  start-page: 80
  year: 2019
  ident: 10.1016/j.jmmm.2019.165962_b0190
  article-title: Nitriding and martensitic phase transformation of the copper and boron doped iron nitride magnet
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2019.01.034
– volume: 123
  start-page: 214
  year: 2017
  ident: 10.1016/j.jmmm.2019.165962_b0160
  article-title: Synthesis, morphology, thermal stability and magnetic properties of α″-Fe16N2 nanoparticles obtained by hydrogen reduction of γ-Fe2O3 and subsequent nitrogenation
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2016.10.061
– volume: 6
  start-page: 6487
  year: 2014
  ident: 10.1016/j.jmmm.2019.165962_b0170
  article-title: Gas phase preparation of spherical core–shell α″-Fe16N2/SiO2 magnetic nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/c3nr06867f
– volume: 33
  start-page: 2593
  year: 2002
  ident: 10.1016/j.jmmm.2019.165962_b0075
  article-title: Low-temperature extension of the lehrer diagram and the iron-nitrogen phase diagram
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-002-0380-2
– volume: 84
  year: 2011
  ident: 10.1016/j.jmmm.2019.165962_b0105
  article-title: Perpendicular magnetic anisotropy and high spin-polarization ratio in epitaxial Fe-N thin films
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.245310
– volume: 27
  start-page: 2520
  year: 2016
  ident: 10.1016/j.jmmm.2019.165962_b0155
  article-title: High-purity core-shell α″-Fe16N2/Al2O3 nanoparticles synthesized from α-hematite for rare-earth-free magnet applications
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.09.017
– volume: 381
  start-page: 89
  year: 2015
  ident: 10.1016/j.jmmm.2019.165962_b0145
  article-title: Effect of oxidation on α″-Fe16N2 phase formation from plasma-synthesized spherical core–shell α-Fe/Al2O3 nanoparticles
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.12.015
– volume: 18
  start-page: 1009
  year: 2016
  ident: 10.1016/j.jmmm.2019.165962_b0060
  article-title: Preparation of an α″-Fe16N2 magnet via a ball milling and shock compaction approach
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201500455
– volume: 76
  start-page: 6620
  year: 1994
  ident: 10.1016/j.jmmm.2019.165962_b0180
  article-title: The synthesis, structure, and characterization of α″-Fe16N2 (invited)
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.358482
– volume: 460
  start-page: 448
  year: 2018
  ident: 10.1016/j.jmmm.2019.165962_b0020
  article-title: Performance comparison of motors fitted with magnet-to-magnet recycled or conventionally manufactured sintered NdFeB
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.04.034
– volume: 20
  start-page: 492
  year: 1972
  ident: 10.1016/j.jmmm.2019.165962_b0080
  article-title: New magnetic material having ultrahigh magnetic moment
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1654030
– start-page: 1710
  year: 2012
  ident: 10.1016/j.jmmm.2019.165962_b0040
  article-title: Fabrication of Fe16N2 films by sputtering process and experimental investigation of origin of giant saturation magnetization in Fe16N2
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2011.2170156
– volume: 46
  start-page: 151
  year: 1999
  ident: 10.1016/j.jmmm.2019.165962_b0135
  article-title: Synthesis of iron nitrides FexN (x: 2, 2-3, 4, 16/2) by nitrogenizing .ALPHA.-Fe in ammonia gas, and magnetic properties of the bulk sample of Fe16N2
  publication-title: J. Jpn. Soc. Powder Metall.
  doi: 10.2497/jjspm.46.151
– volume: 1
  start-page: 1337
  year: 2019
  ident: 10.1016/j.jmmm.2019.165962_b0200
  article-title: Synthesis of α″-Fe16N2 ribbons with a porous structure
  publication-title: Nanoscale Adv.
  doi: 10.1039/C9NA00008A
– volume: 12
  year: 2010
  ident: 10.1016/j.jmmm.2019.165962_b0095
  article-title: Theory of giant saturation magnetization in α″-Fe16N2: role of partial localization in ferromagnetism of 3d transition metals
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/6/063032
– ident: 10.1016/j.jmmm.2019.165962_b0205
– volume: 6
  year: 2016
  ident: 10.1016/j.jmmm.2019.165962_b0065
  article-title: Synthesis of α″-Fe16N2 compound anisotropic magnet by the strain-wire method
  publication-title: Phys. Rev. Appl
– volume: 6
  start-page: 25436
  year: 2016
  ident: 10.1016/j.jmmm.2019.165962_b0055
  article-title: Synthesis of Fe16N2 compound free-standing foils with 20 MGOe magnetic energy product by nitrogen ion-implantation
  publication-title: Sci. Rep.
  doi: 10.1038/srep25436
– volume: 299
  start-page: 686
  year: 2003
  ident: 10.1016/j.jmmm.2019.165962_b0195
  article-title: Nitriding iron at lower temperatures
  publication-title: Science (80-)
  doi: 10.1126/science.1080216
– volume: 98
  year: 2011
  ident: 10.1016/j.jmmm.2019.165962_b0100
  article-title: N site ordering effect on partially ordered Fe[sub 16]N[sub 2]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3560051
SSID ssj0001486
ssib019626450
Score 2.5584671
SecondaryResourceType review_article
Snippet •α″-Fe16N2 was viewed as a mystery material because of inconclusive arguments in 1990s, including many controversial reports at two specific symposia at MMM...
α″-Fe16N2 had been viewed as a mystery material because of inconclusive arguments in the 1990s, including many controversial reports at two MMM conference...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 165962
SubjectTerms Bulk iron nitride magnet
Coercivity
Disk drives
Flux density
Foils
High temperature
Ion implantation
Iron nitride
Low temperature
Magnetic anisotropy
Magnetic energy product
Magnetic flux
Magnetic materials
Magnetism
Melt spinning
Nanoparticles
Permanent magnet
Permanent magnets
Rare earth elements
Rare-earth-free magnet
Raw materials
Wind turbines
α″-Fe16N2
Title Environment-friendly bulk Fe16N2 permanent magnet: Review and prospective
URI https://dx.doi.org/10.1016/j.jmmm.2019.165962
https://www.proquest.com/docview/2334711482
https://www.osti.gov/biblio/1874086
Volume 497
WOSCitedRecordID wos000501596800116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001486
  issn: 0304-8853
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5BChIXxFOEFrQHbpGrrHfX9nKrqlSUQ9RDkXJbeV9IIXGqJkXl3zPjXTsRhAgOXCzHyqyS-cYz4_XMN4R88IHlYy54FsBDZqIqBFLehsw55ZiTXvAQh02U02k1m6mrNEdv3Y4TKJumur9XN_8VargGYGPr7D_A3S8KF-AcQIcjwA7HvwJ-sm1dywKyGLvFj5G5W3wbXXhWTHNkKl7WDdYALOuvjd_Emri2gyWyBqx22y_3ZK5RrJuukT5ZONnE_7fdpE_lvmCC2VUXI9MWAzxP9jVWcd8rBekd18THgGkVaX47PypioW0ymPO9_jluFcxP58sl0gAwdcoKnP-zjUZ9jWA7LLAqHpKjvJQKHNbR2eVk9rkPs_AcF19Ep5-SOqJi8d6v6_8p6xiswJH-Fobb3OL6GXmaVEvPIpjPyQPfvCCP2-Jcu35JLvdBShFSGiGlPaQ0ovGRRkApAER3AH1FvlxMrs8_ZWkERmYhc9xkIrfGVUEoZNK0uWF1QA6-wMyYGVbie2tnnAtWVZWSXlpR-EIFbpznRZA1f00GzarxbwitDXKzMT-G5YQ0kKiGXFpXYKdzKb0aEtapSNvED49jSha6KwSca1SrRrXqqNYhGfUyN5Ed5eC3Zad5nfK7mLdpMI-DcscIE8ogsbHFCjAQSgYyJCcdejrdhmudcw5ZF3Lcvj0ofEyebA3-hAw2t3f-HXlkv8NNdPs-mdxPj8qAmw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environment-friendly+bulk+Fe16N2+permanent+magnet%3A+Review+and+prospective&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Wang%2C+Jian-Ping&rft.date=2020-03-01&rft.pub=Elsevier&rft.issn=0304-8853&rft.volume=497&rft.issue=C&rft_id=info:doi/10.1016%2Fj.jmmm.2019.165962&rft.externalDocID=1874086
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon