Environment-friendly bulk Fe16N2 permanent magnet: Review and prospective
•α″-Fe16N2 was viewed as a mystery material because of inconclusive arguments in 1990s, including many controversial reports at two specific symposia at MMM conferences.•Then the topic was largely dropped by the magnetic research community.•The key controversies around this material have been succes...
Gespeichert in:
| Veröffentlicht in: | Journal of magnetism and magnetic materials Jg. 497; H. C; S. 165962 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.03.2020
Elsevier BV Elsevier |
| Schlagworte: | |
| ISSN: | 0304-8853, 1873-4766 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •α″-Fe16N2 was viewed as a mystery material because of inconclusive arguments in 1990s, including many controversial reports at two specific symposia at MMM conferences.•Then the topic was largely dropped by the magnetic research community.•The key controversies around this material have been successfully addressed through our long and persistent effort from 2002 to 2012, which was reported at APS Marching Meeting 2010 and INTERMAG 2012.•Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its usage of environment-friendly raw materials, its confirmed giant saturation magnetization and reasonably high magnetic anisotropy constant.•Iron nitride magnet is of great interest as a magnetic material for the applications at relatively low temperature (<150 °C) ranging from speaker magnets, magnets in hard disk drives and all kinds of electrical motors, wind turbines, and other power generation machines.•A perspective review on the synthesis of bulk α″-Fe16N2 compound permanent magnet in past was presented here on the aspects of material processing and magnetic characterizations.•Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires and melt-spun ribbons and a low-temperature nitridation method based on foils and ribbons.•With our recent progress and many good on-going activities by researchers worldwide, we believe that α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate.
α″-Fe16N2 had been viewed as a mystery material because of inconclusive arguments in the 1990s, including many controversial reports at two MMM conference symposia, and the topic was then largely dropped by the magnetic research community. The key controversies around this material have now been successfully addressed through our long and persistent efforts from 2002 to 2012, first reported in APS 2010 and then at INTERMAG 2012. Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its use of environment-friendly raw materials, confirmed giant saturation magnetic flux density (2.9 T), and reasonably high magnetic anisotropy constant (1.8 MJ/m3). Its coercivity temperature coefficient (~0.4 Oe/°C) in the range of 27–152 °C is two orders of magnitude lower than that of commercial NdFeB magnets (e.g. N40 ~ −81.9 Oe/K). The iron nitride magnet is of great interest as a magnetic material for applications working at relatively low temperature (<150 °C) and not requesting high coercivity. These applications range from speaker magnets to magnets in hard disk drives, electrical motors, wind turbines, smart phones, audio devices, and other power generation machines. A perspective review on the synthesis of the bulk α″-Fe16N2 compound permanent magnet is presented here on the aspects of material processing and magnetic characterizations. Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires, and melt-spun ribbons, and a low-temperature nitridation method based on foils and ribbons. With our recent progress and many on-going activities by researchers worldwide, we believe that the α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate. |
|---|---|
| AbstractList | α″-Fe16N2 had been viewed as a mystery material because of inconclusive arguments in the 1990s, including many controversial reports at two MMM conference symposia, and the topic was then largely dropped by the magnetic research community. The key controversies around this material have now been successfully addressed through our long and persistent efforts from 2002 to 2012, first reported in APS 2010 and then at INTERMAG 2012. Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its use of environment-friendly raw materials, confirmed giant saturation magnetic flux density (2.9 T), and reasonably high magnetic anisotropy constant (1.8 MJ/m3). Its coercivity temperature coefficient (~0.4 Oe/°C) in the range of 27–152 °C is two orders of magnitude lower than that of commercial NdFeB magnets (e.g. N40 ~ −81.9 Oe/K). The iron nitride magnet is of great interest as a magnetic material for applications working at relatively low temperature (<150 °C) and not requesting high coercivity. These applications range from speaker magnets to magnets in hard disk drives, electrical motors, wind turbines, smart phones, audio devices, and other power generation machines. A perspective review on the synthesis of the bulk α″-Fe16N2 compound permanent magnet is presented here on the aspects of material processing and magnetic characterizations. Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires, and melt-spun ribbons, and a low-temperature nitridation method based on foils and ribbons. With our recent progress and many on-going activities by researchers worldwide, we believe that the α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate. •α″-Fe16N2 was viewed as a mystery material because of inconclusive arguments in 1990s, including many controversial reports at two specific symposia at MMM conferences.•Then the topic was largely dropped by the magnetic research community.•The key controversies around this material have been successfully addressed through our long and persistent effort from 2002 to 2012, which was reported at APS Marching Meeting 2010 and INTERMAG 2012.•Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its usage of environment-friendly raw materials, its confirmed giant saturation magnetization and reasonably high magnetic anisotropy constant.•Iron nitride magnet is of great interest as a magnetic material for the applications at relatively low temperature (<150 °C) ranging from speaker magnets, magnets in hard disk drives and all kinds of electrical motors, wind turbines, and other power generation machines.•A perspective review on the synthesis of bulk α″-Fe16N2 compound permanent magnet in past was presented here on the aspects of material processing and magnetic characterizations.•Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires and melt-spun ribbons and a low-temperature nitridation method based on foils and ribbons.•With our recent progress and many good on-going activities by researchers worldwide, we believe that α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate. α″-Fe16N2 had been viewed as a mystery material because of inconclusive arguments in the 1990s, including many controversial reports at two MMM conference symposia, and the topic was then largely dropped by the magnetic research community. The key controversies around this material have now been successfully addressed through our long and persistent efforts from 2002 to 2012, first reported in APS 2010 and then at INTERMAG 2012. Since then, α″-Fe16N2 has been picked up as one of the most promising rare-earth-free magnet candidates because of its use of environment-friendly raw materials, confirmed giant saturation magnetic flux density (2.9 T), and reasonably high magnetic anisotropy constant (1.8 MJ/m3). Its coercivity temperature coefficient (~0.4 Oe/°C) in the range of 27–152 °C is two orders of magnitude lower than that of commercial NdFeB magnets (e.g. N40 ~ −81.9 Oe/K). The iron nitride magnet is of great interest as a magnetic material for applications working at relatively low temperature (<150 °C) and not requesting high coercivity. These applications range from speaker magnets to magnets in hard disk drives, electrical motors, wind turbines, smart phones, audio devices, and other power generation machines. A perspective review on the synthesis of the bulk α″-Fe16N2 compound permanent magnet is presented here on the aspects of material processing and magnetic characterizations. Specifically, we introduce and discuss our efforts to prepare the bulk Fe16N2 compound permanent magnet by using four different approaches, including an ion implantation method, a nanoparticle based approach, a high-temperature nitridation method based on foils, wires, and melt-spun ribbons, and a low-temperature nitridation method based on foils and ribbons. With our recent progress and many on-going activities by researchers worldwide, we believe that the α″-Fe16N2 compound permanent magnet is in an accelerating stage to be an alternative environment-friendly magnet candidate. |
| ArticleNumber | 165962 |
| Author | Wang, Jian-Ping |
| Author_xml | – sequence: 1 givenname: Jian-Ping surname: Wang fullname: Wang, Jian-Ping email: jpwang@umn.edu organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA |
| BackLink | https://www.osti.gov/biblio/1874086$$D View this record in Osti.gov |
| BookMark | eNp9kEtLxDAUhYMoOD7-gKui6455NZOKG5HxAaIgug5pcqOp03RMMyP-e1PqyoWrLHLO5TvfAdoNfQCETgieE0zEeTtvu66bU0zqORFVLegOmhG5YCVfCLGLZphhXkpZsX10MAwtxphwKWbofhm2Pvahg5BKFz0Eu_oums3qo7gBIh5psYbY6ZC_i06_BUgXxTNsPXwVOthiHfthDSb5LRyhPadXAxz_vofo9Wb5cn1XPjzd3l9fPZSG1XUqOTWNlY7X2lBsaEO0I5QwRxpMGrLAnHLbWOtMLWVdQWW4AFE71lhgwlWaHaLT6W4_JK8G4xOYd9OHkDFUnsyxFDl0NoUy4OcGhqTafhND5lKUMb4geT3NKTqlTJ4xRHBqHX2n47ciWI1eVatGr2r0qiavuST_lDKCTr4PKWq_-r96OVUh-8kO44gPwYD1caS3vf-v_gN3_ZUt |
| CitedBy_id | crossref_primary_10_1038_s41563_024_01829_9 crossref_primary_10_1016_j_jallcom_2024_177260 crossref_primary_10_1063_5_0243499 crossref_primary_10_35848_1347_4065_ad1012 crossref_primary_10_1016_j_jmmm_2022_169696 crossref_primary_10_1016_j_jmmm_2025_173454 crossref_primary_10_1016_j_jmmm_2025_173277 crossref_primary_10_1063_9_0000354 crossref_primary_10_1109_TMAG_2022_3151109 crossref_primary_10_1007_s11051_020_4758_0 crossref_primary_10_1063_9_0000916 crossref_primary_10_1016_j_mtla_2024_102316 crossref_primary_10_1016_j_jmmm_2023_171458 crossref_primary_10_1063_9_0000837 crossref_primary_10_3390_cryst14070624 crossref_primary_10_1088_1741_4326_aba453 crossref_primary_10_1016_j_jallcom_2023_170258 crossref_primary_10_1016_j_jmmm_2020_167388 crossref_primary_10_1039_D4NR04035J crossref_primary_10_1039_D1QM00224D crossref_primary_10_1016_j_jmmm_2021_167928 crossref_primary_10_3390_ma17133110 crossref_primary_10_1063_9_0000580 crossref_primary_10_1093_nsr_nwae107 crossref_primary_10_1016_j_actamat_2022_118064 crossref_primary_10_1016_j_ceramint_2024_03_183 crossref_primary_10_1016_j_physb_2024_415759 crossref_primary_10_1063_5_0098628 crossref_primary_10_1063_9_0000202 crossref_primary_10_1016_j_jmmm_2022_169345 crossref_primary_10_1063_9_0000929 crossref_primary_10_1103_PhysRevApplied_18_044006 crossref_primary_10_1002_adfm_202424988 crossref_primary_10_3390_app132011529 crossref_primary_10_3390_en17235861 crossref_primary_10_1063_9_0000606 crossref_primary_10_1063_9_0000628 crossref_primary_10_1016_j_mtphys_2022_100675 crossref_primary_10_1063_9_0000902 crossref_primary_10_1002_aelm_202200515 crossref_primary_10_1039_D2CP01734B crossref_primary_10_1088_1741_4326_abcdb6 crossref_primary_10_1002_adem_202000311 crossref_primary_10_1063_5_0148954 crossref_primary_10_1088_1361_648X_acd319 crossref_primary_10_1016_j_joule_2025_101849 crossref_primary_10_1063_5_0033577 crossref_primary_10_1016_j_mtcomm_2024_110538 |
| Cites_doi | 10.1007/s11837-012-0351-z 10.7567/APEX.6.073007 10.1063/1.4792706 10.1063/1.4704368 10.1021/ie50369a030 10.1103/PhysRevB.86.174422 10.1063/1.4847315 10.1063/1.4798959 10.1063/1.356925 10.1007/s11661-012-1278-2 10.1063/1.358157 10.1063/1.3565403 10.3379/jmsjmag.25.927 10.2320/matertrans.M2019019 10.1002/adma.201002180 10.1038/nature11475 10.1016/j.actamat.2018.07.049 10.1039/C5NR07859H 10.1002/pssr.201900089 10.1109/TMAG.2011.2166975 10.1016/j.actamat.2019.01.034 10.1016/j.actamat.2016.10.061 10.1039/c3nr06867f 10.1007/s11661-002-0380-2 10.1103/PhysRevB.84.245310 10.1016/j.apt.2016.09.017 10.1016/j.jmmm.2014.12.015 10.1002/adem.201500455 10.1063/1.358482 10.1016/j.jmmm.2018.04.034 10.1063/1.1654030 10.1109/TMAG.2011.2170156 10.2497/jjspm.46.151 10.1039/C9NA00008A 10.1088/1367-2630/12/6/063032 10.1038/srep25436 10.1126/science.1080216 10.1063/1.3560051 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 1, 2020 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 1, 2020 |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M OTOTI |
| DOI | 10.1016/j.jmmm.2019.165962 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1873-4766 |
| ExternalDocumentID | 1874086 10_1016_j_jmmm_2019_165962 S0304885319325454 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K XPP ZMT ~02 ~G- 29K 5VS 9DU AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CITATION D-I EFKBS EJD FGOYB G-2 HMV HZ~ NDZJH R2- SEW SMS SPG WUQ XXG ~HD 7SR 7U5 8BQ 8FD JG9 L7M AALMO ABPIF OTOTI |
| ID | FETCH-LOGICAL-c399t-42cbd8f49ac20c2b1af1213f1b01b170424dbddfc98895e5c46e69f3bde36f5a3 |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501596800116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-8853 |
| IngestDate | Fri May 19 00:40:32 EDT 2023 Sun Nov 09 07:03:37 EST 2025 Sat Nov 29 07:23:39 EST 2025 Tue Nov 18 22:34:58 EST 2025 Fri Feb 23 02:49:33 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Bulk iron nitride magnet α″-Fe16N2 Permanent magnet Rare-earth-free magnet Iron nitride Magnetic energy product |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c399t-42cbd8f49ac20c2b1af1213f1b01b170424dbddfc98895e5c46e69f3bde36f5a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
| OpenAccessLink | https://www.osti.gov/biblio/1874086 |
| PQID | 2334711482 |
| PQPubID | 2045450 |
| ParticipantIDs | osti_scitechconnect_1874086 proquest_journals_2334711482 crossref_primary_10_1016_j_jmmm_2019_165962 crossref_citationtrail_10_1016_j_jmmm_2019_165962 elsevier_sciencedirect_doi_10_1016_j_jmmm_2019_165962 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
| PublicationTitle | Journal of magnetism and magnetic materials |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV – name: Elsevier |
| References | Coey (b0030) 2011; 47 Liu, Guo, Zhang, Wu, Ma, Wang (b0200) 2019; 1 Cui, Kramer, Zhou, Liu, Gabay, Hadjipanayis, Balasubramanian, Sellmyer (b0050) 2018; 158 Kim, Takahashi (b0080) 1972; 20 Horie, Ogi, Tameka, Okuyama, Iwaki, Li (b0155) 2016; 27 Lewis, Jiménez-Villacorta (b0010) 2013; 44 Ji, Allard, Lara-Curzio, Wang (b0100) 2011; 98 Jiang, Al Mehedi, Fu, Wang, Allard, Wang (b0055) 2016; 6 Zulhijah, Nandiyanto, Ogi, Iwaki, Nakamura, Okuyama (b0145) 2015; 381 Ji, Lauter, Zhang, Ambaye, Wang (b0110) 2013; 102 Tong, Tao, Wang, Lu, Lu (b0195) 2003; 299 Prosperi, Bevan, Ugalde, Tudor, Furlan, Dove, Lucia, Zakotnik (b0020) 2018; 460 Sugita, Takahashi, Komuro, Mitsuoka, Sakuma (b0085) 1994; 76 Kojima, Kameoka, Mizuguchi, Takanashi, Tsai (b0215) 2019; 60 Ji, Wu, Wang (b0090) 2011; 109 Jack (b0180) 1994; 76 Li, Yang, Jamali, Shi, Kang, Jiang, Zhang, Li, Okatov, Faleev, Kalitsov, Yu, Voyles, Mryasov, Wang (b0045) 2019; 13 Hattori, Kamiya, Kato (b0140) 2001; 25 Wang, Ji, Liu, Xu, Sánchez-Hanke, Wu, De Groot, Allard, Lara-Curzio (b0040) 2012 Ji, Liu, Wang (b0095) 2010; 12 Wehrenberg, Zande, Simizu, Obermyer, Sankar, Thadhani (b0120) 2012; 111 Gutfleisch, Willard, Brück, Chen, Sankar, Liu (b0005) 2011; 23 Jiang, Dabade, Allard, Lara-Curzio, James, Wang (b0065) 2016; 6 Zulhijah, Dani Nandiyanto, Ogi, Iwaki, Nakamura, Okuyama (b0170) 2014; 6 Jack (b0070) 1951; 208 Huang, Wallace, Simizu, Pedziwiatr, Obermyer, Sankar (b0185) 1994; 75 Mehedi, Jiang, Ma, Wang (b0190) 2019; 167 Jiang, Liu, Suri, Kennedy, Thadhani, Flannigan, Wang (b0060) 2016; 18 Nagatomi, Kikkawa, Hinomura, Nasu, Kanamaru (b0135) 1999; 46 Ogawa, Ogata, Gallage, Kobayashi, Hayashi, Kusano, Yamamoto, Kohara, Doi, Takano, Takahashi (b0150) 2013; 6 Chu, Majumdar (b0025) 2012; 488 Ogi, Dani Nandiyanto, Kisakibaru, Iwaki, Nakamura, Okuyama (b0165) 2013; 113 Kramer, McCallum, Anderson, Constantinides (b0015) 2012; 64 Wang, Ji, Liu, Xu, Sanchez-Hanke (b0035) 2010 Ogi, Dani Nandiyanto, Kisakibaru, Iwaki, Nakamura, Okuyama (b0175) 2013; 113 Kartikowati, Suhendi, Zulhijah, Ogi, Iwaki, Okuyama (b0130) 2016; 8 Dirba, Schwöbel, Diop, Duerrschnabel, Molina-Luna, Hofmann, Komissinskiy, Kleebe, Gutfleisch (b0160) 2017; 123 Yang, Allard, Ji, Zhang, Yu, Wang (b0115) 2013; 103 van Voorthuysen, Boerma, Chechenin (b0075) 2002; 33 Ji, Osofsky, Lauter, Allard, Li, Jensen, Ambaye, Lara-Curzio, Wang (b0105) 2011; 84 Raney (b0210) 1940; 32 Sims, Butler, Richter, Koepernik, AşIoǧlu, Friedrich, Blügel (b0125) 2012; 86 J. Liu, J.-P. Wang, et al., to be published. Jiang (10.1016/j.jmmm.2019.165962_b0065) 2016; 6 Raney (10.1016/j.jmmm.2019.165962_b0210) 1940; 32 Nagatomi (10.1016/j.jmmm.2019.165962_b0135) 1999; 46 10.1016/j.jmmm.2019.165962_b0205 Hattori (10.1016/j.jmmm.2019.165962_b0140) 2001; 25 Mehedi (10.1016/j.jmmm.2019.165962_b0190) 2019; 167 Cui (10.1016/j.jmmm.2019.165962_b0050) 2018; 158 Ji (10.1016/j.jmmm.2019.165962_b0095) 2010; 12 Kim (10.1016/j.jmmm.2019.165962_b0080) 1972; 20 Kramer (10.1016/j.jmmm.2019.165962_b0015) 2012; 64 Dirba (10.1016/j.jmmm.2019.165962_b0160) 2017; 123 Chu (10.1016/j.jmmm.2019.165962_b0025) 2012; 488 Ji (10.1016/j.jmmm.2019.165962_b0100) 2011; 98 Tong (10.1016/j.jmmm.2019.165962_b0195) 2003; 299 Kojima (10.1016/j.jmmm.2019.165962_b0215) 2019; 60 Horie (10.1016/j.jmmm.2019.165962_b0155) 2016; 27 Wang (10.1016/j.jmmm.2019.165962_b0035) 2010 van Voorthuysen (10.1016/j.jmmm.2019.165962_b0075) 2002; 33 Wang (10.1016/j.jmmm.2019.165962_b0040) 2012 Ogawa (10.1016/j.jmmm.2019.165962_b0150) 2013; 6 Ogi (10.1016/j.jmmm.2019.165962_b0165) 2013; 113 Ogi (10.1016/j.jmmm.2019.165962_b0175) 2013; 113 Jack (10.1016/j.jmmm.2019.165962_b0070) 1951; 208 Zulhijah (10.1016/j.jmmm.2019.165962_b0145) 2015; 381 Jiang (10.1016/j.jmmm.2019.165962_b0055) 2016; 6 Coey (10.1016/j.jmmm.2019.165962_b0030) 2011; 47 Prosperi (10.1016/j.jmmm.2019.165962_b0020) 2018; 460 Kartikowati (10.1016/j.jmmm.2019.165962_b0130) 2016; 8 Ji (10.1016/j.jmmm.2019.165962_b0105) 2011; 84 Huang (10.1016/j.jmmm.2019.165962_b0185) 1994; 75 Yang (10.1016/j.jmmm.2019.165962_b0115) 2013; 103 Li (10.1016/j.jmmm.2019.165962_b0045) 2019; 13 Jack (10.1016/j.jmmm.2019.165962_b0180) 1994; 76 Ji (10.1016/j.jmmm.2019.165962_b0110) 2013; 102 Liu (10.1016/j.jmmm.2019.165962_b0200) 2019; 1 Wehrenberg (10.1016/j.jmmm.2019.165962_b0120) 2012; 111 Sugita (10.1016/j.jmmm.2019.165962_b0085) 1994; 76 Ji (10.1016/j.jmmm.2019.165962_b0090) 2011; 109 Jiang (10.1016/j.jmmm.2019.165962_b0060) 2016; 18 Sims (10.1016/j.jmmm.2019.165962_b0125) 2012; 86 Zulhijah (10.1016/j.jmmm.2019.165962_b0170) 2014; 6 Lewis (10.1016/j.jmmm.2019.165962_b0010) 2013; 44 Gutfleisch (10.1016/j.jmmm.2019.165962_b0005) 2011; 23 |
| References_xml | – volume: 299 start-page: 686 year: 2003 end-page: 688 ident: b0195 article-title: Nitriding iron at lower temperatures publication-title: Science (80-) – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: b0025 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature – volume: 167 start-page: 80 year: 2019 end-page: 88 ident: b0190 article-title: Nitriding and martensitic phase transformation of the copper and boron doped iron nitride magnet publication-title: Acta Mater. – start-page: 1710 year: 2012 end-page: 1717 ident: b0040 article-title: Fabrication of Fe publication-title: IEEE Trans. Magn. – volume: 6 year: 2016 ident: b0065 article-title: Synthesis of α″-Fe publication-title: Phys. Rev. Appl – volume: 113 start-page: 164301 year: 2013 ident: b0165 article-title: Facile synthesis of single-phase spherical α″-Fe publication-title: J. Appl. Phys. – volume: 111 year: 2012 ident: b0120 article-title: Shock compression response of α″-Fe publication-title: J. Appl. Phys. – volume: 20 start-page: 492 year: 1972 end-page: 494 ident: b0080 article-title: New magnetic material having ultrahigh magnetic moment publication-title: Appl. Phys. Lett. – volume: 44 start-page: 2 year: 2013 end-page: 20 ident: b0010 article-title: Perspectives on permanent magnetic materials for energy conversion and power generation publication-title: Metall. Mater. Trans. A – volume: 13 start-page: 1900089 year: 2019 ident: b0045 article-title: Heavy-metal-free, low-damping, and non-interface perpendicular Fe publication-title: Phys. Status Solidi Rapid Res. Lett. – volume: 109 start-page: 07B767 year: 2011 ident: b0090 article-title: Epitaxial high saturation magnetization FeN thin films on Fe(0 0 1) seeded GaAs(0 0 1) single crystal wafer using facing target sputterings publication-title: J. Appl. Phys. – volume: 158 start-page: 118 year: 2018 end-page: 137 ident: b0050 article-title: Current progress and future challenges in rare-earth-free permanent magnets publication-title: Acta Mater. – volume: 103 year: 2013 ident: b0115 article-title: The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe publication-title: Appl. Phys. Lett. – volume: 76 start-page: 6620 year: 1994 end-page: 6625 ident: b0180 article-title: The synthesis, structure, and characterization of α″-Fe publication-title: J. Appl. Phys. – volume: 460 start-page: 448 year: 2018 end-page: 453 ident: b0020 article-title: Performance comparison of motors fitted with magnet-to-magnet recycled or conventionally manufactured sintered NdFeB publication-title: J. Magn. Magn. Mater. – volume: 102 year: 2013 ident: b0110 article-title: Strain induced giant magnetism in epitaxial Fe publication-title: Appl. Phys. Lett. – volume: 25 start-page: 927 year: 2001 end-page: 930 ident: b0140 article-title: Magnetic properties of Fe publication-title: J. Magn. Soc. Jpn. – volume: 23 start-page: 821 year: 2011 end-page: 842 ident: b0005 article-title: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient publication-title: Adv. Mater. – volume: 33 start-page: 2593 year: 2002 end-page: 2598 ident: b0075 article-title: Low-temperature extension of the lehrer diagram and the iron-nitrogen phase diagram publication-title: Metall. Mater. Trans. A – volume: 8 start-page: 2648 year: 2016 end-page: 2655 ident: b0130 article-title: Effect of magnetic field strength on the alignment of α″-Fe publication-title: Nanoscale. – volume: 113 start-page: 164301 year: 2013 ident: b0175 article-title: Facile synthesis of single-phase spherical α″-Fe publication-title: J. Appl. Phys. – volume: 46 start-page: 151 year: 1999 end-page: 155 ident: b0135 article-title: Synthesis of iron nitrides FexN (x: 2, 2-3, 4, 16/2) by nitrogenizing .ALPHA.-Fe in ammonia gas, and magnetic properties of the bulk sample of Fe publication-title: J. Jpn. Soc. Powder Metall. – volume: 98 year: 2011 ident: b0100 article-title: N site ordering effect on partially ordered Fe[sub 16]N[sub 2] publication-title: Appl. Phys. Lett. – volume: 123 start-page: 214 year: 2017 end-page: 222 ident: b0160 article-title: Synthesis, morphology, thermal stability and magnetic properties of α″-Fe publication-title: Acta Mater. – volume: 18 start-page: 1009 year: 2016 end-page: 1016 ident: b0060 article-title: Preparation of an α″-Fe publication-title: Adv. Eng. Mater. – volume: 381 start-page: 89 year: 2015 end-page: 98 ident: b0145 article-title: Effect of oxidation on α″-Fe publication-title: J. Magn. Magn. Mater. – reference: J. Liu, J.-P. Wang, et al., to be published. – volume: 75 start-page: 6574 year: 1994 ident: b0185 article-title: Synthesis and characterization of Fe publication-title: J. Appl. Phys. – volume: 6 start-page: 25436 year: 2016 ident: b0055 article-title: Synthesis of Fe publication-title: Sci. Rep. – volume: 6 year: 2013 ident: b0150 article-title: Challenge to the synthesis of α″-Fe publication-title: Appl. Phys Express – volume: 84 year: 2011 ident: b0105 article-title: Perpendicular magnetic anisotropy and high spin-polarization ratio in epitaxial Fe-N thin films publication-title: Phys. Rev. B – volume: 32 start-page: 1199 year: 1940 end-page: 1203 ident: b0210 article-title: Catalysts from alloys publication-title: Ind. Eng. Chem. – year: 2010 ident: b0035 article-title: Origin of giant saturation magnetization in Fe publication-title: APS March Meeting – volume: 6 start-page: 6487 year: 2014 ident: b0170 article-title: Gas phase preparation of spherical core–shell α″-Fe publication-title: Nanoscale – volume: 208 start-page: 216 year: 1951 end-page: 224 ident: b0070 article-title: The occurrence and the crystal structure of formula-iron nitride; a new type of interstitial alloy formed during the tempering of nitrogen-martensite publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci. – volume: 64 start-page: 752 year: 2012 end-page: 763 ident: b0015 article-title: Prospects for non-rare earth permanent magnets for traction motors and generators publication-title: JOM – volume: 12 year: 2010 ident: b0095 article-title: Theory of giant saturation magnetization in α″-Fe publication-title: New J. Phys. – volume: 1 start-page: 1337 year: 2019 end-page: 1342 ident: b0200 article-title: Synthesis of α″-Fe publication-title: Nanoscale Adv. – volume: 47 start-page: 4671 year: 2011 end-page: 4681 ident: b0030 article-title: Hard magnetic materials: a perspective publication-title: IEEE Trans. Magn. – volume: 76 start-page: 6637 year: 1994 end-page: 6641 ident: b0085 article-title: Magnetic and Mössbauer studies of single-crystal Fe publication-title: J. Appl. Phys. – volume: 86 start-page: 1 year: 2012 end-page: 7 ident: b0125 article-title: Theoretical investigation into the possibility of very large moments in Fe publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 27 start-page: 2520 year: 2016 end-page: 2525 ident: b0155 article-title: High-purity core-shell α″-Fe publication-title: Adv. Powder Technol. – volume: 60 start-page: 1066 year: 2019 end-page: 1071 ident: b0215 article-title: FeNi and Fe publication-title: Mater. Trans. – volume: 64 start-page: 752 year: 2012 ident: 10.1016/j.jmmm.2019.165962_b0015 article-title: Prospects for non-rare earth permanent magnets for traction motors and generators publication-title: JOM doi: 10.1007/s11837-012-0351-z – volume: 6 year: 2013 ident: 10.1016/j.jmmm.2019.165962_b0150 article-title: Challenge to the synthesis of α″-Fe16N2 compound nanoparticle with high saturation magnetization for rare earth free new permanent magnetic material publication-title: Appl. Phys Express doi: 10.7567/APEX.6.073007 – volume: 102 year: 2013 ident: 10.1016/j.jmmm.2019.165962_b0110 article-title: Strain induced giant magnetism in epitaxial Fe16N2 thin film publication-title: Appl. Phys. Lett. doi: 10.1063/1.4792706 – volume: 111 year: 2012 ident: 10.1016/j.jmmm.2019.165962_b0120 article-title: Shock compression response of α″-Fe16N2 nanoparticles publication-title: J. Appl. Phys. doi: 10.1063/1.4704368 – volume: 32 start-page: 1199 year: 1940 ident: 10.1016/j.jmmm.2019.165962_b0210 article-title: Catalysts from alloys publication-title: Ind. Eng. Chem. doi: 10.1021/ie50369a030 – volume: 86 start-page: 1 year: 2012 ident: 10.1016/j.jmmm.2019.165962_b0125 article-title: Theoretical investigation into the possibility of very large moments in Fe16N2 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.86.174422 – volume: 103 year: 2013 ident: 10.1016/j.jmmm.2019.165962_b0115 article-title: The effect of strain induced by Ag underlayer on saturation magnetization of partially ordered Fe16N2 thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.4847315 – volume: 113 start-page: 164301 year: 2013 ident: 10.1016/j.jmmm.2019.165962_b0175 article-title: Facile synthesis of single-phase spherical α″-Fe16N2/Al2O3 core-shell nanoparticles via a gas-phase method publication-title: J. Appl. Phys. doi: 10.1063/1.4798959 – volume: 75 start-page: 6574 year: 1994 ident: 10.1016/j.jmmm.2019.165962_b0185 article-title: Synthesis and characterization of Fe16N2 in bulk form publication-title: J. Appl. Phys. doi: 10.1063/1.356925 – year: 2010 ident: 10.1016/j.jmmm.2019.165962_b0035 article-title: Origin of giant saturation magnetization in Fe16N2: Beyong slater-pauling curve and a 40-year mystery in magnetic materials and magnetism – volume: 44 start-page: 2 year: 2013 ident: 10.1016/j.jmmm.2019.165962_b0010 article-title: Perspectives on permanent magnetic materials for energy conversion and power generation publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-012-1278-2 – volume: 76 start-page: 6637 year: 1994 ident: 10.1016/j.jmmm.2019.165962_b0085 article-title: Magnetic and Mössbauer studies of single-crystal Fe16N2 and Fe-N martensite films epitaxially grown by molecular beam epitaxy (invited) publication-title: J. Appl. Phys. doi: 10.1063/1.358157 – volume: 109 start-page: 07B767 year: 2011 ident: 10.1016/j.jmmm.2019.165962_b0090 article-title: Epitaxial high saturation magnetization FeN thin films on Fe(0 0 1) seeded GaAs(0 0 1) single crystal wafer using facing target sputterings publication-title: J. Appl. Phys. doi: 10.1063/1.3565403 – volume: 25 start-page: 927 year: 2001 ident: 10.1016/j.jmmm.2019.165962_b0140 article-title: Magnetic properties of Fe16N2 fine particles publication-title: J. Magn. Soc. Jpn. doi: 10.3379/jmsjmag.25.927 – volume: 113 start-page: 164301 year: 2013 ident: 10.1016/j.jmmm.2019.165962_b0165 article-title: Facile synthesis of single-phase spherical α″-Fe16N2/Al2O3 core-shell nanoparticles via a gas-phase method publication-title: J. Appl. Phys. doi: 10.1063/1.4798959 – volume: 60 start-page: 1066 year: 2019 ident: 10.1016/j.jmmm.2019.165962_b0215 article-title: FeNi and Fe16N2 magnets prepared using leaching publication-title: Mater. Trans. doi: 10.2320/matertrans.M2019019 – volume: 23 start-page: 821 year: 2011 ident: 10.1016/j.jmmm.2019.165962_b0005 article-title: Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient publication-title: Adv. Mater. doi: 10.1002/adma.201002180 – volume: 488 start-page: 294 year: 2012 ident: 10.1016/j.jmmm.2019.165962_b0025 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 158 start-page: 118 year: 2018 ident: 10.1016/j.jmmm.2019.165962_b0050 article-title: Current progress and future challenges in rare-earth-free permanent magnets publication-title: Acta Mater. doi: 10.1016/j.actamat.2018.07.049 – volume: 208 start-page: 216 year: 1951 ident: 10.1016/j.jmmm.2019.165962_b0070 article-title: The occurrence and the crystal structure of formula-iron nitride; a new type of interstitial alloy formed during the tempering of nitrogen-martensite publication-title: Proc. R. Soc. A: Math. Phys. Eng. Sci. – volume: 8 start-page: 2648 year: 2016 ident: 10.1016/j.jmmm.2019.165962_b0130 article-title: Effect of magnetic field strength on the alignment of α″-Fe16N2 nanoparticle films publication-title: Nanoscale. doi: 10.1039/C5NR07859H – volume: 13 start-page: 1900089 year: 2019 ident: 10.1016/j.jmmm.2019.165962_b0045 article-title: Heavy-metal-free, low-damping, and non-interface perpendicular Fe16N2 thin film and magnetoresistance device publication-title: Phys. Status Solidi Rapid Res. Lett. doi: 10.1002/pssr.201900089 – volume: 47 start-page: 4671 year: 2011 ident: 10.1016/j.jmmm.2019.165962_b0030 article-title: Hard magnetic materials: a perspective publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2166975 – volume: 167 start-page: 80 year: 2019 ident: 10.1016/j.jmmm.2019.165962_b0190 article-title: Nitriding and martensitic phase transformation of the copper and boron doped iron nitride magnet publication-title: Acta Mater. doi: 10.1016/j.actamat.2019.01.034 – volume: 123 start-page: 214 year: 2017 ident: 10.1016/j.jmmm.2019.165962_b0160 article-title: Synthesis, morphology, thermal stability and magnetic properties of α″-Fe16N2 nanoparticles obtained by hydrogen reduction of γ-Fe2O3 and subsequent nitrogenation publication-title: Acta Mater. doi: 10.1016/j.actamat.2016.10.061 – volume: 6 start-page: 6487 year: 2014 ident: 10.1016/j.jmmm.2019.165962_b0170 article-title: Gas phase preparation of spherical core–shell α″-Fe16N2/SiO2 magnetic nanoparticles publication-title: Nanoscale doi: 10.1039/c3nr06867f – volume: 33 start-page: 2593 year: 2002 ident: 10.1016/j.jmmm.2019.165962_b0075 article-title: Low-temperature extension of the lehrer diagram and the iron-nitrogen phase diagram publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-002-0380-2 – volume: 84 year: 2011 ident: 10.1016/j.jmmm.2019.165962_b0105 article-title: Perpendicular magnetic anisotropy and high spin-polarization ratio in epitaxial Fe-N thin films publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.245310 – volume: 27 start-page: 2520 year: 2016 ident: 10.1016/j.jmmm.2019.165962_b0155 article-title: High-purity core-shell α″-Fe16N2/Al2O3 nanoparticles synthesized from α-hematite for rare-earth-free magnet applications publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.09.017 – volume: 381 start-page: 89 year: 2015 ident: 10.1016/j.jmmm.2019.165962_b0145 article-title: Effect of oxidation on α″-Fe16N2 phase formation from plasma-synthesized spherical core–shell α-Fe/Al2O3 nanoparticles publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.12.015 – volume: 18 start-page: 1009 year: 2016 ident: 10.1016/j.jmmm.2019.165962_b0060 article-title: Preparation of an α″-Fe16N2 magnet via a ball milling and shock compaction approach publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201500455 – volume: 76 start-page: 6620 year: 1994 ident: 10.1016/j.jmmm.2019.165962_b0180 article-title: The synthesis, structure, and characterization of α″-Fe16N2 (invited) publication-title: J. Appl. Phys. doi: 10.1063/1.358482 – volume: 460 start-page: 448 year: 2018 ident: 10.1016/j.jmmm.2019.165962_b0020 article-title: Performance comparison of motors fitted with magnet-to-magnet recycled or conventionally manufactured sintered NdFeB publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.04.034 – volume: 20 start-page: 492 year: 1972 ident: 10.1016/j.jmmm.2019.165962_b0080 article-title: New magnetic material having ultrahigh magnetic moment publication-title: Appl. Phys. Lett. doi: 10.1063/1.1654030 – start-page: 1710 year: 2012 ident: 10.1016/j.jmmm.2019.165962_b0040 article-title: Fabrication of Fe16N2 films by sputtering process and experimental investigation of origin of giant saturation magnetization in Fe16N2 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2011.2170156 – volume: 46 start-page: 151 year: 1999 ident: 10.1016/j.jmmm.2019.165962_b0135 article-title: Synthesis of iron nitrides FexN (x: 2, 2-3, 4, 16/2) by nitrogenizing .ALPHA.-Fe in ammonia gas, and magnetic properties of the bulk sample of Fe16N2 publication-title: J. Jpn. Soc. Powder Metall. doi: 10.2497/jjspm.46.151 – volume: 1 start-page: 1337 year: 2019 ident: 10.1016/j.jmmm.2019.165962_b0200 article-title: Synthesis of α″-Fe16N2 ribbons with a porous structure publication-title: Nanoscale Adv. doi: 10.1039/C9NA00008A – volume: 12 year: 2010 ident: 10.1016/j.jmmm.2019.165962_b0095 article-title: Theory of giant saturation magnetization in α″-Fe16N2: role of partial localization in ferromagnetism of 3d transition metals publication-title: New J. Phys. doi: 10.1088/1367-2630/12/6/063032 – ident: 10.1016/j.jmmm.2019.165962_b0205 – volume: 6 year: 2016 ident: 10.1016/j.jmmm.2019.165962_b0065 article-title: Synthesis of α″-Fe16N2 compound anisotropic magnet by the strain-wire method publication-title: Phys. Rev. Appl – volume: 6 start-page: 25436 year: 2016 ident: 10.1016/j.jmmm.2019.165962_b0055 article-title: Synthesis of Fe16N2 compound free-standing foils with 20 MGOe magnetic energy product by nitrogen ion-implantation publication-title: Sci. Rep. doi: 10.1038/srep25436 – volume: 299 start-page: 686 year: 2003 ident: 10.1016/j.jmmm.2019.165962_b0195 article-title: Nitriding iron at lower temperatures publication-title: Science (80-) doi: 10.1126/science.1080216 – volume: 98 year: 2011 ident: 10.1016/j.jmmm.2019.165962_b0100 article-title: N site ordering effect on partially ordered Fe[sub 16]N[sub 2] publication-title: Appl. Phys. Lett. doi: 10.1063/1.3560051 |
| SSID | ssj0001486 ssib019626450 |
| Score | 2.5584671 |
| SecondaryResourceType | review_article |
| Snippet | •α″-Fe16N2 was viewed as a mystery material because of inconclusive arguments in 1990s, including many controversial reports at two specific symposia at MMM... α″-Fe16N2 had been viewed as a mystery material because of inconclusive arguments in the 1990s, including many controversial reports at two MMM conference... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 165962 |
| SubjectTerms | Bulk iron nitride magnet Coercivity Disk drives Flux density Foils High temperature Ion implantation Iron nitride Low temperature Magnetic anisotropy Magnetic energy product Magnetic flux Magnetic materials Magnetism Melt spinning Nanoparticles Permanent magnet Permanent magnets Rare earth elements Rare-earth-free magnet Raw materials Wind turbines α″-Fe16N2 |
| Title | Environment-friendly bulk Fe16N2 permanent magnet: Review and prospective |
| URI | https://dx.doi.org/10.1016/j.jmmm.2019.165962 https://www.proquest.com/docview/2334711482 https://www.osti.gov/biblio/1874086 |
| Volume | 497 |
| WOSCitedRecordID | wos000501596800116&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001486 issn: 0304-8853 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5BChIXxFOEFrQHbpGrrHfX9nKrqlSUQ9RDkXJbeV9IIXGqJkXl3zPjXTsRhAgOXCzHyqyS-cYz4_XMN4R88IHlYy54FsBDZqIqBFLehsw55ZiTXvAQh02U02k1m6mrNEdv3Y4TKJumur9XN_8VargGYGPr7D_A3S8KF-AcQIcjwA7HvwJ-sm1dywKyGLvFj5G5W3wbXXhWTHNkKl7WDdYALOuvjd_Emri2gyWyBqx22y_3ZK5RrJuukT5ZONnE_7fdpE_lvmCC2VUXI9MWAzxP9jVWcd8rBekd18THgGkVaX47PypioW0ymPO9_jluFcxP58sl0gAwdcoKnP-zjUZ9jWA7LLAqHpKjvJQKHNbR2eVk9rkPs_AcF19Ep5-SOqJi8d6v6_8p6xiswJH-Fobb3OL6GXmaVEvPIpjPyQPfvCCP2-Jcu35JLvdBShFSGiGlPaQ0ovGRRkApAER3AH1FvlxMrs8_ZWkERmYhc9xkIrfGVUEoZNK0uWF1QA6-wMyYGVbie2tnnAtWVZWSXlpR-EIFbpznRZA1f00GzarxbwitDXKzMT-G5YQ0kKiGXFpXYKdzKb0aEtapSNvED49jSha6KwSca1SrRrXqqNYhGfUyN5Ed5eC3Zad5nfK7mLdpMI-DcscIE8ogsbHFCjAQSgYyJCcdejrdhmudcw5ZF3Lcvj0ofEyebA3-hAw2t3f-HXlkv8NNdPs-mdxPj8qAmw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environment-friendly+bulk+Fe16N2+permanent+magnet%3A+Review+and+prospective&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Wang%2C+Jian-Ping&rft.date=2020-03-01&rft.pub=Elsevier&rft.issn=0304-8853&rft.volume=497&rft.issue=C&rft_id=info:doi/10.1016%2Fj.jmmm.2019.165962&rft.externalDocID=1874086 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon |