An ensemble method for nuclei detection of overlapping cervical cells

The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. T...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 185; s. 115642
Hlavní autori: Diniz, Débora Nasser, Vitor, Rafael Ferreira, Bianchi, Andrea Gomes Campos, Delabrida, Saul, Carneiro, Cláudia Martins, Ushizima, Daniela Mayumi, de Medeiros, Fátima Nelsizeuma Sombra, Souza, Marcone Jamilson Freitas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier Ltd 15.12.2021
Elsevier BV
Elsevier
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. Therefore there is hope that a support decision system could assist with clinical diagnosis, for example, by identifying sub-cellular abnormalities, such as changes in the nuclei features. This work proposes an ensemble method for cervical nuclei detection aiming to reduce the workload of cytopathologists. First, a preprocessing phase divides the original image into superpixels, which are input to feature extraction and selection algorithms. The proposed ensemble method combines three classifiers: Decision Tree (DT), Nearest Centroid (NC), and k-Nearest Neighbors (k-NN), which are evaluated against the ISBI’14 Overlapping Cervical Cytology Image Segmentation Challenge dataset. Experiments show that the proposed method is the state-of-the-art algorithm of the literature for recall (0.999) and F1 values (0.993). It produced a recall very close to the optimum value and also kept high precision (0.988). [Display omitted] •Ensemble of classifiers to provide a more assertive cervical cell nuclei segmentation.•Automatic inspection of Pap smear test to reduce the human workload in cervical cell analysis.•Superpixel computation and feature extraction to improve cell characterization and classification.
AbstractList The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. Therefore the expectation is that a support decision system could assist with screening the most relevant cells, for example, by identifying sub-cellular abnormalities, such as changes in the nuclei features. Here, this work proposes a computational method for cervical nuclei detection aimed to reduce the workload of cytopathologists.
The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. Therefore there is hope that a support decision system could assist with clinical diagnosis, for example, by identifying sub-cellular abnormalities, such as changes in the nuclei features. This work proposes an ensemble method for cervical nuclei detection aiming to reduce the workload of cytopathologists. First, a preprocessing phase divides the original image into superpixels, which are input to feature extraction and selection algorithms. The proposed ensemble method combines three classifiers: Decision Tree (DT), Nearest Centroid (NC), and k-Nearest Neighbors (k-NN), which are evaluated against the ISBI'14 Overlapping Cervical Cytology Image Segmentation Challenge dataset. Experiments show that the proposed method is the state-of-the-art algorithm of the literature for recall (0.999) and F1 values (0.993). It produced a recall very close to the optimum value and also kept high precision (0.988).
The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. Therefore there is hope that a support decision system could assist with clinical diagnosis, for example, by identifying sub-cellular abnormalities, such as changes in the nuclei features. This work proposes an ensemble method for cervical nuclei detection aiming to reduce the workload of cytopathologists. First, a preprocessing phase divides the original image into superpixels, which are input to feature extraction and selection algorithms. The proposed ensemble method combines three classifiers: Decision Tree (DT), Nearest Centroid (NC), and k-Nearest Neighbors (k-NN), which are evaluated against the ISBI’14 Overlapping Cervical Cytology Image Segmentation Challenge dataset. Experiments show that the proposed method is the state-of-the-art algorithm of the literature for recall (0.999) and F1 values (0.993). It produced a recall very close to the optimum value and also kept high precision (0.988). [Display omitted] •Ensemble of classifiers to provide a more assertive cervical cell nuclei segmentation.•Automatic inspection of Pap smear test to reduce the human workload in cervical cell analysis.•Superpixel computation and feature extraction to improve cell characterization and classification.
ArticleNumber 115642
Author Ushizima, Daniela Mayumi
Souza, Marcone Jamilson Freitas
Diniz, Débora Nasser
Vitor, Rafael Ferreira
Carneiro, Cláudia Martins
Delabrida, Saul
de Medeiros, Fátima Nelsizeuma Sombra
Bianchi, Andrea Gomes Campos
Author_xml – sequence: 1
  givenname: Débora Nasser
  orcidid: 0000-0002-1951-8868
  surname: Diniz
  fullname: Diniz, Débora Nasser
  email: debora.diniz@aluno.ufop.edu.br
  organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil
– sequence: 2
  givenname: Rafael Ferreira
  orcidid: 0000-0001-6904-8414
  surname: Vitor
  fullname: Vitor, Rafael Ferreira
  email: rafael.vitor@aluno.ufop.edu.br
  organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil
– sequence: 3
  givenname: Andrea Gomes Campos
  orcidid: 0000-0001-7949-1188
  surname: Bianchi
  fullname: Bianchi, Andrea Gomes Campos
  email: andrea@ufop.edu.br
  organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil
– sequence: 4
  givenname: Saul
  orcidid: 0000-0002-8961-5313
  surname: Delabrida
  fullname: Delabrida, Saul
  email: saul.delabrida@ufop.edu.br
  organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil
– sequence: 5
  givenname: Cláudia Martins
  orcidid: 0000-0002-6002-857X
  surname: Carneiro
  fullname: Carneiro, Cláudia Martins
  email: carneirocm@ufop.edu.br
  organization: Departamento de Análises Clínicas, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil
– sequence: 6
  givenname: Daniela Mayumi
  orcidid: 0000-0002-7363-9468
  surname: Ushizima
  fullname: Ushizima, Daniela Mayumi
  email: dushizima@lbl.gov
  organization: Computational Research Division, Lawrence Berkeley National Laboratory, ZIP Code: 94720, Berkeley, CA, United States
– sequence: 7
  givenname: Fátima Nelsizeuma Sombra
  orcidid: 0000-0003-3075-8771
  surname: de Medeiros
  fullname: de Medeiros, Fátima Nelsizeuma Sombra
  email: fsombra@ufc.br
  organization: Departamento de Engenharia de Teleinformática, Universidade Federal do Ceará (UFC), ZIP Code: 60455-970, Fortaleza, CE, Brazil
– sequence: 8
  givenname: Marcone Jamilson Freitas
  orcidid: 0000-0002-7141-357X
  surname: Souza
  fullname: Souza, Marcone Jamilson Freitas
  email: marcone@ufop.edu.br
  organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil
BackLink https://www.osti.gov/servlets/purl/1809048$$D View this record in Osti.gov
BookMark eNp9kL1OwzAURi1UJNrCCzBFMKf4Jk5sSywI8SdVYoHZcpwb6iq1i50W8fY4ChMDkz185-roLMjMeYeEXAJdAYX6ZrvC-KVXBS1gBVDVrDghcxC8zGsuyxmZU1nxnAFnZ2QR45ZS4JTyOXm4cxm6iLumx2yHw8a3WedD5g6mR5u1OKAZrHeZ7zJ_xNDr_d66j8xgOFqj-_Tp-3hOTjvdR7z4fZfk_fHh7f45X78-vdzfrXNTSjnkIFvZibbjjS4l0wAG21qiKDU0JetY0fAaqGharBpa1Vxo3jLT8JIDq4XU5ZJcTXd9HKyKxia7jfHOJUkFgkrKRBpdT6N98J8HjIPa-kNwyUsVlWCVLASTaVVMKxN8jAE7tQ92p8O3AqrGpmqrxqZqbKqmpgkSf6CkoMc-Q9C2_x-9nVBMfY4Ww6iPLhWwYbRvvf0P_wGGWJM2
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3485888
crossref_primary_10_1007_s11042_024_19686_8
crossref_primary_10_1016_j_bspc_2025_108397
crossref_primary_10_32604_or_2022_025897
crossref_primary_10_1007_s10462_025_11207_9
crossref_primary_10_1109_ACCESS_2025_3543850
crossref_primary_10_1016_j_eswa_2022_117040
crossref_primary_10_1007_s44291_025_00112_8
crossref_primary_10_1016_j_eswa_2023_120624
crossref_primary_10_3390_diagnostics12112771
crossref_primary_10_1109_ACCESS_2024_3445371
crossref_primary_10_1080_21681163_2023_2197086
crossref_primary_10_1080_23080477_2024_2373551
crossref_primary_10_1002_jbio_202400584
Cites_doi 10.1158/1055-9965.EPI-09-1038
10.1159/000478770
10.1016/j.orp.2016.09.002
10.38094/jastt1224
10.14209/sbrt.2017.48
10.1109/JBHI.2016.2519686
10.2307/1932409
10.1109/TMI.2018.2815013
10.1016/j.eswa.2016.08.015
10.1016/j.compmedimag.2019.01.003
10.1109/TIP.2018.2857001
10.1016/j.neucom.2016.09.070
10.1016/j.compbiomed.2019.03.011
10.1142/S1469026810002860
10.1016/j.eswa.2019.112951
10.1109/JBHI.2018.2878945
10.1109/TIP.2015.2389619
10.1016/j.eswa.2011.06.034
10.1016/j.eswa.2018.07.010
10.1023/A:1010933404324
10.1073/pnas.082099299
10.1016/j.patcog.2012.05.006
10.2307/1412159
10.1002/cncr.2820710405
10.1109/JBHI.2018.2885544
10.1080/00031305.1992.10475879
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Dec 15, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Dec 15, 2021
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
OIOZB
OTOTI
DOI 10.1016/j.eswa.2021.115642
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
ExternalDocumentID 1809048
10_1016_j_eswa_2021_115642
S0957417421010356
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
AALMO
AAPBV
ABPIF
ABPTK
OIOZB
OTOTI
PQEST
ID FETCH-LOGICAL-c399t-19d9f8df7ba394a11ced69e83a1b34f42b76108bde5b05678a7d4cb73714689a3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701954400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Fri May 19 00:58:45 EDT 2023
Sun Nov 09 08:07:33 EST 2025
Sat Nov 29 07:09:05 EST 2025
Tue Nov 18 20:49:22 EST 2025
Fri Feb 23 02:44:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Detection approach
Ensemble methods
Image processing algorithm
Cervical cancer
Pap smear test
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c399t-19d9f8df7ba394a11ced69e83a1b34f42b76108bde5b05678a7d4cb73714689a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-05CH11231
USDOE Office of Science (SC)
ORCID 0000-0001-6904-8414
0000-0002-8961-5313
0000-0002-1951-8868
0000-0002-7363-9468
0000-0001-7949-1188
0000-0003-3075-8771
0000-0002-6002-857X
0000-0002-7141-357X
0000000289615313
0000000179491188
000000027141357X
0000000273639468
0000000219518868
000000026002857X
0000000169048414
0000000330758771
OpenAccessLink https://www.osti.gov/servlets/purl/1809048
PQID 2584592849
PQPubID 2045477
ParticipantIDs osti_scitechconnect_1809048
proquest_journals_2584592849
crossref_primary_10_1016_j_eswa_2021_115642
crossref_citationtrail_10_1016_j_eswa_2021_115642
elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115642
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Expert systems with applications
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Gay, Donaldson, Goellner (b18) 1985; 29
Braz, E. F., & Lotufo, R. d. A. (2017). Nuclei detection using deep learning. In
WHO (b50) 2021
Tareef, Song, Cai, Huang, Chang, Wang, Fulham, Feng, Chen (b45) 2017; 221
Breiman, Friedman, Olshen, Stone (b8) 1984
Breiman (b7) 2001; 45
Lu, Carneiro, Bradley, Ushizima, Nosrati, Bianchi, Carneiro, Hamarneh (b33) 2017; 21
Song, Xiao, Lian (b43) 2018; 12
Borah, Nath (b4) 2018; 113
Araújo, Silva, Ushizima, Rezende, Carneiro, Bianchi, Medeiros (b3) 2019; 72
Lourenço, Martin, Stützle (b30) 2010; 146
Altman (b1) 1992; 46
Lu, Carneiro, Bradley (b31) 2015; 24
Sobrevilla, Montseny, Vaschetto, Lerma (b41) 2010; 9
Tibshirani, Hastie, Narasimhan, Chu (b47) 2002; 99
Dice (b12) 1945; 26
Lu, Carneiro, Bradley, Ushizima, Nosrati, Bianchi, Carneiro, Hamarneh (b32) 2016; 21
Chaudhari, Gore (b9) 2019; vol. 839
Cunningham (b11) 2008
Nosrati, Hamarneh (b35) 2014
van der Walt, Schönberger, Nunez-Iglesias, Boulogne, Warner, Yager, Gouillart, Yu (b49) 2014; 2:e453
Diniz, Souza, Carneiro, Ushizima, de Medeiros, Oliveira, Bianchi (b14) 2020; vol. 378
Kovesi (b24) 2000
Tareef, Song, Huang, Feng, Chen, Wang, Cai (b46) 2018; 37
Ester, Kriegel, Sander, Xu (b16) 1996
Spearman (b44) 1904; 15
Diniz, Souza, Carneiro, Ushizima, de Medeiros, Oliveira, Bianchi (b13) 2019
López-Ibáñez, Dubois-Lacoste, Cáceres, Birattari, Stützle (b28) 2016; 3
Zebari, Abdulazeez, Zeebaree, Zebari, Saeed (b51) 2020; 1
Lehman, O’Rourke, Hatcher, Stepanski (b26) 2013
(pp. 1059–1063). São Paulo, Brazil.
Manning, Schütze (b34) 1999
Hinton (b20) 1990
Song, Sanchez, Daly, Rajpoot (b42) 2019; 23
Lönnberg, Anttila, Kotaniemi-Talonen, Kujari, Melkko, Granroth, Vornanen, Pietiläinen, Sankila, Arola (b27) 2010; 19
Bosch, Rietveld-Scheffers, Boon (b5) 1992; 36
Alyafeai, Ghouti (b2) 2020; 141
Ushizima, Bianchi, Carneiro (b48) 2014
Gençtav, Aksoy, Önder (b19) 2012; 45
Pai, Chang, Chan (b36) 2012; 39
Saha, Bajger, Lee (b40) 2016
Sabino, Costa, Martins, Calado, Zago (b39) 2003; 12
Plissiti, Nikou (b37) 2012; vol. 7325
Duda, Hart, Stork (b15) 2000
Kumari, Swarnkar (b25) 2011; 2
Claeys, Broutet, Ullrich (b10) 2006
Lorenzo-Ginori, Curbelo-Jardines, López-Cabrera, Huergo-Suárez (b29) 2013; vol. 8259
Kendall, Gibbons (b21) 1990
Koss (b23) 1993; 71
Koonmee, Bychkov, Shuangshoti, Bhummichitra, Himakhun, Karalak, Rangdaeng (b22) 2017; 61
Ramesh, Tasdizen (b38) 2019; 23
Zhang, Liu, Du, He, Li, Chen (b52) 2019; 108
Garcia-Gonzalez, Garcia-Silvente, Aguirre (b17) 2016; 64
Claeys (10.1016/j.eswa.2021.115642_b10) 2006
Diniz (10.1016/j.eswa.2021.115642_b14) 2020; vol. 378
Lehman (10.1016/j.eswa.2021.115642_b26) 2013
Koonmee (10.1016/j.eswa.2021.115642_b22) 2017; 61
Tareef (10.1016/j.eswa.2021.115642_b46) 2018; 37
Hinton (10.1016/j.eswa.2021.115642_b20) 1990
Kumari (10.1016/j.eswa.2021.115642_b25) 2011; 2
Ushizima (10.1016/j.eswa.2021.115642_b48) 2014
Dice (10.1016/j.eswa.2021.115642_b12) 1945; 26
Pai (10.1016/j.eswa.2021.115642_b36) 2012; 39
Ester (10.1016/j.eswa.2021.115642_b16) 1996
Song (10.1016/j.eswa.2021.115642_b42) 2019; 23
López-Ibáñez (10.1016/j.eswa.2021.115642_b28) 2016; 3
Borah (10.1016/j.eswa.2021.115642_b4) 2018; 113
Breiman (10.1016/j.eswa.2021.115642_b8) 1984
Tibshirani (10.1016/j.eswa.2021.115642_b47) 2002; 99
Alyafeai (10.1016/j.eswa.2021.115642_b2) 2020; 141
Manning (10.1016/j.eswa.2021.115642_b34) 1999
Nosrati (10.1016/j.eswa.2021.115642_b35) 2014
Chaudhari (10.1016/j.eswa.2021.115642_b9) 2019; vol. 839
Gençtav (10.1016/j.eswa.2021.115642_b19) 2012; 45
Koss (10.1016/j.eswa.2021.115642_b23) 1993; 71
Saha (10.1016/j.eswa.2021.115642_b40) 2016
Song (10.1016/j.eswa.2021.115642_b43) 2018; 12
Lu (10.1016/j.eswa.2021.115642_b32) 2016; 21
Zebari (10.1016/j.eswa.2021.115642_b51) 2020; 1
Spearman (10.1016/j.eswa.2021.115642_b44) 1904; 15
Ramesh (10.1016/j.eswa.2021.115642_b38) 2019; 23
van der Walt (10.1016/j.eswa.2021.115642_b49) 2014; 2:e453
Lorenzo-Ginori (10.1016/j.eswa.2021.115642_b29) 2013; vol. 8259
WHO (10.1016/j.eswa.2021.115642_b50) 2021
Tareef (10.1016/j.eswa.2021.115642_b45) 2017; 221
Garcia-Gonzalez (10.1016/j.eswa.2021.115642_b17) 2016; 64
Lu (10.1016/j.eswa.2021.115642_b31) 2015; 24
Sobrevilla (10.1016/j.eswa.2021.115642_b41) 2010; 9
Kovesi (10.1016/j.eswa.2021.115642_b24) 2000
Breiman (10.1016/j.eswa.2021.115642_b7) 2001; 45
Altman (10.1016/j.eswa.2021.115642_b1) 1992; 46
Bosch (10.1016/j.eswa.2021.115642_b5) 1992; 36
Duda (10.1016/j.eswa.2021.115642_b15) 2000
Araújo (10.1016/j.eswa.2021.115642_b3) 2019; 72
10.1016/j.eswa.2021.115642_b6
Lu (10.1016/j.eswa.2021.115642_b33) 2017; 21
Diniz (10.1016/j.eswa.2021.115642_b13) 2019
Zhang (10.1016/j.eswa.2021.115642_b52) 2019; 108
Lourenço (10.1016/j.eswa.2021.115642_b30) 2010; 146
Lönnberg (10.1016/j.eswa.2021.115642_b27) 2010; 19
Gay (10.1016/j.eswa.2021.115642_b18) 1985; 29
Cunningham (10.1016/j.eswa.2021.115642_b11) 2008
Kendall (10.1016/j.eswa.2021.115642_b21) 1990
Plissiti (10.1016/j.eswa.2021.115642_b37) 2012; vol. 7325
Sabino (10.1016/j.eswa.2021.115642_b39) 2003; 12
References_xml – volume: 3
  start-page: 43
  year: 2016
  end-page: 58
  ident: b28
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Operations Research Perspectives
– volume: 64
  start-page: 512
  year: 2016
  end-page: 522
  ident: b17
  article-title: A multiscale algorithm for nuclei extraction in pap smear images
  publication-title: Expert Systems with Applications
– volume: vol. 839
  start-page: 241
  year: 2019
  end-page: 259
  ident: b9
  article-title: Review of various techniques used for automatic detection of malignancy in pap smear test
  publication-title: Data management, analytics and innovation: proceedings of ICDMAI 2018
– year: 2006
  ident: b10
  article-title: Comprehensive cervical cancer control: A guide to essential practice
– volume: 21
  start-page: 441
  year: 2016
  end-page: 450
  ident: b32
  article-title: Evaluation of three algorithms for the segmentation of overlapping cervical cells
  publication-title: IEEE Journal of Biomedical and Health Informatics
– year: 1999
  ident: b34
  article-title: Foundations of statistical natural language processing
– volume: 2:e453
  year: 2014
  ident: b49
  article-title: Scikit-image: image processing in Python
  publication-title: PeerJ.
– year: 2000
  ident: b15
  article-title: Pattern classification
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: b1
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: The American Statistician
– volume: 36
  start-page: 711
  year: 1992
  end-page: 716
  ident: b5
  article-title: Characteristics of false-negative smears tested in the normal screening situation
  publication-title: Acta Cytologica
– volume: 9
  start-page: 187
  year: 2010
  end-page: 206
  ident: b41
  article-title: Fuzzy-based analysis of microscopic color cervical pap smear images: Nuclei detection
  publication-title: International Journal of Computational Intelligence and Applications
– year: 2021
  ident: b50
  article-title: Cervical cancer
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b7
  article-title: Random forests
  publication-title: Machine Learning
– volume: 21
  start-page: 441
  year: 2017
  end-page: 450
  ident: b33
  article-title: Evaluation of three algorithms for the segmentation of overlapping cervical cells
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 146
  start-page: 363
  year: 2010
  end-page: 397
  ident: b30
  article-title: Iterated local search: Framework and applications
  publication-title: Handbook of metaheuristics
– volume: 12
  start-page: 1
  year: 2003
  end-page: 6
  ident: b39
  article-title: Automatic leukemia diagnosis
  publication-title: Acta Microscopica
– volume: 45
  start-page: 4151
  year: 2012
  end-page: 4168
  ident: b19
  article-title: Unsupervised segmentation and classification of cervical cell images
  publication-title: Pattern Recognition
– volume: 113
  start-page: 233
  year: 2018
  end-page: 263
  ident: b4
  article-title: Identifying risk factors for adverse diseases using dynamic rare association rule mining
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: b12
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
– start-page: 1
  year: 2016
  end-page: 8
  ident: b40
  article-title: Spatial shape constrained fuzzy C-means (FCM) clustering for nucleus segmentation in pap smear images
  publication-title: Proceedings of the 2016 international conference on digital image computing: techniques and applications
– start-page: 319
  year: 2019
  end-page: 327
  ident: b13
  article-title: An iterated local search algorithm for cell nuclei detection from pap smear images
  publication-title: Proceedings of the 21st international conference on enterprise information systems (vol. 1)
– start-page: 91
  year: 2008
  end-page: 112
  ident: b11
  article-title: Dimension reduction
  publication-title: Machine learning techniques for multimedia: case studies on organization and retrieval
– start-page: 226
  year: 1996
  end-page: 231
  ident: b16
  article-title: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of the knowledge discovery and data mining
– volume: 23
  start-page: 1469
  year: 2019
  end-page: 1476
  ident: b42
  article-title: Simultaneous cell detection and classification in bone marrow histology images
  publication-title: IEEE Journal of Biomedical and Health Informatics
– year: 2014
  ident: b48
  article-title: Segmentation of subcellular compartments combining superpixel representation with voronoi diagrams
  publication-title: Overlapping cervical cytology image segmentation challenge, in conjunction with IEEE 11th international symposium on biomedical imaging
– volume: 15
  start-page: 72
  year: 1904
  end-page: 101
  ident: b44
  article-title: The proof and measurement of association between two things
  publication-title: The American Journal of Psychology
– volume: 1
  start-page: 56
  year: 2020
  end-page: 70
  ident: b51
  article-title: A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction
  publication-title: Journal of Applied Science and Technology Trends
– volume: 37
  start-page: 2044
  year: 2018
  end-page: 2059
  ident: b46
  article-title: Multi-pass fast watershed for accurate segmentation of overlapping cervical cells
  publication-title: IEEE Transactions on Medical Imaging
– volume: 141
  year: 2020
  ident: b2
  article-title: A fully-automated deep learning pipeline for cervical cancer classification
  publication-title: Expert Systems with Applications
– volume: 99
  start-page: 6567
  year: 2002
  end-page: 6572
  ident: b47
  article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression
  publication-title: National Academy of Sciences
– volume: vol. 8259
  start-page: 222
  year: 2013
  end-page: 229
  ident: b29
  article-title: Cervical cell classification using features related to morphometry and texture of nuclei
  publication-title: Progress in pattern recognition, image analysis, computer vision, and applications
– volume: 19
  start-page: 381
  year: 2010
  end-page: 387
  ident: b27
  article-title: Low proportion of false-negative smears in the finnish program for cervical cancer screening
  publication-title: Cancer Epidemiology and Prevention Biomarkers
– volume: 71
  start-page: 1406
  year: 1993
  end-page: 1412
  ident: b23
  article-title: Cervical (pap) smear: New directions
  publication-title: Cancer
– reference: (pp. 1059–1063). São Paulo, Brazil.
– volume: 12
  start-page: 5759
  year: 2018
  end-page: 5774
  ident: b43
  article-title: Contour-seed pairs learning-based framework for simultaneously detecting and segmenting various overlapping cells/nuclei in microscopy images
  publication-title: IEEE Transactions on Image Processing
– volume: 108
  start-page: 223
  year: 2019
  end-page: 233
  ident: b52
  article-title: Binary tree-like network with two-path fusion attention feature for cervical cell nucleus segmentation
  publication-title: Computers in Biology and Medicine
– year: 2013
  ident: b26
  article-title: JMP for basic univariate and multivariate statistics: methods for researchers and social scientists, second edition
– year: 1984
  ident: b8
  article-title: Classification and regression trees
  publication-title: The Wadsworth statistics/probability series
– start-page: 555
  year: 1990
  end-page: 610
  ident: b20
  article-title: Connectionist learning procedures
  publication-title: Machine learning
– year: 1990
  ident: b21
  publication-title: Rank correlation methods
– volume: 61
  start-page: 434
  year: 2017
  end-page: 440
  ident: b22
  article-title: False-negative rate of papanicolaou testing: A national survey from the thai society of cytology
  publication-title: Acta Cytologica
– volume: 72
  start-page: 13
  year: 2019
  end-page: 21
  ident: b3
  article-title: Deep learning for cell image segmentation and ranking
  publication-title: Computerized Medical Imaging and Graphics
– volume: 221
  start-page: 94
  year: 2017
  end-page: 107
  ident: b45
  article-title: Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation
  publication-title: Neurocomputing
– volume: 29
  start-page: 1043
  year: 1985
  end-page: –1046
  ident: b18
  article-title: False-negative results in cervical cytologic studies
  publication-title: Acta Cytologica
– year: 2000
  ident: b24
  article-title: MATLAB and Octave functions for computer vision and image processing
– reference: Braz, E. F., & Lotufo, R. d. A. (2017). Nuclei detection using deep learning. In
– start-page: 1
  year: 2014
  end-page: 2
  ident: b35
  article-title: A variational approach for overlapping cell segmentation
  publication-title: Overlapping cervical cytology image segmentation challenge, in conjunction with IEEE 11th international symposium on biomedical imaging
– volume: 39
  start-page: 154
  year: 2012
  end-page: 161
  ident: b36
  article-title: Nucleus and cytoplast contour detector from a cervical smear image
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 1261
  year: 2015
  end-page: 1272
  ident: b31
  article-title: An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells
  publication-title: IEEE Transactions on Image Processing
– volume: vol. 7325
  start-page: 483
  year: 2012
  end-page: 490
  ident: b37
  article-title: Cervical cell classification based exclusively on nucleus features
  publication-title: Image analysis and recognition: proceedings of the 9th international conference, ICIAR 2012, part II
– volume: 2
  start-page: 1048
  year: 2011
  end-page: 1053
  ident: b25
  article-title: Filter versus wrapper feature subset selection in large dimensionality micro array: A review
  publication-title: International Journal of Computer Science and Information Technologies
– volume: vol. 378
  start-page: 78
  year: 2020
  end-page: 96
  ident: b14
  article-title: An iterated local search-based algorithm to support cell nuclei detection in pap smears test
  publication-title: Enterprise information systems: 21st international conference, ICEIS 2019, revised selected papers
– volume: 23
  start-page: 1457
  year: 2019
  end-page: 1468
  ident: b38
  article-title: Cell segmentation using a similarity interface with a multi-task convolutional neural network
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 19
  start-page: 381
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2021.115642_b27
  article-title: Low proportion of false-negative smears in the finnish program for cervical cancer screening
  publication-title: Cancer Epidemiology and Prevention Biomarkers
  doi: 10.1158/1055-9965.EPI-09-1038
– volume: 61
  start-page: 434
  issue: 6
  year: 2017
  ident: 10.1016/j.eswa.2021.115642_b22
  article-title: False-negative rate of papanicolaou testing: A national survey from the thai society of cytology
  publication-title: Acta Cytologica
  doi: 10.1159/000478770
– year: 1990
  ident: 10.1016/j.eswa.2021.115642_b21
– volume: vol. 8259
  start-page: 222
  year: 2013
  ident: 10.1016/j.eswa.2021.115642_b29
  article-title: Cervical cell classification using features related to morphometry and texture of nuclei
– volume: 146
  start-page: 363
  year: 2010
  ident: 10.1016/j.eswa.2021.115642_b30
  article-title: Iterated local search: Framework and applications
– volume: 3
  start-page: 43
  year: 2016
  ident: 10.1016/j.eswa.2021.115642_b28
  article-title: The irace package: Iterated racing for automatic algorithm configuration
  publication-title: Operations Research Perspectives
  doi: 10.1016/j.orp.2016.09.002
– start-page: 319
  year: 2019
  ident: 10.1016/j.eswa.2021.115642_b13
  article-title: An iterated local search algorithm for cell nuclei detection from pap smear images
– volume: 1
  start-page: 56
  issue: 2
  year: 2020
  ident: 10.1016/j.eswa.2021.115642_b51
  article-title: A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction
  publication-title: Journal of Applied Science and Technology Trends
  doi: 10.38094/jastt1224
– year: 2013
  ident: 10.1016/j.eswa.2021.115642_b26
– ident: 10.1016/j.eswa.2021.115642_b6
  doi: 10.14209/sbrt.2017.48
– volume: 21
  start-page: 441
  issue: 2
  year: 2017
  ident: 10.1016/j.eswa.2021.115642_b33
  article-title: Evaluation of three algorithms for the segmentation of overlapping cervical cells
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2016.2519686
– volume: 26
  start-page: 297
  issue: 3
  year: 1945
  ident: 10.1016/j.eswa.2021.115642_b12
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2021.115642_b35
  article-title: A variational approach for overlapping cell segmentation
– year: 2021
  ident: 10.1016/j.eswa.2021.115642_b50
– volume: 37
  start-page: 2044
  issue: 9
  year: 2018
  ident: 10.1016/j.eswa.2021.115642_b46
  article-title: Multi-pass fast watershed for accurate segmentation of overlapping cervical cells
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2018.2815013
– volume: 64
  start-page: 512
  year: 2016
  ident: 10.1016/j.eswa.2021.115642_b17
  article-title: A multiscale algorithm for nuclei extraction in pap smear images
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2016.08.015
– volume: 36
  start-page: 711
  year: 1992
  ident: 10.1016/j.eswa.2021.115642_b5
  article-title: Characteristics of false-negative smears tested in the normal screening situation
  publication-title: Acta Cytologica
– volume: 72
  start-page: 13
  year: 2019
  ident: 10.1016/j.eswa.2021.115642_b3
  article-title: Deep learning for cell image segmentation and ranking
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2019.01.003
– volume: 12
  start-page: 5759
  issue: 12
  year: 2018
  ident: 10.1016/j.eswa.2021.115642_b43
  article-title: Contour-seed pairs learning-based framework for simultaneously detecting and segmenting various overlapping cells/nuclei in microscopy images
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2018.2857001
– volume: 221
  start-page: 94
  year: 2017
  ident: 10.1016/j.eswa.2021.115642_b45
  article-title: Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.070
– volume: vol. 378
  start-page: 78
  year: 2020
  ident: 10.1016/j.eswa.2021.115642_b14
  article-title: An iterated local search-based algorithm to support cell nuclei detection in pap smears test
– volume: 108
  start-page: 223
  year: 2019
  ident: 10.1016/j.eswa.2021.115642_b52
  article-title: Binary tree-like network with two-path fusion attention feature for cervical cell nucleus segmentation
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.03.011
– start-page: 555
  year: 1990
  ident: 10.1016/j.eswa.2021.115642_b20
  article-title: Connectionist learning procedures
– volume: 12
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.eswa.2021.115642_b39
  article-title: Automatic leukemia diagnosis
  publication-title: Acta Microscopica
– year: 2006
  ident: 10.1016/j.eswa.2021.115642_b10
– start-page: 226
  year: 1996
  ident: 10.1016/j.eswa.2021.115642_b16
  article-title: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 2
  start-page: 1048
  year: 2011
  ident: 10.1016/j.eswa.2021.115642_b25
  article-title: Filter versus wrapper feature subset selection in large dimensionality micro array: A review
  publication-title: International Journal of Computer Science and Information Technologies
– volume: 9
  start-page: 187
  issue: 3
  year: 2010
  ident: 10.1016/j.eswa.2021.115642_b41
  article-title: Fuzzy-based analysis of microscopic color cervical pap smear images: Nuclei detection
  publication-title: International Journal of Computational Intelligence and Applications
  doi: 10.1142/S1469026810002860
– volume: 2:e453
  year: 2014
  ident: 10.1016/j.eswa.2021.115642_b49
  article-title: Scikit-image: image processing in Python
  publication-title: PeerJ.
– volume: 141
  year: 2020
  ident: 10.1016/j.eswa.2021.115642_b2
  article-title: A fully-automated deep learning pipeline for cervical cancer classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2019.112951
– volume: vol. 839
  start-page: 241
  year: 2019
  ident: 10.1016/j.eswa.2021.115642_b9
  article-title: Review of various techniques used for automatic detection of malignancy in pap smear test
– volume: 23
  start-page: 1469
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2021.115642_b42
  article-title: Simultaneous cell detection and classification in bone marrow histology images
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2018.2878945
– volume: 29
  start-page: 1043
  issue: 6
  year: 1985
  ident: 10.1016/j.eswa.2021.115642_b18
  article-title: False-negative results in cervical cytologic studies
  publication-title: Acta Cytologica
– year: 2014
  ident: 10.1016/j.eswa.2021.115642_b48
  article-title: Segmentation of subcellular compartments combining superpixel representation with voronoi diagrams
– volume: 24
  start-page: 1261
  issue: 4
  year: 2015
  ident: 10.1016/j.eswa.2021.115642_b31
  article-title: An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2015.2389619
– start-page: 1
  year: 2016
  ident: 10.1016/j.eswa.2021.115642_b40
  article-title: Spatial shape constrained fuzzy C-means (FCM) clustering for nucleus segmentation in pap smear images
– volume: 39
  start-page: 154
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2021.115642_b36
  article-title: Nucleus and cytoplast contour detector from a cervical smear image
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.06.034
– year: 1984
  ident: 10.1016/j.eswa.2021.115642_b8
  article-title: Classification and regression trees
– year: 2000
  ident: 10.1016/j.eswa.2021.115642_b15
– volume: vol. 7325
  start-page: 483
  year: 2012
  ident: 10.1016/j.eswa.2021.115642_b37
  article-title: Cervical cell classification based exclusively on nucleus features
– year: 2000
  ident: 10.1016/j.eswa.2021.115642_b24
– volume: 113
  start-page: 233
  year: 2018
  ident: 10.1016/j.eswa.2021.115642_b4
  article-title: Identifying risk factors for adverse diseases using dynamic rare association rule mining
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2018.07.010
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2021.115642_b7
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 99
  start-page: 6567
  issue: 10
  year: 2002
  ident: 10.1016/j.eswa.2021.115642_b47
  article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression
  publication-title: National Academy of Sciences
  doi: 10.1073/pnas.082099299
– volume: 45
  start-page: 4151
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2021.115642_b19
  article-title: Unsupervised segmentation and classification of cervical cell images
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.05.006
– volume: 21
  start-page: 441
  issue: 2
  year: 2016
  ident: 10.1016/j.eswa.2021.115642_b32
  article-title: Evaluation of three algorithms for the segmentation of overlapping cervical cells
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2016.2519686
– year: 1999
  ident: 10.1016/j.eswa.2021.115642_b34
– volume: 15
  start-page: 72
  issue: 1
  year: 1904
  ident: 10.1016/j.eswa.2021.115642_b44
  article-title: The proof and measurement of association between two things
  publication-title: The American Journal of Psychology
  doi: 10.2307/1412159
– volume: 71
  start-page: 1406
  issue: 4
  year: 1993
  ident: 10.1016/j.eswa.2021.115642_b23
  article-title: Cervical (pap) smear: New directions
  publication-title: Cancer
  doi: 10.1002/cncr.2820710405
– start-page: 91
  year: 2008
  ident: 10.1016/j.eswa.2021.115642_b11
  article-title: Dimension reduction
– volume: 23
  start-page: 1457
  issue: 4
  year: 2019
  ident: 10.1016/j.eswa.2021.115642_b38
  article-title: Cell segmentation using a similarity interface with a multi-task convolutional neural network
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2018.2885544
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.eswa.2021.115642_b1
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: The American Statistician
  doi: 10.1080/00031305.1992.10475879
SSID ssj0017007
Score 2.468686
Snippet The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115642
SubjectTerms Abnormalities
Algorithms
Centroids
Cervical cancer
Cytology
Decision trees
Detection approach
Ensemble methods
Feature extraction
Image processing algorithm
Image segmentation
MATHEMATICS AND COMPUTING
Nuclei (cytology)
Pap smear test
Recall
Title An ensemble method for nuclei detection of overlapping cervical cells
URI https://dx.doi.org/10.1016/j.eswa.2021.115642
https://www.proquest.com/docview/2584592849
https://www.osti.gov/servlets/purl/1809048
Volume 185
WOSCitedRecordID wos000701954400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3oiyC_IBcamy2jwdHytoeahaEOpWvVlO7EhZZdOShGX_DX-VmdhJWx4VHLhEURo3lefr-Mt45htCXgJuFKwzypFJ6jtBnHiOTFXkoFSa8iLGZNu0bzln5-fxasU_DQbfu1qY64KVZXxzwzf_1dRwDYyNpbP_YO7-S-ECnIPR4Qhmh-NfGX5SjuHVVF9hSZTpD92mEpYoXJyPlW502rFETN8s5KYtmUpbp4FqIboo6r2APaohN1bzuauG29n37rlwXuZtOPqN2X1HdIH3ruttAvAyb0x44LPMpC7GM11VOq-2QQEMsbRthk2mpRy_XaOaFO6QrLcP0gDdKlfShLRtaqMNXXgupoGY4k0TT-trapZ7cUnmBK5p3XOqjVeOme9EzLRS3LrtcMfxur9dDkxk4vJU199QY8pzYYUIIyPnta-9ff5RzC7mc7GYrhavNl8cbEuG2_e2R8stcuSxkIPbPJq8n64-9BtV7MxU5He_2tZlmRTCnx_7J-4zXIM7_4UMtAxncZ_cta8mdGIg9YAMdPmQ3OvaflC7Cjwi00lJO4RRgzAKCKMGYbRHGF1ndAdhtEMYbRH2mFzMpovX7xzbjcNJgcQ2jssVz2KVsUT6PJCum2oVcR370k38IAu8hAEVjxOlwwRYNYslU0GaMJSEjGIu_SdkWK5L_ZRQN87cNNMJU1kceFpK7gXJWaBYmDAZaDkibjdPIrVS9dgxpRBdTuKlwLkVOLfCzO2IjPsxGyPUcvDusJt-YammoZACoHNw3DHaCsegxnKKyWgwCEXwYCkckZPOhMJ6hFp4QPFDDiyQPzv88TG5s_2TnJBhU33Vz8nt9LrJ6-qFBd4PDuuySw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+method+for+nuclei+detection+of+overlapping+cervical+cells&rft.jtitle=Expert+systems+with+applications&rft.au=Diniz%2C+D%C3%A9bora+Nasser&rft.au=Vitor%2C+Rafael+Ferreira&rft.au=Bianchi%2C+Andrea+Gomes+Campos&rft.au=Delabrida%2C+Saul&rft.date=2021-12-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=185&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115642&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon