An ensemble method for nuclei detection of overlapping cervical cells
The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. T...
Uložené v:
| Vydané v: | Expert systems with applications Ročník 185; s. 115642 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
Elsevier Ltd
15.12.2021
Elsevier BV Elsevier |
| Predmet: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. Therefore there is hope that a support decision system could assist with clinical diagnosis, for example, by identifying sub-cellular abnormalities, such as changes in the nuclei features. This work proposes an ensemble method for cervical nuclei detection aiming to reduce the workload of cytopathologists. First, a preprocessing phase divides the original image into superpixels, which are input to feature extraction and selection algorithms. The proposed ensemble method combines three classifiers: Decision Tree (DT), Nearest Centroid (NC), and k-Nearest Neighbors (k-NN), which are evaluated against the ISBI’14 Overlapping Cervical Cytology Image Segmentation Challenge dataset. Experiments show that the proposed method is the state-of-the-art algorithm of the literature for recall (0.999) and F1 values (0.993). It produced a recall very close to the optimum value and also kept high precision (0.988).
[Display omitted]
•Ensemble of classifiers to provide a more assertive cervical cell nuclei segmentation.•Automatic inspection of Pap smear test to reduce the human workload in cervical cell analysis.•Superpixel computation and feature extraction to improve cell characterization and classification. |
|---|---|
| AbstractList | The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. Therefore the expectation is that a support decision system could assist with screening the most relevant cells, for example, by identifying sub-cellular abnormalities, such as changes in the nuclei features. Here, this work proposes a computational method for cervical nuclei detection aimed to reduce the workload of cytopathologists. The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. Therefore there is hope that a support decision system could assist with clinical diagnosis, for example, by identifying sub-cellular abnormalities, such as changes in the nuclei features. This work proposes an ensemble method for cervical nuclei detection aiming to reduce the workload of cytopathologists. First, a preprocessing phase divides the original image into superpixels, which are input to feature extraction and selection algorithms. The proposed ensemble method combines three classifiers: Decision Tree (DT), Nearest Centroid (NC), and k-Nearest Neighbors (k-NN), which are evaluated against the ISBI'14 Overlapping Cervical Cytology Image Segmentation Challenge dataset. Experiments show that the proposed method is the state-of-the-art algorithm of the literature for recall (0.999) and F1 values (0.993). It produced a recall very close to the optimum value and also kept high precision (0.988). The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous cells from the internal and external cervix surface. A cytopathologist must analyze many microscopic fields while screening for abnormal cells. Therefore there is hope that a support decision system could assist with clinical diagnosis, for example, by identifying sub-cellular abnormalities, such as changes in the nuclei features. This work proposes an ensemble method for cervical nuclei detection aiming to reduce the workload of cytopathologists. First, a preprocessing phase divides the original image into superpixels, which are input to feature extraction and selection algorithms. The proposed ensemble method combines three classifiers: Decision Tree (DT), Nearest Centroid (NC), and k-Nearest Neighbors (k-NN), which are evaluated against the ISBI’14 Overlapping Cervical Cytology Image Segmentation Challenge dataset. Experiments show that the proposed method is the state-of-the-art algorithm of the literature for recall (0.999) and F1 values (0.993). It produced a recall very close to the optimum value and also kept high precision (0.988). [Display omitted] •Ensemble of classifiers to provide a more assertive cervical cell nuclei segmentation.•Automatic inspection of Pap smear test to reduce the human workload in cervical cell analysis.•Superpixel computation and feature extraction to improve cell characterization and classification. |
| ArticleNumber | 115642 |
| Author | Ushizima, Daniela Mayumi Souza, Marcone Jamilson Freitas Diniz, Débora Nasser Vitor, Rafael Ferreira Carneiro, Cláudia Martins Delabrida, Saul de Medeiros, Fátima Nelsizeuma Sombra Bianchi, Andrea Gomes Campos |
| Author_xml | – sequence: 1 givenname: Débora Nasser orcidid: 0000-0002-1951-8868 surname: Diniz fullname: Diniz, Débora Nasser email: debora.diniz@aluno.ufop.edu.br organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil – sequence: 2 givenname: Rafael Ferreira orcidid: 0000-0001-6904-8414 surname: Vitor fullname: Vitor, Rafael Ferreira email: rafael.vitor@aluno.ufop.edu.br organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil – sequence: 3 givenname: Andrea Gomes Campos orcidid: 0000-0001-7949-1188 surname: Bianchi fullname: Bianchi, Andrea Gomes Campos email: andrea@ufop.edu.br organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil – sequence: 4 givenname: Saul orcidid: 0000-0002-8961-5313 surname: Delabrida fullname: Delabrida, Saul email: saul.delabrida@ufop.edu.br organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil – sequence: 5 givenname: Cláudia Martins orcidid: 0000-0002-6002-857X surname: Carneiro fullname: Carneiro, Cláudia Martins email: carneirocm@ufop.edu.br organization: Departamento de Análises Clínicas, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil – sequence: 6 givenname: Daniela Mayumi orcidid: 0000-0002-7363-9468 surname: Ushizima fullname: Ushizima, Daniela Mayumi email: dushizima@lbl.gov organization: Computational Research Division, Lawrence Berkeley National Laboratory, ZIP Code: 94720, Berkeley, CA, United States – sequence: 7 givenname: Fátima Nelsizeuma Sombra orcidid: 0000-0003-3075-8771 surname: de Medeiros fullname: de Medeiros, Fátima Nelsizeuma Sombra email: fsombra@ufc.br organization: Departamento de Engenharia de Teleinformática, Universidade Federal do Ceará (UFC), ZIP Code: 60455-970, Fortaleza, CE, Brazil – sequence: 8 givenname: Marcone Jamilson Freitas orcidid: 0000-0002-7141-357X surname: Souza fullname: Souza, Marcone Jamilson Freitas email: marcone@ufop.edu.br organization: Departamento de Computação, Universidade Federal de Ouro Preto (UFOP), ZIP Code: 35400-000, Ouro Preto, MG, Brazil |
| BackLink | https://www.osti.gov/servlets/purl/1809048$$D View this record in Osti.gov |
| BookMark | eNp9kL1OwzAURi1UJNrCCzBFMKf4Jk5sSywI8SdVYoHZcpwb6iq1i50W8fY4ChMDkz185-roLMjMeYeEXAJdAYX6ZrvC-KVXBS1gBVDVrDghcxC8zGsuyxmZU1nxnAFnZ2QR45ZS4JTyOXm4cxm6iLumx2yHw8a3WedD5g6mR5u1OKAZrHeZ7zJ_xNDr_d66j8xgOFqj-_Tp-3hOTjvdR7z4fZfk_fHh7f45X78-vdzfrXNTSjnkIFvZibbjjS4l0wAG21qiKDU0JetY0fAaqGharBpa1Vxo3jLT8JIDq4XU5ZJcTXd9HKyKxia7jfHOJUkFgkrKRBpdT6N98J8HjIPa-kNwyUsVlWCVLASTaVVMKxN8jAE7tQ92p8O3AqrGpmqrxqZqbKqmpgkSf6CkoMc-Q9C2_x-9nVBMfY4Ww6iPLhWwYbRvvf0P_wGGWJM2 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3485888 crossref_primary_10_1007_s11042_024_19686_8 crossref_primary_10_1016_j_bspc_2025_108397 crossref_primary_10_32604_or_2022_025897 crossref_primary_10_1007_s10462_025_11207_9 crossref_primary_10_1109_ACCESS_2025_3543850 crossref_primary_10_1016_j_eswa_2022_117040 crossref_primary_10_1007_s44291_025_00112_8 crossref_primary_10_1016_j_eswa_2023_120624 crossref_primary_10_3390_diagnostics12112771 crossref_primary_10_1109_ACCESS_2024_3445371 crossref_primary_10_1080_21681163_2023_2197086 crossref_primary_10_1080_23080477_2024_2373551 crossref_primary_10_1002_jbio_202400584 |
| Cites_doi | 10.1158/1055-9965.EPI-09-1038 10.1159/000478770 10.1016/j.orp.2016.09.002 10.38094/jastt1224 10.14209/sbrt.2017.48 10.1109/JBHI.2016.2519686 10.2307/1932409 10.1109/TMI.2018.2815013 10.1016/j.eswa.2016.08.015 10.1016/j.compmedimag.2019.01.003 10.1109/TIP.2018.2857001 10.1016/j.neucom.2016.09.070 10.1016/j.compbiomed.2019.03.011 10.1142/S1469026810002860 10.1016/j.eswa.2019.112951 10.1109/JBHI.2018.2878945 10.1109/TIP.2015.2389619 10.1016/j.eswa.2011.06.034 10.1016/j.eswa.2018.07.010 10.1023/A:1010933404324 10.1073/pnas.082099299 10.1016/j.patcog.2012.05.006 10.2307/1412159 10.1002/cncr.2820710405 10.1109/JBHI.2018.2885544 10.1080/00031305.1992.10475879 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Dec 15, 2021 |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Dec 15, 2021 |
| CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D OIOZB OTOTI |
| DOI | 10.1016/j.eswa.2021.115642 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| ExternalDocumentID | 1809048 10_1016_j_eswa_2021_115642 S0957417421010356 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D AALMO AAPBV ABPIF ABPTK OIOZB OTOTI PQEST |
| ID | FETCH-LOGICAL-c399t-19d9f8df7ba394a11ced69e83a1b34f42b76108bde5b05678a7d4cb73714689a3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701954400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Fri May 19 00:58:45 EDT 2023 Sun Nov 09 08:07:33 EST 2025 Sat Nov 29 07:09:05 EST 2025 Tue Nov 18 20:49:22 EST 2025 Fri Feb 23 02:44:31 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Detection approach Ensemble methods Image processing algorithm Cervical cancer Pap smear test |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c399t-19d9f8df7ba394a11ced69e83a1b34f42b76108bde5b05678a7d4cb73714689a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-05CH11231 USDOE Office of Science (SC) |
| ORCID | 0000-0001-6904-8414 0000-0002-8961-5313 0000-0002-1951-8868 0000-0002-7363-9468 0000-0001-7949-1188 0000-0003-3075-8771 0000-0002-6002-857X 0000-0002-7141-357X 0000000289615313 0000000179491188 000000027141357X 0000000273639468 0000000219518868 000000026002857X 0000000169048414 0000000330758771 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1809048 |
| PQID | 2584592849 |
| PQPubID | 2045477 |
| ParticipantIDs | osti_scitechconnect_1809048 proquest_journals_2584592849 crossref_primary_10_1016_j_eswa_2021_115642 crossref_citationtrail_10_1016_j_eswa_2021_115642 elsevier_sciencedirect_doi_10_1016_j_eswa_2021_115642 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-15 |
| PublicationDateYYYYMMDD | 2021-12-15 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
| References | Gay, Donaldson, Goellner (b18) 1985; 29 Braz, E. F., & Lotufo, R. d. A. (2017). Nuclei detection using deep learning. In WHO (b50) 2021 Tareef, Song, Cai, Huang, Chang, Wang, Fulham, Feng, Chen (b45) 2017; 221 Breiman, Friedman, Olshen, Stone (b8) 1984 Breiman (b7) 2001; 45 Lu, Carneiro, Bradley, Ushizima, Nosrati, Bianchi, Carneiro, Hamarneh (b33) 2017; 21 Song, Xiao, Lian (b43) 2018; 12 Borah, Nath (b4) 2018; 113 Araújo, Silva, Ushizima, Rezende, Carneiro, Bianchi, Medeiros (b3) 2019; 72 Lourenço, Martin, Stützle (b30) 2010; 146 Altman (b1) 1992; 46 Lu, Carneiro, Bradley (b31) 2015; 24 Sobrevilla, Montseny, Vaschetto, Lerma (b41) 2010; 9 Tibshirani, Hastie, Narasimhan, Chu (b47) 2002; 99 Dice (b12) 1945; 26 Lu, Carneiro, Bradley, Ushizima, Nosrati, Bianchi, Carneiro, Hamarneh (b32) 2016; 21 Chaudhari, Gore (b9) 2019; vol. 839 Cunningham (b11) 2008 Nosrati, Hamarneh (b35) 2014 van der Walt, Schönberger, Nunez-Iglesias, Boulogne, Warner, Yager, Gouillart, Yu (b49) 2014; 2:e453 Diniz, Souza, Carneiro, Ushizima, de Medeiros, Oliveira, Bianchi (b14) 2020; vol. 378 Kovesi (b24) 2000 Tareef, Song, Huang, Feng, Chen, Wang, Cai (b46) 2018; 37 Ester, Kriegel, Sander, Xu (b16) 1996 Spearman (b44) 1904; 15 Diniz, Souza, Carneiro, Ushizima, de Medeiros, Oliveira, Bianchi (b13) 2019 López-Ibáñez, Dubois-Lacoste, Cáceres, Birattari, Stützle (b28) 2016; 3 Zebari, Abdulazeez, Zeebaree, Zebari, Saeed (b51) 2020; 1 Lehman, O’Rourke, Hatcher, Stepanski (b26) 2013 (pp. 1059–1063). São Paulo, Brazil. Manning, Schütze (b34) 1999 Hinton (b20) 1990 Song, Sanchez, Daly, Rajpoot (b42) 2019; 23 Lönnberg, Anttila, Kotaniemi-Talonen, Kujari, Melkko, Granroth, Vornanen, Pietiläinen, Sankila, Arola (b27) 2010; 19 Bosch, Rietveld-Scheffers, Boon (b5) 1992; 36 Alyafeai, Ghouti (b2) 2020; 141 Ushizima, Bianchi, Carneiro (b48) 2014 Gençtav, Aksoy, Önder (b19) 2012; 45 Pai, Chang, Chan (b36) 2012; 39 Saha, Bajger, Lee (b40) 2016 Sabino, Costa, Martins, Calado, Zago (b39) 2003; 12 Plissiti, Nikou (b37) 2012; vol. 7325 Duda, Hart, Stork (b15) 2000 Kumari, Swarnkar (b25) 2011; 2 Claeys, Broutet, Ullrich (b10) 2006 Lorenzo-Ginori, Curbelo-Jardines, López-Cabrera, Huergo-Suárez (b29) 2013; vol. 8259 Kendall, Gibbons (b21) 1990 Koss (b23) 1993; 71 Koonmee, Bychkov, Shuangshoti, Bhummichitra, Himakhun, Karalak, Rangdaeng (b22) 2017; 61 Ramesh, Tasdizen (b38) 2019; 23 Zhang, Liu, Du, He, Li, Chen (b52) 2019; 108 Garcia-Gonzalez, Garcia-Silvente, Aguirre (b17) 2016; 64 Claeys (10.1016/j.eswa.2021.115642_b10) 2006 Diniz (10.1016/j.eswa.2021.115642_b14) 2020; vol. 378 Lehman (10.1016/j.eswa.2021.115642_b26) 2013 Koonmee (10.1016/j.eswa.2021.115642_b22) 2017; 61 Tareef (10.1016/j.eswa.2021.115642_b46) 2018; 37 Hinton (10.1016/j.eswa.2021.115642_b20) 1990 Kumari (10.1016/j.eswa.2021.115642_b25) 2011; 2 Ushizima (10.1016/j.eswa.2021.115642_b48) 2014 Dice (10.1016/j.eswa.2021.115642_b12) 1945; 26 Pai (10.1016/j.eswa.2021.115642_b36) 2012; 39 Ester (10.1016/j.eswa.2021.115642_b16) 1996 Song (10.1016/j.eswa.2021.115642_b42) 2019; 23 López-Ibáñez (10.1016/j.eswa.2021.115642_b28) 2016; 3 Borah (10.1016/j.eswa.2021.115642_b4) 2018; 113 Breiman (10.1016/j.eswa.2021.115642_b8) 1984 Tibshirani (10.1016/j.eswa.2021.115642_b47) 2002; 99 Alyafeai (10.1016/j.eswa.2021.115642_b2) 2020; 141 Manning (10.1016/j.eswa.2021.115642_b34) 1999 Nosrati (10.1016/j.eswa.2021.115642_b35) 2014 Chaudhari (10.1016/j.eswa.2021.115642_b9) 2019; vol. 839 Gençtav (10.1016/j.eswa.2021.115642_b19) 2012; 45 Koss (10.1016/j.eswa.2021.115642_b23) 1993; 71 Saha (10.1016/j.eswa.2021.115642_b40) 2016 Song (10.1016/j.eswa.2021.115642_b43) 2018; 12 Lu (10.1016/j.eswa.2021.115642_b32) 2016; 21 Zebari (10.1016/j.eswa.2021.115642_b51) 2020; 1 Spearman (10.1016/j.eswa.2021.115642_b44) 1904; 15 Ramesh (10.1016/j.eswa.2021.115642_b38) 2019; 23 van der Walt (10.1016/j.eswa.2021.115642_b49) 2014; 2:e453 Lorenzo-Ginori (10.1016/j.eswa.2021.115642_b29) 2013; vol. 8259 WHO (10.1016/j.eswa.2021.115642_b50) 2021 Tareef (10.1016/j.eswa.2021.115642_b45) 2017; 221 Garcia-Gonzalez (10.1016/j.eswa.2021.115642_b17) 2016; 64 Lu (10.1016/j.eswa.2021.115642_b31) 2015; 24 Sobrevilla (10.1016/j.eswa.2021.115642_b41) 2010; 9 Kovesi (10.1016/j.eswa.2021.115642_b24) 2000 Breiman (10.1016/j.eswa.2021.115642_b7) 2001; 45 Altman (10.1016/j.eswa.2021.115642_b1) 1992; 46 Bosch (10.1016/j.eswa.2021.115642_b5) 1992; 36 Duda (10.1016/j.eswa.2021.115642_b15) 2000 Araújo (10.1016/j.eswa.2021.115642_b3) 2019; 72 10.1016/j.eswa.2021.115642_b6 Lu (10.1016/j.eswa.2021.115642_b33) 2017; 21 Diniz (10.1016/j.eswa.2021.115642_b13) 2019 Zhang (10.1016/j.eswa.2021.115642_b52) 2019; 108 Lourenço (10.1016/j.eswa.2021.115642_b30) 2010; 146 Lönnberg (10.1016/j.eswa.2021.115642_b27) 2010; 19 Gay (10.1016/j.eswa.2021.115642_b18) 1985; 29 Cunningham (10.1016/j.eswa.2021.115642_b11) 2008 Kendall (10.1016/j.eswa.2021.115642_b21) 1990 Plissiti (10.1016/j.eswa.2021.115642_b37) 2012; vol. 7325 Sabino (10.1016/j.eswa.2021.115642_b39) 2003; 12 |
| References_xml | – volume: 3 start-page: 43 year: 2016 end-page: 58 ident: b28 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Operations Research Perspectives – volume: 64 start-page: 512 year: 2016 end-page: 522 ident: b17 article-title: A multiscale algorithm for nuclei extraction in pap smear images publication-title: Expert Systems with Applications – volume: vol. 839 start-page: 241 year: 2019 end-page: 259 ident: b9 article-title: Review of various techniques used for automatic detection of malignancy in pap smear test publication-title: Data management, analytics and innovation: proceedings of ICDMAI 2018 – year: 2006 ident: b10 article-title: Comprehensive cervical cancer control: A guide to essential practice – volume: 21 start-page: 441 year: 2016 end-page: 450 ident: b32 article-title: Evaluation of three algorithms for the segmentation of overlapping cervical cells publication-title: IEEE Journal of Biomedical and Health Informatics – year: 1999 ident: b34 article-title: Foundations of statistical natural language processing – volume: 2:e453 year: 2014 ident: b49 article-title: Scikit-image: image processing in Python publication-title: PeerJ. – year: 2000 ident: b15 article-title: Pattern classification – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: b1 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: The American Statistician – volume: 36 start-page: 711 year: 1992 end-page: 716 ident: b5 article-title: Characteristics of false-negative smears tested in the normal screening situation publication-title: Acta Cytologica – volume: 9 start-page: 187 year: 2010 end-page: 206 ident: b41 article-title: Fuzzy-based analysis of microscopic color cervical pap smear images: Nuclei detection publication-title: International Journal of Computational Intelligence and Applications – year: 2021 ident: b50 article-title: Cervical cancer – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b7 article-title: Random forests publication-title: Machine Learning – volume: 21 start-page: 441 year: 2017 end-page: 450 ident: b33 article-title: Evaluation of three algorithms for the segmentation of overlapping cervical cells publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 146 start-page: 363 year: 2010 end-page: 397 ident: b30 article-title: Iterated local search: Framework and applications publication-title: Handbook of metaheuristics – volume: 12 start-page: 1 year: 2003 end-page: 6 ident: b39 article-title: Automatic leukemia diagnosis publication-title: Acta Microscopica – volume: 45 start-page: 4151 year: 2012 end-page: 4168 ident: b19 article-title: Unsupervised segmentation and classification of cervical cell images publication-title: Pattern Recognition – volume: 113 start-page: 233 year: 2018 end-page: 263 ident: b4 article-title: Identifying risk factors for adverse diseases using dynamic rare association rule mining publication-title: Expert Systems with Applications – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: b12 article-title: Measures of the amount of ecologic association between species publication-title: Ecology – start-page: 1 year: 2016 end-page: 8 ident: b40 article-title: Spatial shape constrained fuzzy C-means (FCM) clustering for nucleus segmentation in pap smear images publication-title: Proceedings of the 2016 international conference on digital image computing: techniques and applications – start-page: 319 year: 2019 end-page: 327 ident: b13 article-title: An iterated local search algorithm for cell nuclei detection from pap smear images publication-title: Proceedings of the 21st international conference on enterprise information systems (vol. 1) – start-page: 91 year: 2008 end-page: 112 ident: b11 article-title: Dimension reduction publication-title: Machine learning techniques for multimedia: case studies on organization and retrieval – start-page: 226 year: 1996 end-page: 231 ident: b16 article-title: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of the knowledge discovery and data mining – volume: 23 start-page: 1469 year: 2019 end-page: 1476 ident: b42 article-title: Simultaneous cell detection and classification in bone marrow histology images publication-title: IEEE Journal of Biomedical and Health Informatics – year: 2014 ident: b48 article-title: Segmentation of subcellular compartments combining superpixel representation with voronoi diagrams publication-title: Overlapping cervical cytology image segmentation challenge, in conjunction with IEEE 11th international symposium on biomedical imaging – volume: 15 start-page: 72 year: 1904 end-page: 101 ident: b44 article-title: The proof and measurement of association between two things publication-title: The American Journal of Psychology – volume: 1 start-page: 56 year: 2020 end-page: 70 ident: b51 article-title: A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction publication-title: Journal of Applied Science and Technology Trends – volume: 37 start-page: 2044 year: 2018 end-page: 2059 ident: b46 article-title: Multi-pass fast watershed for accurate segmentation of overlapping cervical cells publication-title: IEEE Transactions on Medical Imaging – volume: 141 year: 2020 ident: b2 article-title: A fully-automated deep learning pipeline for cervical cancer classification publication-title: Expert Systems with Applications – volume: 99 start-page: 6567 year: 2002 end-page: 6572 ident: b47 article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression publication-title: National Academy of Sciences – volume: vol. 8259 start-page: 222 year: 2013 end-page: 229 ident: b29 article-title: Cervical cell classification using features related to morphometry and texture of nuclei publication-title: Progress in pattern recognition, image analysis, computer vision, and applications – volume: 19 start-page: 381 year: 2010 end-page: 387 ident: b27 article-title: Low proportion of false-negative smears in the finnish program for cervical cancer screening publication-title: Cancer Epidemiology and Prevention Biomarkers – volume: 71 start-page: 1406 year: 1993 end-page: 1412 ident: b23 article-title: Cervical (pap) smear: New directions publication-title: Cancer – reference: (pp. 1059–1063). São Paulo, Brazil. – volume: 12 start-page: 5759 year: 2018 end-page: 5774 ident: b43 article-title: Contour-seed pairs learning-based framework for simultaneously detecting and segmenting various overlapping cells/nuclei in microscopy images publication-title: IEEE Transactions on Image Processing – volume: 108 start-page: 223 year: 2019 end-page: 233 ident: b52 article-title: Binary tree-like network with two-path fusion attention feature for cervical cell nucleus segmentation publication-title: Computers in Biology and Medicine – year: 2013 ident: b26 article-title: JMP for basic univariate and multivariate statistics: methods for researchers and social scientists, second edition – year: 1984 ident: b8 article-title: Classification and regression trees publication-title: The Wadsworth statistics/probability series – start-page: 555 year: 1990 end-page: 610 ident: b20 article-title: Connectionist learning procedures publication-title: Machine learning – year: 1990 ident: b21 publication-title: Rank correlation methods – volume: 61 start-page: 434 year: 2017 end-page: 440 ident: b22 article-title: False-negative rate of papanicolaou testing: A national survey from the thai society of cytology publication-title: Acta Cytologica – volume: 72 start-page: 13 year: 2019 end-page: 21 ident: b3 article-title: Deep learning for cell image segmentation and ranking publication-title: Computerized Medical Imaging and Graphics – volume: 221 start-page: 94 year: 2017 end-page: 107 ident: b45 article-title: Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation publication-title: Neurocomputing – volume: 29 start-page: 1043 year: 1985 end-page: –1046 ident: b18 article-title: False-negative results in cervical cytologic studies publication-title: Acta Cytologica – year: 2000 ident: b24 article-title: MATLAB and Octave functions for computer vision and image processing – reference: Braz, E. F., & Lotufo, R. d. A. (2017). Nuclei detection using deep learning. In – start-page: 1 year: 2014 end-page: 2 ident: b35 article-title: A variational approach for overlapping cell segmentation publication-title: Overlapping cervical cytology image segmentation challenge, in conjunction with IEEE 11th international symposium on biomedical imaging – volume: 39 start-page: 154 year: 2012 end-page: 161 ident: b36 article-title: Nucleus and cytoplast contour detector from a cervical smear image publication-title: Expert Systems with Applications – volume: 24 start-page: 1261 year: 2015 end-page: 1272 ident: b31 article-title: An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells publication-title: IEEE Transactions on Image Processing – volume: vol. 7325 start-page: 483 year: 2012 end-page: 490 ident: b37 article-title: Cervical cell classification based exclusively on nucleus features publication-title: Image analysis and recognition: proceedings of the 9th international conference, ICIAR 2012, part II – volume: 2 start-page: 1048 year: 2011 end-page: 1053 ident: b25 article-title: Filter versus wrapper feature subset selection in large dimensionality micro array: A review publication-title: International Journal of Computer Science and Information Technologies – volume: vol. 378 start-page: 78 year: 2020 end-page: 96 ident: b14 article-title: An iterated local search-based algorithm to support cell nuclei detection in pap smears test publication-title: Enterprise information systems: 21st international conference, ICEIS 2019, revised selected papers – volume: 23 start-page: 1457 year: 2019 end-page: 1468 ident: b38 article-title: Cell segmentation using a similarity interface with a multi-task convolutional neural network publication-title: IEEE Journal of Biomedical and Health Informatics – volume: 19 start-page: 381 issue: 2 year: 2010 ident: 10.1016/j.eswa.2021.115642_b27 article-title: Low proportion of false-negative smears in the finnish program for cervical cancer screening publication-title: Cancer Epidemiology and Prevention Biomarkers doi: 10.1158/1055-9965.EPI-09-1038 – volume: 61 start-page: 434 issue: 6 year: 2017 ident: 10.1016/j.eswa.2021.115642_b22 article-title: False-negative rate of papanicolaou testing: A national survey from the thai society of cytology publication-title: Acta Cytologica doi: 10.1159/000478770 – year: 1990 ident: 10.1016/j.eswa.2021.115642_b21 – volume: vol. 8259 start-page: 222 year: 2013 ident: 10.1016/j.eswa.2021.115642_b29 article-title: Cervical cell classification using features related to morphometry and texture of nuclei – volume: 146 start-page: 363 year: 2010 ident: 10.1016/j.eswa.2021.115642_b30 article-title: Iterated local search: Framework and applications – volume: 3 start-page: 43 year: 2016 ident: 10.1016/j.eswa.2021.115642_b28 article-title: The irace package: Iterated racing for automatic algorithm configuration publication-title: Operations Research Perspectives doi: 10.1016/j.orp.2016.09.002 – start-page: 319 year: 2019 ident: 10.1016/j.eswa.2021.115642_b13 article-title: An iterated local search algorithm for cell nuclei detection from pap smear images – volume: 1 start-page: 56 issue: 2 year: 2020 ident: 10.1016/j.eswa.2021.115642_b51 article-title: A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction publication-title: Journal of Applied Science and Technology Trends doi: 10.38094/jastt1224 – year: 2013 ident: 10.1016/j.eswa.2021.115642_b26 – ident: 10.1016/j.eswa.2021.115642_b6 doi: 10.14209/sbrt.2017.48 – volume: 21 start-page: 441 issue: 2 year: 2017 ident: 10.1016/j.eswa.2021.115642_b33 article-title: Evaluation of three algorithms for the segmentation of overlapping cervical cells publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2016.2519686 – volume: 26 start-page: 297 issue: 3 year: 1945 ident: 10.1016/j.eswa.2021.115642_b12 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – start-page: 1 year: 2014 ident: 10.1016/j.eswa.2021.115642_b35 article-title: A variational approach for overlapping cell segmentation – year: 2021 ident: 10.1016/j.eswa.2021.115642_b50 – volume: 37 start-page: 2044 issue: 9 year: 2018 ident: 10.1016/j.eswa.2021.115642_b46 article-title: Multi-pass fast watershed for accurate segmentation of overlapping cervical cells publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2018.2815013 – volume: 64 start-page: 512 year: 2016 ident: 10.1016/j.eswa.2021.115642_b17 article-title: A multiscale algorithm for nuclei extraction in pap smear images publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2016.08.015 – volume: 36 start-page: 711 year: 1992 ident: 10.1016/j.eswa.2021.115642_b5 article-title: Characteristics of false-negative smears tested in the normal screening situation publication-title: Acta Cytologica – volume: 72 start-page: 13 year: 2019 ident: 10.1016/j.eswa.2021.115642_b3 article-title: Deep learning for cell image segmentation and ranking publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2019.01.003 – volume: 12 start-page: 5759 issue: 12 year: 2018 ident: 10.1016/j.eswa.2021.115642_b43 article-title: Contour-seed pairs learning-based framework for simultaneously detecting and segmenting various overlapping cells/nuclei in microscopy images publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2018.2857001 – volume: 221 start-page: 94 year: 2017 ident: 10.1016/j.eswa.2021.115642_b45 article-title: Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.070 – volume: vol. 378 start-page: 78 year: 2020 ident: 10.1016/j.eswa.2021.115642_b14 article-title: An iterated local search-based algorithm to support cell nuclei detection in pap smears test – volume: 108 start-page: 223 year: 2019 ident: 10.1016/j.eswa.2021.115642_b52 article-title: Binary tree-like network with two-path fusion attention feature for cervical cell nucleus segmentation publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2019.03.011 – start-page: 555 year: 1990 ident: 10.1016/j.eswa.2021.115642_b20 article-title: Connectionist learning procedures – volume: 12 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.eswa.2021.115642_b39 article-title: Automatic leukemia diagnosis publication-title: Acta Microscopica – year: 2006 ident: 10.1016/j.eswa.2021.115642_b10 – start-page: 226 year: 1996 ident: 10.1016/j.eswa.2021.115642_b16 article-title: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise – volume: 2 start-page: 1048 year: 2011 ident: 10.1016/j.eswa.2021.115642_b25 article-title: Filter versus wrapper feature subset selection in large dimensionality micro array: A review publication-title: International Journal of Computer Science and Information Technologies – volume: 9 start-page: 187 issue: 3 year: 2010 ident: 10.1016/j.eswa.2021.115642_b41 article-title: Fuzzy-based analysis of microscopic color cervical pap smear images: Nuclei detection publication-title: International Journal of Computational Intelligence and Applications doi: 10.1142/S1469026810002860 – volume: 2:e453 year: 2014 ident: 10.1016/j.eswa.2021.115642_b49 article-title: Scikit-image: image processing in Python publication-title: PeerJ. – volume: 141 year: 2020 ident: 10.1016/j.eswa.2021.115642_b2 article-title: A fully-automated deep learning pipeline for cervical cancer classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2019.112951 – volume: vol. 839 start-page: 241 year: 2019 ident: 10.1016/j.eswa.2021.115642_b9 article-title: Review of various techniques used for automatic detection of malignancy in pap smear test – volume: 23 start-page: 1469 issue: 4 year: 2019 ident: 10.1016/j.eswa.2021.115642_b42 article-title: Simultaneous cell detection and classification in bone marrow histology images publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2018.2878945 – volume: 29 start-page: 1043 issue: 6 year: 1985 ident: 10.1016/j.eswa.2021.115642_b18 article-title: False-negative results in cervical cytologic studies publication-title: Acta Cytologica – year: 2014 ident: 10.1016/j.eswa.2021.115642_b48 article-title: Segmentation of subcellular compartments combining superpixel representation with voronoi diagrams – volume: 24 start-page: 1261 issue: 4 year: 2015 ident: 10.1016/j.eswa.2021.115642_b31 article-title: An improved joint optimization of multiple level set functions for the segmentation of overlapping cervical cells publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2015.2389619 – start-page: 1 year: 2016 ident: 10.1016/j.eswa.2021.115642_b40 article-title: Spatial shape constrained fuzzy C-means (FCM) clustering for nucleus segmentation in pap smear images – volume: 39 start-page: 154 issue: 1 year: 2012 ident: 10.1016/j.eswa.2021.115642_b36 article-title: Nucleus and cytoplast contour detector from a cervical smear image publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.06.034 – year: 1984 ident: 10.1016/j.eswa.2021.115642_b8 article-title: Classification and regression trees – year: 2000 ident: 10.1016/j.eswa.2021.115642_b15 – volume: vol. 7325 start-page: 483 year: 2012 ident: 10.1016/j.eswa.2021.115642_b37 article-title: Cervical cell classification based exclusively on nucleus features – year: 2000 ident: 10.1016/j.eswa.2021.115642_b24 – volume: 113 start-page: 233 year: 2018 ident: 10.1016/j.eswa.2021.115642_b4 article-title: Identifying risk factors for adverse diseases using dynamic rare association rule mining publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2018.07.010 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.eswa.2021.115642_b7 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 99 start-page: 6567 issue: 10 year: 2002 ident: 10.1016/j.eswa.2021.115642_b47 article-title: Diagnosis of multiple cancer types by shrunken centroids of gene expression publication-title: National Academy of Sciences doi: 10.1073/pnas.082099299 – volume: 45 start-page: 4151 issue: 12 year: 2012 ident: 10.1016/j.eswa.2021.115642_b19 article-title: Unsupervised segmentation and classification of cervical cell images publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.05.006 – volume: 21 start-page: 441 issue: 2 year: 2016 ident: 10.1016/j.eswa.2021.115642_b32 article-title: Evaluation of three algorithms for the segmentation of overlapping cervical cells publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2016.2519686 – year: 1999 ident: 10.1016/j.eswa.2021.115642_b34 – volume: 15 start-page: 72 issue: 1 year: 1904 ident: 10.1016/j.eswa.2021.115642_b44 article-title: The proof and measurement of association between two things publication-title: The American Journal of Psychology doi: 10.2307/1412159 – volume: 71 start-page: 1406 issue: 4 year: 1993 ident: 10.1016/j.eswa.2021.115642_b23 article-title: Cervical (pap) smear: New directions publication-title: Cancer doi: 10.1002/cncr.2820710405 – start-page: 91 year: 2008 ident: 10.1016/j.eswa.2021.115642_b11 article-title: Dimension reduction – volume: 23 start-page: 1457 issue: 4 year: 2019 ident: 10.1016/j.eswa.2021.115642_b38 article-title: Cell segmentation using a similarity interface with a multi-task convolutional neural network publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2018.2885544 – volume: 46 start-page: 175 issue: 3 year: 1992 ident: 10.1016/j.eswa.2021.115642_b1 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: The American Statistician doi: 10.1080/00031305.1992.10475879 |
| SSID | ssj0017007 |
| Score | 2.468686 |
| Snippet | The Pap test is a preventive approach that requires specialized and labor-intensive examination of cytological preparations to track potentially cancerous... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115642 |
| SubjectTerms | Abnormalities Algorithms Centroids Cervical cancer Cytology Decision trees Detection approach Ensemble methods Feature extraction Image processing algorithm Image segmentation MATHEMATICS AND COMPUTING Nuclei (cytology) Pap smear test Recall |
| Title | An ensemble method for nuclei detection of overlapping cervical cells |
| URI | https://dx.doi.org/10.1016/j.eswa.2021.115642 https://www.proquest.com/docview/2584592849 https://www.osti.gov/servlets/purl/1809048 |
| Volume | 185 |
| WOSCitedRecordID | wos000701954400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3oiyC_IBcamy2jwdHytoeahaEOpWvVlO7EhZZdOShGX_DX-VmdhJWx4VHLhEURo3lefr-Mt45htCXgJuFKwzypFJ6jtBnHiOTFXkoFSa8iLGZNu0bzln5-fxasU_DQbfu1qY64KVZXxzwzf_1dRwDYyNpbP_YO7-S-ECnIPR4Qhmh-NfGX5SjuHVVF9hSZTpD92mEpYoXJyPlW502rFETN8s5KYtmUpbp4FqIboo6r2APaohN1bzuauG29n37rlwXuZtOPqN2X1HdIH3ruttAvAyb0x44LPMpC7GM11VOq-2QQEMsbRthk2mpRy_XaOaFO6QrLcP0gDdKlfShLRtaqMNXXgupoGY4k0TT-trapZ7cUnmBK5p3XOqjVeOme9EzLRS3LrtcMfxur9dDkxk4vJU199QY8pzYYUIIyPnta-9ff5RzC7mc7GYrhavNl8cbEuG2_e2R8stcuSxkIPbPJq8n64-9BtV7MxU5He_2tZlmRTCnx_7J-4zXIM7_4UMtAxncZ_cta8mdGIg9YAMdPmQ3OvaflC7Cjwi00lJO4RRgzAKCKMGYbRHGF1ndAdhtEMYbRH2mFzMpovX7xzbjcNJgcQ2jssVz2KVsUT6PJCum2oVcR370k38IAu8hAEVjxOlwwRYNYslU0GaMJSEjGIu_SdkWK5L_ZRQN87cNNMJU1kceFpK7gXJWaBYmDAZaDkibjdPIrVS9dgxpRBdTuKlwLkVOLfCzO2IjPsxGyPUcvDusJt-YammoZACoHNw3DHaCsegxnKKyWgwCEXwYCkckZPOhMJ6hFp4QPFDDiyQPzv88TG5s_2TnJBhU33Vz8nt9LrJ6-qFBd4PDuuySw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+method+for+nuclei+detection+of+overlapping+cervical+cells&rft.jtitle=Expert+systems+with+applications&rft.au=Diniz%2C+D%C3%A9bora+Nasser&rft.au=Vitor%2C+Rafael+Ferreira&rft.au=Bianchi%2C+Andrea+Gomes+Campos&rft.au=Delabrida%2C+Saul&rft.date=2021-12-15&rft.pub=Elsevier+BV&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=185&rft.spage=1&rft_id=info:doi/10.1016%2Fj.eswa.2021.115642&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |