A wave generation toolbox for the open-source CFD library: OpenFoam

SUMMARY The open‐source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled with a volume of fluid method. In this paper, it is demonstrated how this has been extended with a generic wave generation and absorpti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids Jg. 70; H. 9; S. 1073 - 1088
Hauptverfasser: Jacobsen, Niels G., Fuhrman, David R., Fredsøe, Jørgen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester Blackwell Publishing Ltd 30.11.2012
Wiley
Schlagworte:
ISSN:0271-2091, 1097-0363
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract SUMMARY The open‐source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled with a volume of fluid method. In this paper, it is demonstrated how this has been extended with a generic wave generation and absorption method termed ‘wave relaxation zones’, on which a detailed account is given. The ability to use OpenFoam for the modelling of waves is demonstrated using two benchmark test cases, which show the ability to model wave propagation and wave breaking. Furthermore, the reflection coefficient from outlet relaxation zones is considered for a range of parameters. The toolbox is implemented in C++, and the flexibility in deriving new relaxation methods and implementing new wave theories along with other shapes of the relaxation zone is outlined. Subsequent to the publication of this paper, the toolbox has been made freely available through the OpenFoam‐Extend Community. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList SUMMARY The open‐source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled with a volume of fluid method. In this paper, it is demonstrated how this has been extended with a generic wave generation and absorption method termed ‘wave relaxation zones’, on which a detailed account is given. The ability to use OpenFoam for the modelling of waves is demonstrated using two benchmark test cases, which show the ability to model wave propagation and wave breaking. Furthermore, the reflection coefficient from outlet relaxation zones is considered for a range of parameters. The toolbox is implemented in C++, and the flexibility in deriving new relaxation methods and implementing new wave theories along with other shapes of the relaxation zone is outlined. Subsequent to the publication of this paper, the toolbox has been made freely available through the OpenFoam‐Extend Community. Copyright © 2011 John Wiley & Sons, Ltd.
The open‐source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled with a volume of fluid method. In this paper, it is demonstrated how this has been extended with a generic wave generation and absorption method termed ‘wave relaxation zones’, on which a detailed account is given. The ability to use OpenFoam for the modelling of waves is demonstrated using two benchmark test cases, which show the ability to model wave propagation and wave breaking. Furthermore, the reflection coefficient from outlet relaxation zones is considered for a range of parameters. The toolbox is implemented in C++, and the flexibility in deriving new relaxation methods and implementing new wave theories along with other shapes of the relaxation zone is outlined. Subsequent to the publication of this paper, the toolbox has been made freely available through the OpenFoam‐Extend Community. Copyright © 2011 John Wiley & Sons, Ltd.
Author Fuhrman, David R.
Fredsøe, Jørgen
Jacobsen, Niels G.
Author_xml – sequence: 1
  givenname: Niels G.
  surname: Jacobsen
  fullname: Jacobsen, Niels G.
  email: Niels G. Jacobsen, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, Bygn. 403, 2800, Kgs. Lyngby, Denmark., ngja@mek.dtu.dk
  organization: Department of Mechanical Engineering, Technical University of Denmark, Nils KoppelsAllé, Bygn. 403, 2800, Kgs. Lyngby, Denmark
– sequence: 2
  givenname: David R.
  surname: Fuhrman
  fullname: Fuhrman, David R.
  organization: Department of Mechanical Engineering, Technical University of Denmark, Nils KoppelsAllé, Bygn. 403, 2800, Kgs. Lyngby, Denmark
– sequence: 3
  givenname: Jørgen
  surname: Fredsøe
  fullname: Fredsøe, Jørgen
  organization: Department of Mechanical Engineering, Technical University of Denmark, Nils KoppelsAllé, Bygn. 403, 2800, Kgs. Lyngby, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26569657$$DView record in Pascal Francis
BookMark eNp10E1PwjAYB_DGYCKgiR-hFxMvw76wlnoj4MCwwMWXxEvTrZ1Ox0raKfDtLaImGj01aX_PP33-HdCqbW0AOMWohxEiF0Wle4QTdgDaGAkeIcpoC7QR4TgiSOAj0PH-GSEkyIC2wWgI1-rNwEdTG6ea0tawsbbK7AYW1sHmyUC7MnXk7avLDRwlY1iVmVNuewkX4SGxankMDgtVeXPyeXbBbXJ1M5pG6WJyPRqmUU6FYFHO40KojGSCxf2CaaEKQ1mmjeYDpDXNULjRmlChY4qD5pppRhVWRGWGatoFZ_vclfK5qgqn6rz0cuXKZfiPJCxmIZoH19u73FnvnSlkXjYfuzVOlZXESO6qkqEquasqDJz_GvjK_INGe7ouK7P918kkHf_0pW_M5tsr9yIZpzyW9_OJvOvPZg8pmco5fQcmsYjk
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_oceaneng_2018_12_052
crossref_primary_10_1016_j_coastaleng_2023_104314
crossref_primary_10_1115_1_4068917
crossref_primary_10_1007_s13344_019_0038_0
crossref_primary_10_1016_j_buildenv_2024_111836
crossref_primary_10_1016_j_coastaleng_2022_104273
crossref_primary_10_1016_j_coastaleng_2022_104274
crossref_primary_10_3390_jmse11020448
crossref_primary_10_1016_j_oceaneng_2021_108815
crossref_primary_10_3390_jmse11020446
crossref_primary_10_1016_j_apor_2020_102398
crossref_primary_10_1016_j_oceaneng_2020_107323
crossref_primary_10_1061_JWPED5_WWENG_1902
crossref_primary_10_1016_j_renene_2019_08_059
crossref_primary_10_1007_s13344_021_0045_9
crossref_primary_10_1061__ASCE_EM_1943_7889_0001087
crossref_primary_10_1016_j_jfluidstructs_2019_102722
crossref_primary_10_1016_j_oceaneng_2018_12_040
crossref_primary_10_1016_j_coastaleng_2024_104601
crossref_primary_10_3390_fluids7110359
crossref_primary_10_3390_jmse12081368
crossref_primary_10_4028_www_scientific_net_DDF_396_12
crossref_primary_10_1016_j_coastaleng_2023_104302
crossref_primary_10_1016_j_apor_2019_06_003
crossref_primary_10_1016_j_coastaleng_2023_104421
crossref_primary_10_1016_j_jfluidstructs_2022_103812
crossref_primary_10_1016_j_coastaleng_2018_07_006
crossref_primary_10_1063_5_0287542
crossref_primary_10_1016_j_apor_2025_104739
crossref_primary_10_3390_en10091323
crossref_primary_10_3390_pharmaceutics12050453
crossref_primary_10_1016_j_oceaneng_2020_107675
crossref_primary_10_3390_en12091742
crossref_primary_10_1016_j_oceaneng_2022_112339
crossref_primary_10_1016_j_icheatmasstransfer_2022_106592
crossref_primary_10_1007_s42241_022_0036_1
crossref_primary_10_1016_j_oceaneng_2020_107430
crossref_primary_10_1063_5_0277502
crossref_primary_10_1007_s42241_019_0015_3
crossref_primary_10_1016_j_oceaneng_2022_112693
crossref_primary_10_1016_j_oceaneng_2022_112572
crossref_primary_10_1109_TSTE_2021_3108576
crossref_primary_10_1016_j_coastaleng_2024_104614
crossref_primary_10_1007_s10236_022_01517_9
crossref_primary_10_1016_j_renene_2016_10_044
crossref_primary_10_1016_j_apor_2024_104249
crossref_primary_10_1016_j_coastaleng_2023_104452
crossref_primary_10_1016_j_coastaleng_2019_01_001
crossref_primary_10_1029_2023JC020413
crossref_primary_10_1016_j_renene_2024_121901
crossref_primary_10_1002_rra_3764
crossref_primary_10_1016_j_apor_2020_102376
crossref_primary_10_1016_j_renene_2024_120930
crossref_primary_10_1007_s00338_018_1736_4
crossref_primary_10_1016_j_oceaneng_2020_107104
crossref_primary_10_1016_j_oceaneng_2022_112568
crossref_primary_10_3389_fbuil_2023_1282459
crossref_primary_10_1016_j_oceaneng_2022_112206
crossref_primary_10_1016_j_oceaneng_2022_113415
crossref_primary_10_1016_j_coastaleng_2024_104629
crossref_primary_10_1016_j_coastaleng_2022_104269
crossref_primary_10_1016_j_oceaneng_2022_111236
crossref_primary_10_1007_s40722_020_00173_9
crossref_primary_10_1016_j_coastaleng_2024_104621
crossref_primary_10_1016_j_coastaleng_2016_03_005
crossref_primary_10_1016_j_oceaneng_2024_117254
crossref_primary_10_1007_s00773_020_00702_z
crossref_primary_10_1029_2017JC013369
crossref_primary_10_1063_5_0263132
crossref_primary_10_1177_1475090217726884
crossref_primary_10_1016_j_oceaneng_2020_107217
crossref_primary_10_1016_j_oceaneng_2020_107575
crossref_primary_10_1016_j_oceaneng_2021_109811
crossref_primary_10_1016_j_oceaneng_2020_107698
crossref_primary_10_3390_oceans5020014
crossref_primary_10_1016_j_oceaneng_2020_108303
crossref_primary_10_1016_j_oceaneng_2021_108600
crossref_primary_10_1016_j_oceaneng_2020_108300
crossref_primary_10_1016_j_oceaneng_2024_119549
crossref_primary_10_1063_5_0220831
crossref_primary_10_1016_j_aqpro_2015_02_042
crossref_primary_10_1109_TSTE_2016_2515512
crossref_primary_10_1016_j_apor_2015_07_010
crossref_primary_10_3390_jmse11051033
crossref_primary_10_3390_jmse8070526
crossref_primary_10_1016_j_coastaleng_2024_104519
crossref_primary_10_1016_j_oceaneng_2022_112153
crossref_primary_10_3390_jmse12050712
crossref_primary_10_9753_icce_v34_waves_43
crossref_primary_10_1016_j_coastaleng_2021_103942
crossref_primary_10_1016_j_apor_2024_104266
crossref_primary_10_3390_w16243644
crossref_primary_10_1080_17445302_2021_1894030
crossref_primary_10_1016_j_apor_2024_104028
crossref_primary_10_1016_j_oceaneng_2017_10_009
crossref_primary_10_1016_j_apor_2025_104703
crossref_primary_10_1017_jfm_2019_115
crossref_primary_10_1002_2013JC009324
crossref_primary_10_1016_j_jfluidstructs_2018_05_007
crossref_primary_10_1061__ASCE_WW_1943_5460_0000233
crossref_primary_10_1016_j_energy_2023_127357
crossref_primary_10_1016_j_compfluid_2016_09_012
crossref_primary_10_1016_j_oceaneng_2017_11_046
crossref_primary_10_9753_icce_v38_sediment_88
crossref_primary_10_3390_geosciences11010005
crossref_primary_10_1016_j_apor_2024_104030
crossref_primary_10_1016_j_oceaneng_2023_114745
crossref_primary_10_3390_w17010096
crossref_primary_10_1016_j_coastaleng_2017_04_009
crossref_primary_10_1016_j_marstruc_2020_102923
crossref_primary_10_1016_j_oceaneng_2022_112028
crossref_primary_10_1016_j_ocemod_2023_102290
crossref_primary_10_1016_j_oceaneng_2023_115951
crossref_primary_10_3390_jmse8060433
crossref_primary_10_1007_s13344_023_0080_9
crossref_primary_10_3390_jmse10010089
crossref_primary_10_1016_j_oceaneng_2020_107628
crossref_primary_10_1016_j_jfluidstructs_2017_02_010
crossref_primary_10_1016_j_jfluidstructs_2018_11_003
crossref_primary_10_1016_j_oceaneng_2015_06_036
crossref_primary_10_1016_j_oceaneng_2024_119489
crossref_primary_10_1016_j_ocemod_2022_101945
crossref_primary_10_1063_5_0280700
crossref_primary_10_1016_j_coastaleng_2025_104811
crossref_primary_10_1016_j_coastaleng_2014_08_009
crossref_primary_10_1016_j_coastaleng_2017_04_004
crossref_primary_10_1016_j_coastaleng_2020_103829
crossref_primary_10_1016_j_coastaleng_2025_104819
crossref_primary_10_3390_jmse11051011
crossref_primary_10_1016_j_oceaneng_2023_113985
crossref_primary_10_1016_j_apor_2024_104161
crossref_primary_10_1016_j_oceaneng_2017_09_054
crossref_primary_10_1016_j_oceaneng_2022_113100
crossref_primary_10_1016_j_oceaneng_2022_113584
crossref_primary_10_1002_nme_5710
crossref_primary_10_1016_j_coastaleng_2024_104659
crossref_primary_10_1016_j_oceaneng_2017_10_023
crossref_primary_10_1002_2016JC011884
crossref_primary_10_3390_jmse8080590
crossref_primary_10_1016_j_coastaleng_2019_03_010
crossref_primary_10_1017_jfm_2024_31
crossref_primary_10_1016_j_enganabound_2022_09_035
crossref_primary_10_1017_jfm_2022_92
crossref_primary_10_1016_j_buildenv_2023_110334
crossref_primary_10_1016_j_coastaleng_2019_02_008
crossref_primary_10_1016_j_oceaneng_2020_107667
crossref_primary_10_1016_j_oceaneng_2025_120881
crossref_primary_10_1016_j_oceaneng_2025_121731
crossref_primary_10_1016_j_jfluidstructs_2016_01_008
crossref_primary_10_1017_jfm_2017_857
crossref_primary_10_1016_j_coastaleng_2015_11_003
crossref_primary_10_1016_j_oceaneng_2020_108513
crossref_primary_10_1016_j_coastaleng_2020_103837
crossref_primary_10_2112_SI92_011_1
crossref_primary_10_3390_en14051449
crossref_primary_10_1016_j_oceaneng_2020_107660
crossref_primary_10_1155_2020_1647640
crossref_primary_10_1007_s42241_024_0043_5
crossref_primary_10_1016_j_renene_2019_08_119
crossref_primary_10_1016_j_oceaneng_2023_113617
crossref_primary_10_1080_19942060_2015_1031318
crossref_primary_10_1016_j_renene_2017_12_027
crossref_primary_10_1016_j_energy_2025_137710
crossref_primary_10_1016_j_oceaneng_2018_12_022
crossref_primary_10_1016_j_coastaleng_2015_09_005
crossref_primary_10_3390_jmse12060984
crossref_primary_10_3390_jmse9090936
crossref_primary_10_1016_j_oceaneng_2024_119460
crossref_primary_10_1016_j_ijhydene_2024_11_376
crossref_primary_10_5194_hess_21_515_2017
crossref_primary_10_1016_j_ijft_2024_100857
crossref_primary_10_1007_s13344_019_0058_9
crossref_primary_10_1016_j_oceaneng_2025_120631
crossref_primary_10_1080_10618562_2024_2351897
crossref_primary_10_26748_KSOE_2025_006
crossref_primary_10_1016_j_coastaleng_2013_12_008
crossref_primary_10_1016_j_oceaneng_2022_113207
crossref_primary_10_1080_19942060_2017_1310671
crossref_primary_10_1016_j_oceaneng_2022_111029
crossref_primary_10_1016_j_compfluid_2021_104860
crossref_primary_10_3390_jmse8090694
crossref_primary_10_1016_j_oceaneng_2016_10_045
crossref_primary_10_5194_nhess_18_1469_2018
crossref_primary_10_1007_s11804_017_1437_3
crossref_primary_10_1016_j_oceaneng_2023_114770
crossref_primary_10_1016_j_renene_2024_122026
crossref_primary_10_1016_j_coastaleng_2021_104035
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105126
crossref_primary_10_1016_j_oceaneng_2024_118056
crossref_primary_10_1016_j_oceaneng_2025_121626
crossref_primary_10_3389_fmars_2021_677030
crossref_primary_10_1016_j_oceaneng_2021_109987
crossref_primary_10_1016_j_oceaneng_2017_08_060
crossref_primary_10_1016_j_oceaneng_2020_107049
crossref_primary_10_1002_rra_4112
crossref_primary_10_1016_j_oceaneng_2017_08_061
crossref_primary_10_1016_j_oceaneng_2019_106174
crossref_primary_10_1016_j_oceaneng_2020_108253
crossref_primary_10_1007_s42241_022_0067_7
crossref_primary_10_3390_jmse13030391
crossref_primary_10_3390_jmse8110836
crossref_primary_10_1016_j_oceaneng_2020_108493
crossref_primary_10_1016_j_oceaneng_2022_112188
crossref_primary_10_1016_j_apor_2024_104073
crossref_primary_10_1007_s40722_022_00260_z
crossref_primary_10_1016_j_apor_2024_104075
crossref_primary_10_3390_en13195195
crossref_primary_10_1016_j_oceaneng_2015_04_043
crossref_primary_10_1016_j_coastaleng_2014_09_003
crossref_primary_10_1016_j_oceaneng_2014_01_008
crossref_primary_10_1016_j_jfluidstructs_2022_103779
crossref_primary_10_1016_j_oceaneng_2022_111096
crossref_primary_10_1016_j_jfluidstructs_2019_04_001
crossref_primary_10_1016_j_oceaneng_2025_121615
crossref_primary_10_1016_j_oceaneng_2025_120649
crossref_primary_10_3390_w12092581
crossref_primary_10_1016_j_coastaleng_2015_03_008
crossref_primary_10_1016_j_oceaneng_2025_120654
crossref_primary_10_1016_j_oceaneng_2016_05_021
crossref_primary_10_1016_j_oceaneng_2020_108360
crossref_primary_10_1016_j_ocemod_2015_11_011
crossref_primary_10_3390_fluids10050114
crossref_primary_10_1016_j_oceaneng_2017_07_033
crossref_primary_10_1016_j_oceaneng_2015_03_011
crossref_primary_10_1016_j_oceaneng_2016_05_022
crossref_primary_10_1007_s10409_021_09023_z
crossref_primary_10_1016_j_oceaneng_2020_107180
crossref_primary_10_1016_j_oceaneng_2022_113385
crossref_primary_10_1016_j_apenergy_2021_117009
crossref_primary_10_1016_j_oceaneng_2016_10_025
crossref_primary_10_1016_j_oceaneng_2024_120118
crossref_primary_10_1061__ASCE_WW_1943_5460_0000324
crossref_primary_10_1016_j_oceaneng_2025_122736
crossref_primary_10_3390_w12010161
crossref_primary_10_1016_j_oceaneng_2025_120563
crossref_primary_10_1007_s13344_018_0026_9
crossref_primary_10_1016_j_oceaneng_2024_119497
crossref_primary_10_1016_j_oceaneng_2024_118071
crossref_primary_10_1063_5_0280533
crossref_primary_10_1016_j_coastaleng_2014_02_007
crossref_primary_10_1021_acs_jchemed_9b00542
crossref_primary_10_1017_jfm_2018_577
crossref_primary_10_3390_app9173573
crossref_primary_10_1007_s10409_020_01007_5
crossref_primary_10_3390_sym13101806
crossref_primary_10_1680_eacm_13_00029
crossref_primary_10_1016_j_coastaleng_2017_11_003
crossref_primary_10_3390_jmse12060946
crossref_primary_10_1016_j_jfluidstructs_2022_103755
crossref_primary_10_1016_j_oceaneng_2017_08_059
crossref_primary_10_1016_j_oceaneng_2025_121514
crossref_primary_10_1061__ASCE_WW_1943_5460_0000339
crossref_primary_10_1016_j_coastaleng_2021_104002
crossref_primary_10_1016_j_oceaneng_2024_118067
crossref_primary_10_1016_j_oceaneng_2025_121757
crossref_primary_10_1061__ASCE_WW_1943_5460_0000338
crossref_primary_10_3390_jmse11050917
crossref_primary_10_1016_j_oceaneng_2025_121764
crossref_primary_10_1007_s11802_017_3322_8
crossref_primary_10_1016_j_oceaneng_2024_119025
crossref_primary_10_1061__ASCE_WW_1943_5460_0000343
crossref_primary_10_1680_jmaen_2020_33
crossref_primary_10_1063_5_0266118
crossref_primary_10_1080_1064119X_2019_1689588
crossref_primary_10_1016_j_oceaneng_2025_121762
crossref_primary_10_1016_j_oceaneng_2021_109774
crossref_primary_10_1016_j_jfluidstructs_2024_104092
crossref_primary_10_1016_j_jcp_2025_114048
crossref_primary_10_1088_1757_899X_1288_1_012041
crossref_primary_10_1088_0169_5983_48_1_015508
crossref_primary_10_1016_j_oceaneng_2023_115546
crossref_primary_10_1016_j_oceaneng_2023_115307
crossref_primary_10_1061__ASCE_EM_1943_7889_0002016
crossref_primary_10_3390_jmse11112078
crossref_primary_10_3390_jmse8090650
crossref_primary_10_1051_e3sconf_20150504002
crossref_primary_10_1016_j_coastaleng_2013_08_010
crossref_primary_10_1016_j_coastaleng_2022_104117
crossref_primary_10_1680_jencm_19_00036
crossref_primary_10_4028_p_BL5v8v
crossref_primary_10_1680_jencm_19_00035
crossref_primary_10_1016_j_apor_2019_101932
crossref_primary_10_1088_1757_899X_1288_1_012029
crossref_primary_10_1016_j_oceaneng_2025_122515
crossref_primary_10_1061__ASCE_WW_1943_5460_0000504
crossref_primary_10_1007_s40571_025_00967_4
crossref_primary_10_1016_j_oceaneng_2021_108728
crossref_primary_10_1029_2024JC021194
crossref_primary_10_1016_j_buildenv_2025_112726
crossref_primary_10_1016_j_jcp_2023_111949
crossref_primary_10_1016_j_marstruc_2018_10_007
crossref_primary_10_1016_j_oceaneng_2021_108976
crossref_primary_10_1007_s00773_019_00645_0
crossref_primary_10_1016_j_tsep_2023_101755
crossref_primary_10_1016_j_coastaleng_2012_06_002
crossref_primary_10_3390_fluids5030112
crossref_primary_10_1080_03019233_2023_2214453
crossref_primary_10_3390_jmse6020073
crossref_primary_10_1016_j_oceaneng_2023_115796
crossref_primary_10_1016_j_oceaneng_2017_06_031
crossref_primary_10_3390_en12142669
crossref_primary_10_1007_s42241_018_0168_5
crossref_primary_10_1016_j_coastaleng_2022_104245
crossref_primary_10_1016_j_oceaneng_2017_06_030
crossref_primary_10_3390_buildings14103176
crossref_primary_10_1016_j_jfluidstructs_2023_103914
crossref_primary_10_1061_JIDEDH_IRENG_10128
crossref_primary_10_1016_j_oceaneng_2020_108208
crossref_primary_10_1007_s40722_025_00384_y
crossref_primary_10_1007_s42241_025_0039_9
crossref_primary_10_3390_app10041347
crossref_primary_10_1016_j_apor_2022_103430
crossref_primary_10_1016_j_jfluidstructs_2021_103442
crossref_primary_10_1016_j_oceaneng_2020_107353
crossref_primary_10_1098_rsta_2022_0403
crossref_primary_10_1016_j_compfluid_2023_106044
crossref_primary_10_1016_j_oceaneng_2020_108200
crossref_primary_10_1080_19942060_2024_2319768
crossref_primary_10_1049_rpg2_12229
crossref_primary_10_1016_j_oceaneng_2023_115889
crossref_primary_10_1016_j_oceaneng_2024_116812
crossref_primary_10_1016_j_oceaneng_2023_114795
crossref_primary_10_3390_jmse12122191
crossref_primary_10_1016_j_energy_2025_136697
crossref_primary_10_1016_j_coastaleng_2014_01_006
crossref_primary_10_1061__ASCE_WW_1943_5460_0000520
crossref_primary_10_1016_j_apor_2023_103508
crossref_primary_10_1016_j_coastaleng_2014_01_005
crossref_primary_10_1016_j_oceaneng_2023_114792
crossref_primary_10_1088_1757_899X_1288_1_012007
crossref_primary_10_5194_nhess_19_1281_2019
crossref_primary_10_1016_j_oceaneng_2024_119054
crossref_primary_10_1080_17445302_2021_1954329
crossref_primary_10_1016_j_apor_2023_103501
crossref_primary_10_1029_2017JC013440
crossref_primary_10_1016_j_flowmeasinst_2024_102561
crossref_primary_10_1002_fld_4807
crossref_primary_10_1007_s11804_024_00404_7
crossref_primary_10_1016_j_oceaneng_2021_108879
crossref_primary_10_1016_j_oceaneng_2025_120362
crossref_primary_10_1007_s13344_021_0063_7
crossref_primary_10_1016_j_oceaneng_2021_108753
crossref_primary_10_1088_1757_899X_1288_1_012013
crossref_primary_10_3390_fluids6100350
crossref_primary_10_1016_j_oceaneng_2025_122301
crossref_primary_10_1061__ASCE_EM_1943_7889_0001381
crossref_primary_10_1016_j_apor_2018_09_013
crossref_primary_10_5004_dwt_2020_24938
crossref_primary_10_1016_j_marstruc_2020_102783
crossref_primary_10_1016_j_oceaneng_2019_01_050
crossref_primary_10_3390_jmse7020047
crossref_primary_10_1111_mms_12600
crossref_primary_10_1016_j_coastaleng_2022_104228
crossref_primary_10_1016_j_coastaleng_2022_104227
crossref_primary_10_1016_j_oceaneng_2022_113050
crossref_primary_10_1016_j_jfluidstructs_2015_06_010
crossref_primary_10_1016_j_oceaneng_2015_04_063
crossref_primary_10_3390_jmse7030071
crossref_primary_10_1016_j_coastaleng_2014_01_015
crossref_primary_10_1016_j_renene_2017_03_003
crossref_primary_10_1016_j_apenergy_2018_06_008
crossref_primary_10_1007_s40722_016_0052_8
crossref_primary_10_1016_j_oceaneng_2024_120177
crossref_primary_10_1016_j_apor_2019_01_006
crossref_primary_10_1088_1757_899X_1288_1_012002
crossref_primary_10_3390_w11071333
crossref_primary_10_1016_j_apor_2022_103210
crossref_primary_10_1016_j_jfluidstructs_2024_104170
crossref_primary_10_1007_s13344_023_0057_8
crossref_primary_10_1016_j_oceaneng_2023_116618
crossref_primary_10_1007_s13344_025_0017_6
crossref_primary_10_1016_j_ijome_2016_05_003
crossref_primary_10_1016_j_coastaleng_2016_04_002
crossref_primary_10_1007_s13344_024_0090_2
crossref_primary_10_1016_j_oceaneng_2023_115469
crossref_primary_10_1007_s13344_020_0026_4
crossref_primary_10_1016_j_istruc_2025_108199
crossref_primary_10_1680_jencm_20_00006
crossref_primary_10_1007_s42241_018_0116_4
crossref_primary_10_1016_j_coastaleng_2012_07_002
crossref_primary_10_3390_w17070981
crossref_primary_10_1016_j_coastaleng_2015_05_004
crossref_primary_10_3390_en14061718
crossref_primary_10_1016_j_oceaneng_2025_121115
crossref_primary_10_1016_j_renene_2024_121329
crossref_primary_10_1016_j_oceaneng_2022_111817
crossref_primary_10_1016_j_oceaneng_2025_121238
crossref_primary_10_1016_j_apor_2022_103363
crossref_primary_10_1016_j_oceaneng_2018_08_064
crossref_primary_10_3390_app9081652
crossref_primary_10_3390_jmse9111176
crossref_primary_10_1080_00221686_2018_1555549
crossref_primary_10_1016_j_oceaneng_2021_109342
crossref_primary_10_1016_j_scs_2024_105943
crossref_primary_10_1016_j_marstruc_2024_103775
crossref_primary_10_1016_j_oceaneng_2017_05_011
crossref_primary_10_1016_j_oceaneng_2019_106210
crossref_primary_10_1007_s40722_014_0007_x
crossref_primary_10_1016_j_oceaneng_2021_110462
crossref_primary_10_1016_j_oceaneng_2023_116440
crossref_primary_10_1016_j_apor_2019_03_007
crossref_primary_10_1080_17445302_2021_1937854
crossref_primary_10_3390_fluids7070235
crossref_primary_10_1016_j_apor_2018_08_003
crossref_primary_10_1016_j_marstruc_2016_11_002
crossref_primary_10_1007_s40722_016_0055_5
crossref_primary_10_1680_jmaen_2017_14
crossref_primary_10_3390_jmse12091636
crossref_primary_10_3390_jmse12101735
crossref_primary_10_3390_jmse9020150
crossref_primary_10_1016_j_coastaleng_2025_104698
crossref_primary_10_1016_j_csr_2022_104760
crossref_primary_10_3390_jmse8030206
crossref_primary_10_3390_en13133431
crossref_primary_10_1002_nme_7115
crossref_primary_10_1016_j_renene_2022_04_069
crossref_primary_10_1016_j_oceaneng_2024_118915
crossref_primary_10_1063_5_0165357
crossref_primary_10_1016_j_compfluid_2015_04_005
crossref_primary_10_1016_j_oceaneng_2019_106678
crossref_primary_10_1016_j_oceaneng_2023_115205
crossref_primary_10_1063_5_0275902
crossref_primary_10_1016_j_oceaneng_2024_116978
crossref_primary_10_1016_j_marstruc_2025_103907
crossref_primary_10_1007_s11804_023_00345_7
crossref_primary_10_1016_j_oceaneng_2016_03_028
crossref_primary_10_1016_j_oceaneng_2024_117821
crossref_primary_10_3390_jmse6030105
crossref_primary_10_1016_j_oceaneng_2024_117940
crossref_primary_10_1016_j_renene_2018_09_034
crossref_primary_10_1063_5_0101943
crossref_primary_10_1002_fld_4845
crossref_primary_10_1016_j_coastaleng_2018_04_011
crossref_primary_10_1016_j_marstruc_2022_103190
crossref_primary_10_1016_j_oceaneng_2025_122221
crossref_primary_10_1016_j_oceaneng_2025_122585
crossref_primary_10_1016_j_cnsns_2023_107372
crossref_primary_10_1680_jmaen_2018_16
crossref_primary_10_3390_w12010208
crossref_primary_10_9753_icce_v38_currents_28
crossref_primary_10_1016_j_coastaleng_2014_04_012
crossref_primary_10_1016_j_energy_2021_120421
crossref_primary_10_1016_j_oceaneng_2019_106552
crossref_primary_10_1016_j_coastaleng_2018_04_016
crossref_primary_10_1016_j_energy_2021_120307
crossref_primary_10_1016_j_oceaneng_2018_01_052
crossref_primary_10_1016_j_proeng_2015_08_334
crossref_primary_10_1016_j_oceaneng_2024_117938
crossref_primary_10_1016_j_jfluidstructs_2018_01_010
crossref_primary_10_1007_s42241_018_0082_x
crossref_primary_10_1016_j_coastaleng_2013_09_002
crossref_primary_10_1016_j_oceaneng_2023_116304
crossref_primary_10_1063_5_0246534
crossref_primary_10_3390_jmse12122318
crossref_primary_10_1007_s11071_025_11721_z
crossref_primary_10_1016_j_oceaneng_2014_06_003
crossref_primary_10_1016_j_coastaleng_2017_09_006
crossref_primary_10_1007_s35147_022_1111_9
crossref_primary_10_3390_en14061707
crossref_primary_10_3390_w15010024
crossref_primary_10_1016_j_oceaneng_2022_111908
crossref_primary_10_1016_j_oceaneng_2025_121368
crossref_primary_10_1016_j_oceaneng_2025_121489
crossref_primary_10_1007_s11631_021_00514_x
crossref_primary_10_1007_s40722_021_00219_6
crossref_primary_10_1061__ASCE_BE_1943_5592_0001447
crossref_primary_10_1016_j_apor_2023_103672
crossref_primary_10_1016_j_advwatres_2019_103450
crossref_primary_10_3390_fluids7090295
crossref_primary_10_1016_j_renene_2021_02_152
crossref_primary_10_3390_w14182830
crossref_primary_10_1680_jencm_17_00016
crossref_primary_10_1016_j_oceaneng_2021_109130
crossref_primary_10_1007_s42241_023_0057_4
crossref_primary_10_1016_j_coastaleng_2018_04_003
crossref_primary_10_1016_j_energy_2017_08_033
crossref_primary_10_1016_j_oceaneng_2024_120094
crossref_primary_10_1016_j_jfluidstructs_2017_07_009
crossref_primary_10_1007_s13344_020_0002_z
crossref_primary_10_1061_JENMDT_EMENG_7581
crossref_primary_10_1002_fld_4982
crossref_primary_10_1063_5_0274954
crossref_primary_10_1016_j_jfluidstructs_2023_103987
crossref_primary_10_1016_j_oceaneng_2019_02_001
crossref_primary_10_1016_j_marstruc_2022_103292
crossref_primary_10_1007_BF03449285
crossref_primary_10_1016_j_oceaneng_2019_03_040
crossref_primary_10_1016_j_oceaneng_2022_110767
crossref_primary_10_1016_j_ocemod_2019_101481
crossref_primary_10_1080_19942060_2018_1438924
crossref_primary_10_1016_j_jfluidstructs_2016_05_005
crossref_primary_10_1016_j_apor_2022_103280
crossref_primary_10_1016_j_oceaneng_2024_119916
crossref_primary_10_1016_j_renene_2023_06_022
crossref_primary_10_1016_j_ijome_2017_11_004
crossref_primary_10_1007_s42241_019_0020_6
crossref_primary_10_1061_JWPED5_WWENG_2130
crossref_primary_10_1016_j_oceaneng_2019_02_010
crossref_primary_10_1016_j_oceaneng_2024_116981
crossref_primary_10_1016_j_oceaneng_2023_115394
crossref_primary_10_1007_s42452_025_06651_9
crossref_primary_10_3390_jmse10091220
crossref_primary_10_1002_2014JC009854
crossref_primary_10_1016_j_oceaneng_2021_109439
crossref_primary_10_3390_fluids4020068
crossref_primary_10_1016_j_oceaneng_2017_04_009
crossref_primary_10_1016_j_oceaneng_2024_118950
crossref_primary_10_1017_jfm_2022_941
crossref_primary_10_1155_2021_8837476
crossref_primary_10_1016_j_oceaneng_2020_108047
crossref_primary_10_1016_j_coastaleng_2015_04_003
crossref_primary_10_1016_j_renene_2017_02_079
crossref_primary_10_1016_j_oceaneng_2019_106237
crossref_primary_10_1017_jfm_2024_648
crossref_primary_10_1016_j_jmapro_2023_03_053
crossref_primary_10_1016_j_marstruc_2025_103826
crossref_primary_10_1016_j_oceaneng_2023_115368
crossref_primary_10_1016_j_oceaneng_2023_114155
crossref_primary_10_1007_s13344_016_0010_1
crossref_primary_10_1007_s40722_023_00278_x
crossref_primary_10_1016_j_energy_2024_132898
crossref_primary_10_1080_21664250_2018_1542963
crossref_primary_10_1007_s42241_021_0026_8
crossref_primary_10_1063_5_0286717
crossref_primary_10_3390_fluids10040096
crossref_primary_10_1016_j_coastaleng_2019_103517
crossref_primary_10_3390_jmse10091251
crossref_primary_10_1016_j_energy_2023_126807
crossref_primary_10_1016_j_oceaneng_2022_111717
crossref_primary_10_1016_j_egypro_2017_10_347
crossref_primary_10_1016_j_egypro_2017_10_107
crossref_primary_10_1016_j_oceaneng_2023_115256
crossref_primary_10_1016_j_renene_2019_06_076
crossref_primary_10_1007_s11804_020_00124_8
crossref_primary_10_1002_fld_4894
crossref_primary_10_9753_icce_v34_waves_5
crossref_primary_10_1016_j_oceaneng_2018_02_055
crossref_primary_10_1016_j_renene_2021_07_011
crossref_primary_10_2112_JCOASTRES_D_20_00045_1
crossref_primary_10_1016_j_oceaneng_2025_121049
crossref_primary_10_1016_j_coastaleng_2019_103526
crossref_primary_10_1016_j_oceaneng_2021_109218
crossref_primary_10_1016_j_renene_2014_11_016
crossref_primary_10_1017_jfm_2023_964
crossref_primary_10_1016_j_oceaneng_2025_121282
crossref_primary_10_3390_en12183482
crossref_primary_10_1016_j_jcp_2021_110560
crossref_primary_10_1016_j_jfluidstructs_2021_103387
crossref_primary_10_1016_j_ijome_2015_01_001
crossref_primary_10_1016_j_apor_2016_03_011
crossref_primary_10_1016_j_oceaneng_2022_110732
crossref_primary_10_1016_j_oceaneng_2022_110974
crossref_primary_10_1016_j_oceaneng_2021_109451
crossref_primary_10_1016_j_oceaneng_2022_111824
crossref_primary_10_1016_j_apor_2016_03_018
crossref_primary_10_1016_j_jcp_2024_113495
crossref_primary_10_1016_j_apor_2021_102952
crossref_primary_10_1016_j_coastaleng_2023_104278
crossref_primary_10_1016_j_coastaleng_2015_07_004
crossref_primary_10_1016_j_coastaleng_2023_104397
crossref_primary_10_3390_jmse10111778
crossref_primary_10_3390_fluids6010009
crossref_primary_10_3390_jmse12061004
crossref_primary_10_1109_TCST_2019_2939092
crossref_primary_10_1016_j_oceaneng_2019_03_004
crossref_primary_10_1016_j_coastaleng_2025_104720
crossref_primary_10_1016_j_euromechflu_2021_06_012
crossref_primary_10_1016_j_oceaneng_2024_118986
crossref_primary_10_1016_j_advwatres_2018_11_009
crossref_primary_10_1115_1_4040508
crossref_primary_10_1016_j_oceaneng_2025_121192
crossref_primary_10_1016_j_marstruc_2018_08_007
crossref_primary_10_1016_j_oceaneng_2022_110560
crossref_primary_10_1016_j_oceaneng_2021_109195
crossref_primary_10_1080_21664250_2019_1609712
crossref_primary_10_1016_j_coastaleng_2021_103971
crossref_primary_10_3390_jmse12071161
crossref_primary_10_1016_j_marstruc_2023_103516
crossref_primary_10_1016_j_oceaneng_2021_110189
crossref_primary_10_1016_j_jcp_2019_07_004
crossref_primary_10_1016_j_jfluidstructs_2019_01_016
crossref_primary_10_1016_j_coastaleng_2016_09_003
crossref_primary_10_1016_j_oceaneng_2024_117630
crossref_primary_10_1007_s13344_022_0060_5
crossref_primary_10_1080_21664250_2019_1609713
crossref_primary_10_1016_j_advwatres_2020_103755
crossref_primary_10_1016_j_apor_2021_102966
crossref_primary_10_1016_j_rineng_2025_106321
crossref_primary_10_1007_s42241_020_0055_8
crossref_primary_10_6112_kscfe_2024_29_3_133
crossref_primary_10_1016_j_oceaneng_2024_118632
crossref_primary_10_1063_5_0279082
crossref_primary_10_1016_j_marstruc_2021_103088
crossref_primary_10_3390_jmse7050123
crossref_primary_10_1016_j_oceaneng_2024_118877
crossref_primary_10_1016_j_fuel_2019_115988
crossref_primary_10_1016_j_oceaneng_2018_05_021
crossref_primary_10_1016_j_oceaneng_2022_111528
crossref_primary_10_1063_5_0275989
crossref_primary_10_1016_j_oceaneng_2019_106832
crossref_primary_10_1016_j_oceaneng_2022_110671
crossref_primary_10_1016_j_oceaneng_2018_02_024
crossref_primary_10_1080_09377255_2017_1348654
crossref_primary_10_1016_j_apor_2019_04_001
crossref_primary_10_1016_j_coastaleng_2016_01_004
crossref_primary_10_1016_j_oceaneng_2019_04_036
crossref_primary_10_1016_j_jfluidstructs_2017_12_015
crossref_primary_10_1063_5_0293172
crossref_primary_10_1016_j_apor_2025_104441
crossref_primary_10_1016_j_coastaleng_2016_01_008
crossref_primary_10_1016_j_oceaneng_2024_117423
crossref_primary_10_1016_j_oceaneng_2023_114075
crossref_primary_10_1016_j_ocemod_2022_102122
crossref_primary_10_3390_en17164046
crossref_primary_10_1016_j_rser_2018_05_020
crossref_primary_10_3390_fluids6010028
crossref_primary_10_1016_j_coastaleng_2013_11_004
crossref_primary_10_1016_j_renene_2018_10_092
crossref_primary_10_3390_jmse10091175
crossref_primary_10_1016_j_oceaneng_2020_107746
crossref_primary_10_3390_jmse10091298
crossref_primary_10_1016_j_coastaleng_2018_02_005
crossref_primary_10_1088_1757_899X_276_1_012009
crossref_primary_10_2112_JCOASTRES_D_17_00186_1
crossref_primary_10_1016_j_coastaleng_2025_104742
crossref_primary_10_1016_j_coastaleng_2018_10_004
crossref_primary_10_1016_j_coastaleng_2022_104091
crossref_primary_10_1016_j_energy_2019_115941
crossref_primary_10_1051_e3sconf_202236001028
crossref_primary_10_1063_5_0222727
crossref_primary_10_3390_jmse11030519
crossref_primary_10_1016_j_apor_2018_11_007
crossref_primary_10_1016_j_coastaleng_2019_04_011
crossref_primary_10_1016_j_coastaleng_2019_04_012
crossref_primary_10_1016_j_jcp_2023_112110
crossref_primary_10_3390_jmse11030641
crossref_primary_10_1016_j_oceaneng_2022_112963
crossref_primary_10_1007_s11804_018_00057_3
crossref_primary_10_1016_j_oceaneng_2023_116389
crossref_primary_10_1016_j_oceaneng_2024_117898
crossref_primary_10_1002_fld_4333
crossref_primary_10_1007_s11804_018_0042_4
crossref_primary_10_1016_j_apor_2025_104675
crossref_primary_10_1016_j_renene_2022_05_002
crossref_primary_10_1016_j_apor_2025_104676
crossref_primary_10_1016_j_oceaneng_2020_107847
crossref_primary_10_1007_s40430_018_1147_z
crossref_primary_10_3390_w11030456
crossref_primary_10_1016_j_coastaleng_2019_103564
crossref_primary_10_1007_s00773_017_0445_y
crossref_primary_10_1016_j_oceaneng_2018_01_102
crossref_primary_10_1016_j_oceaneng_2024_119941
crossref_primary_10_1016_j_marstruc_2022_103360
crossref_primary_10_3390_jmse6040124
crossref_primary_10_1016_j_oceaneng_2022_110658
crossref_primary_10_1016_j_oceaneng_2022_112716
crossref_primary_10_1016_j_oceaneng_2022_112430
crossref_primary_10_1016_j_oceaneng_2022_112431
crossref_primary_10_1016_j_oceaneng_2019_106532
crossref_primary_10_1007_s42241_025_0030_5
crossref_primary_10_1016_j_oceaneng_2019_04_015
crossref_primary_10_1016_j_aej_2025_02_072
crossref_primary_10_1080_17445302_2019_1690736
crossref_primary_10_1016_j_euromechflu_2022_05_011
crossref_primary_10_1016_j_coastaleng_2024_104477
crossref_primary_10_1016_j_coastaleng_2024_104475
crossref_primary_10_3390_jmse9121459
crossref_primary_10_1016_j_coastaleng_2024_104592
crossref_primary_10_1063_5_0285569
crossref_primary_10_3390_jmse10091198
crossref_primary_10_1016_j_oceaneng_2017_03_045
crossref_primary_10_1016_j_oceaneng_2024_119750
crossref_primary_10_1016_j_renene_2025_123707
crossref_primary_10_1175_JPO_D_16_0183_1
crossref_primary_10_1007_s10668_024_04810_3
crossref_primary_10_1007_s40999_023_00898_2
crossref_primary_10_1016_j_jcp_2023_112010
crossref_primary_10_1016_j_egypro_2016_09_214
crossref_primary_10_3390_jmse8060394
crossref_primary_10_1016_j_coastaleng_2020_103795
crossref_primary_10_1016_j_oceaneng_2021_110384
crossref_primary_10_1063_5_0273455
crossref_primary_10_1016_j_energy_2021_119964
crossref_primary_10_1016_j_coastaleng_2020_103799
crossref_primary_10_1016_j_oceaneng_2022_112301
crossref_primary_10_1016_j_coastaleng_2021_103892
crossref_primary_10_1016_j_oceaneng_2024_117671
crossref_primary_10_1016_j_apor_2020_102228
crossref_primary_10_1007_s12237_019_00584_4
crossref_primary_10_1016_j_coastaleng_2021_103890
crossref_primary_10_3744_SNAK_2020_57_5_278
crossref_primary_10_1007_s42241_021_0012_1
crossref_primary_10_1007_s00348_022_03508_4
crossref_primary_10_1016_j_ocemod_2020_101705
crossref_primary_10_1080_17445302_2019_1705632
crossref_primary_10_1016_j_compfluid_2017_05_003
crossref_primary_10_1016_j_oceaneng_2022_112539
crossref_primary_10_1016_j_coastaleng_2016_08_007
crossref_primary_10_1080_17445302_2016_1265883
crossref_primary_10_1002_nme_6648
crossref_primary_10_1088_1742_6596_753_9_092004
crossref_primary_10_1016_j_apor_2019_102000
crossref_primary_10_1007_s42241_024_0050_6
crossref_primary_10_1002_we_2966
crossref_primary_10_1016_j_apor_2019_102004
crossref_primary_10_1016_j_compfluid_2021_105179
crossref_primary_10_1016_j_apor_2021_102734
crossref_primary_10_1016_j_oceaneng_2015_08_049
crossref_primary_10_1016_j_apor_2020_102335
crossref_primary_10_1016_j_envsoft_2020_104740
crossref_primary_10_1016_j_coastaleng_2017_01_002
crossref_primary_10_1016_j_oceaneng_2020_106968
crossref_primary_10_1016_j_oceaneng_2024_117583
crossref_primary_10_1016_j_apor_2020_102217
crossref_primary_10_1016_j_coastaleng_2017_01_001
crossref_primary_10_1016_j_renene_2024_121793
crossref_primary_10_1017_jfm_2020_70
crossref_primary_10_1088_1755_1315_153_3_032035
crossref_primary_10_1016_j_apor_2021_102971
crossref_primary_10_1029_2018JC013930
crossref_primary_10_1016_j_coastaleng_2025_104788
crossref_primary_10_1016_j_oceaneng_2024_118523
crossref_primary_10_1016_j_oceaneng_2021_110026
crossref_primary_10_1016_j_euromechflu_2015_03_010
crossref_primary_10_1016_j_oceaneng_2021_109165
crossref_primary_10_1016_j_oceaneng_2016_09_017
crossref_primary_10_1111_mice_12782
crossref_primary_10_3389_fphy_2025_1449056
crossref_primary_10_1016_j_coastaleng_2018_03_009
crossref_primary_10_1016_j_apor_2020_102325
crossref_primary_10_1007_s13344_025_0043_4
crossref_primary_10_1016_j_cell_2023_12_027
crossref_primary_10_1080_17445302_2020_1790294
crossref_primary_10_1016_j_apor_2020_102445
crossref_primary_10_1016_j_coastaleng_2018_03_002
crossref_primary_10_1038_s41598_020_69136_2
crossref_primary_10_1111_mice_12784
crossref_primary_10_1016_j_oceaneng_2017_01_004
crossref_primary_10_3390_jmse11101843
crossref_primary_10_1016_j_renene_2021_11_010
crossref_primary_10_1017_jfm_2020_1072
crossref_primary_10_2112_JCOASTRES_D_14_00210_1
crossref_primary_10_1016_j_oceaneng_2024_119744
crossref_primary_10_1007_s11831_014_9138_4
crossref_primary_10_1016_j_oceaneng_2022_113604
crossref_primary_10_1016_j_marstruc_2023_103503
crossref_primary_10_1016_j_oceaneng_2015_07_014
crossref_primary_10_1016_j_oceaneng_2019_05_024
crossref_primary_10_1017_jfm_2014_386
crossref_primary_10_1016_j_oceaneng_2021_109174
Cites_doi 10.1016/0021-9991(86)90099-9
10.1006/jcph.1999.6276
10.1007/s10665-006-9064-z
10.1016/0378-3839(94)90026-4
10.1006/jcph.1996.0126
10.1061/(ASCE)0733-950X(2000)126:1(1)
10.1017/S002211209700846X
10.2514/1.36541
10.1002/1097-0363(20010130)35:2<151::AID-FLD87>3.0.CO;2-4
10.1017/S0022112097007969
10.1017/S0022112006001236
10.1061/(ASCE)0733-950X(2008)134:4(203)
10.1029/98JC02622
10.1098/rsta.1952.0003
10.1016/0029-8018(93)90002-Y
10.1016/0378-3839(92)90045-V
10.1007/978-3-642-56026-2
10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1
10.1098/rsta.1998.0309
10.2514/1.3539
10.1016/S0378-3839(02)00033-9
10.1016/j.apm.2004.03.003
10.1016/j.coastaleng.2005.11.001
10.2118/8584-PA
10.1016/0021-9991(81)90145-5
10.1115/OMAE2010-20368
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/fld.2726
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 1088
ExternalDocumentID 26569657
10_1002_fld_2726
FLD2726
ark_67375_WNG_V4KKZL2H_N
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
31~
6TJ
ABEML
ACSCC
AGHNM
AI.
IQODW
M6O
PALCI
RIWAO
RJQFR
SAMSI
VH1
VOH
ZY4
~A~
ID FETCH-LOGICAL-c3996-c75f9ab2b9654f6d9afe36bded780dd3b09afdd239d531c757d6d63a1a2abe3d3
IEDL.DBID DRFUL
ISICitedReferencesCount 1026
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309732500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Mon Jul 21 09:16:29 EDT 2025
Tue Nov 18 20:54:02 EST 2025
Sat Nov 29 03:27:47 EST 2025
Sun Sep 21 06:26:29 EDT 2025
Tue Nov 11 03:33:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Navier―Stokes
Computational fluid dynamics
Program library
Digital simulation
marine hydrodynamics
turbulent flow
finite volume
Wave breaking
Open source software
Finite volume methods
free surface
Wave propagation
two-phase flows
Free surface flow
Modelling
Coastal structure
Navier-Stokes equations
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3996-c75f9ab2b9654f6d9afe36bded780dd3b09afdd239d531c757d6d63a1a2abe3d3
Notes ArticleID:FLD2726
istex:9D0E07063B12B0F90C2261CEDEE6C738126D81DE
ark:/67375/WNG-V4KKZL2H-N
PageCount 16
ParticipantIDs pascalfrancis_primary_26569657
crossref_citationtrail_10_1002_fld_2726
crossref_primary_10_1002_fld_2726
wiley_primary_10_1002_fld_2726_FLD2726
istex_primary_ark_67375_WNG_V4KKZL2H_N
PublicationCentury 2000
PublicationDate 30 November 2012
PublicationDateYYYYMMDD 2012-11-30
PublicationDate_xml – month: 11
  year: 2012
  text: 30 November 2012
  day: 30
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Chapalain G, Cointe R, Temperville A. Observed and modeled resonantly interacting progressive water-waves. Coastal Engineering1992; 16(3):267-300.
Ferziger JH, Peric M.Computational methods for fluid dynamics, 3rd ed.Springer: Berlin, 2002.
Booij N, Ris RC, Holthuijsen LH. A third-generation wave model for coastal regions-1. Model description and validation. Journal of Geophysical Research-Oceans1999; 104(C4):7649-7666.
Berberović E, Van Hinsberg NP, Jakirlić S, Roisman IV, Tropea C.Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics2009; 79(3):1-15. Art.no: 036 306.
Penney WG, Price AT.Part I. The diffraction theory of sea waves and the shelter afforded by breakwaters. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences1952; 244(882):236-253.
Liu YM, Yue DKP.On generalized Bragg scattering of surface waves by bottom ripples. Journal of Fluid Mechanics1998; 356: 297-326.
Sharma JN, Dean RG.2nd-order directional seas and associated wave-forces.Society of Petroleum Engineers Journal1981; 21(1):129-140.
Bradford SF.Numerical simulation of surf zone dynamics.Journal of Waterway, Port, Coastal, and Ocean Engineering-ASCE2000; 126(1):1-13.
Mayer S, Garapon A, Sørensen LS.A fractional step method for unsteady free-surface flow with applications to non-linear wave dynamics. International Journal for Numerical Methods in Fluids1998; 28(2):293-315.
Harvie DJE, Fletcher DF.A new volume of fluid advection algorithm: the defined donating region scheme. International Journal for Numerical Methods in Fluids2001; 35(2):151-172.
Barnet MR, Wang H.Effects of a vertical seawall on profile response. Proceeding to Coastal Engineering Conference1988; II: 1493-1507.
Hirt CW, Nichols BD.Volume of fluid (VOF) method for the dynamics of free boundaries.Journal of Computational Physics1981; 39(1):201-225.
Issa RI.Solution of the implicitly discretized fluid-flow equations by operator-splitting. Journal of Computational Physics1986; 62(1):40-65.
Ubbink O, Issa RI.A method for capturing sharp fluid interfaces on arbitrary meshes.Journal of Computational Physics1999; 153(1):26-50.
Wilcox DC.Turbulence Modeling for CFD, 3rd ed. DCW Industries: La Cañada, California, U.S.A, 2006.
Lin PZ, Liu PLF.A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics1998; 359: 239-264.
Mayer S, Madsen PA.Simulation of breaking waves in the surf zone using a Navier-Stokes solver.Proceeding to Coastal Engineering Conference2000; I: 928-941.
Fuhrman DR, Madsen PA, Bingham HB.Numerical simulation of lowest-order short-crested wave instabilities.Journal of Fluid Mechanics2006; 563: 415-441.
Liu X, Garcia MH. Three-dimensional numerical model with free water surface and mesh deformation for local sediment scour. Journal of Waterway, Port, Coastal, and Ocean Engineering-ASCE2008; 134(4):203-217.
Madsen PA, Sørensen OR.Bound waves and triad interactions in shallow water. Ocean Engineering1993; 20(4):359-388.
Duclos G, Clement A, Chatry G. Absorption of outgoing waves in a numerical wave tank using a self-adaptive boundary condition. International Journal of Offshore and Polar Engineering2001; 11(3):168-175. 10th International Offshore and Polar Engineering Conference (ISOPE-2000).
Ting FCK, Kirby JT.Observation of undertow and turbulence in a laboratory surf zone. Coastal Engineering1994; 24(1-2):51-80.
Clément A.Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves. Journal of Computational Physics1996; 126(1):139-151.
Christensen ED, Walstra DJ, Emerat N. Vertical variation of the flow across the surf zone. Coastal Engineering2002; 45(3-4):169-198.
Nichols RH, Nelson CC.Wall function boundary conditions including heat transfer and compressibility.AIAA Journal2004; 42(6):1107-1114.
Wilcox DC.Formulation of the k−ω turbulence model revisited.AIAA Journal2008; 46(11):2823-2838. AIAA 45th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007.
Christensen ED.Large eddy simulation of spilling and plunging breakers. Coastal Engineering2006; 53(5-6):463-485.
Madsen PA, Schäffer HA. Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis. Philosophical Transactions of the Royal Society of London Series A-Mathematical, Physical and Engineering Sciences1998; 356(1749):3123-3184.
Hieu PD, Katsutoshi T, Ca VT.Numerical simulation of breaking waves using a two-phase flow model. Applied Mathematical Modelling2004; 28(11):983-1005.
2004; 42
1998; 28
2006; 53
2011
2010
2004; 28
1993; 20
1988; II
1996
2006
1994; 24
1998; 356
1998; 359
2002
1992; 16
1996; 126
1999; 104
1981; 21
2009; 79
1986; 62
2000; 126
2002; 45
1952; 244
1999; 153
2008; 46
1981; 39
2001; 11
2008; 134
2001; 35
2006; 563
2000; I
1992; 3
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
Duclos G (e_1_2_9_27_1) 2001; 11
e_1_2_9_33_1
Wilcox DC (e_1_2_9_10_1) 2006
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
Mayer S (e_1_2_9_12_1) 2000
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
Barnet MR (e_1_2_9_30_1) 1988
e_1_2_9_7_1
Fredsøe J (e_1_2_9_16_1) 1992
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_25_1
Berberović E (e_1_2_9_9_1) 2009; 79
e_1_2_9_28_1
e_1_2_9_29_1
References_xml – reference: Harvie DJE, Fletcher DF.A new volume of fluid advection algorithm: the defined donating region scheme. International Journal for Numerical Methods in Fluids2001; 35(2):151-172.
– reference: Madsen PA, Sørensen OR.Bound waves and triad interactions in shallow water. Ocean Engineering1993; 20(4):359-388.
– reference: Mayer S, Garapon A, Sørensen LS.A fractional step method for unsteady free-surface flow with applications to non-linear wave dynamics. International Journal for Numerical Methods in Fluids1998; 28(2):293-315.
– reference: Hieu PD, Katsutoshi T, Ca VT.Numerical simulation of breaking waves using a two-phase flow model. Applied Mathematical Modelling2004; 28(11):983-1005.
– reference: Duclos G, Clement A, Chatry G. Absorption of outgoing waves in a numerical wave tank using a self-adaptive boundary condition. International Journal of Offshore and Polar Engineering2001; 11(3):168-175. 10th International Offshore and Polar Engineering Conference (ISOPE-2000).
– reference: Clément A.Coupling of two absorbing boundary conditions for 2D time-domain simulations of free surface gravity waves. Journal of Computational Physics1996; 126(1):139-151.
– reference: Mayer S, Madsen PA.Simulation of breaking waves in the surf zone using a Navier-Stokes solver.Proceeding to Coastal Engineering Conference2000; I: 928-941.
– reference: Issa RI.Solution of the implicitly discretized fluid-flow equations by operator-splitting. Journal of Computational Physics1986; 62(1):40-65.
– reference: Christensen ED, Walstra DJ, Emerat N. Vertical variation of the flow across the surf zone. Coastal Engineering2002; 45(3-4):169-198.
– reference: Sharma JN, Dean RG.2nd-order directional seas and associated wave-forces.Society of Petroleum Engineers Journal1981; 21(1):129-140.
– reference: Wilcox DC.Turbulence Modeling for CFD, 3rd ed. DCW Industries: La Cañada, California, U.S.A, 2006.
– reference: Bradford SF.Numerical simulation of surf zone dynamics.Journal of Waterway, Port, Coastal, and Ocean Engineering-ASCE2000; 126(1):1-13.
– reference: Liu YM, Yue DKP.On generalized Bragg scattering of surface waves by bottom ripples. Journal of Fluid Mechanics1998; 356: 297-326.
– reference: Ubbink O, Issa RI.A method for capturing sharp fluid interfaces on arbitrary meshes.Journal of Computational Physics1999; 153(1):26-50.
– reference: Ferziger JH, Peric M.Computational methods for fluid dynamics, 3rd ed.Springer: Berlin, 2002.
– reference: Ting FCK, Kirby JT.Observation of undertow and turbulence in a laboratory surf zone. Coastal Engineering1994; 24(1-2):51-80.
– reference: Liu X, Garcia MH. Three-dimensional numerical model with free water surface and mesh deformation for local sediment scour. Journal of Waterway, Port, Coastal, and Ocean Engineering-ASCE2008; 134(4):203-217.
– reference: Booij N, Ris RC, Holthuijsen LH. A third-generation wave model for coastal regions-1. Model description and validation. Journal of Geophysical Research-Oceans1999; 104(C4):7649-7666.
– reference: Penney WG, Price AT.Part I. The diffraction theory of sea waves and the shelter afforded by breakwaters. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences1952; 244(882):236-253.
– reference: Nichols RH, Nelson CC.Wall function boundary conditions including heat transfer and compressibility.AIAA Journal2004; 42(6):1107-1114.
– reference: Barnet MR, Wang H.Effects of a vertical seawall on profile response. Proceeding to Coastal Engineering Conference1988; II: 1493-1507.
– reference: Hirt CW, Nichols BD.Volume of fluid (VOF) method for the dynamics of free boundaries.Journal of Computational Physics1981; 39(1):201-225.
– reference: Madsen PA, Schäffer HA. Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis. Philosophical Transactions of the Royal Society of London Series A-Mathematical, Physical and Engineering Sciences1998; 356(1749):3123-3184.
– reference: Fuhrman DR, Madsen PA, Bingham HB.Numerical simulation of lowest-order short-crested wave instabilities.Journal of Fluid Mechanics2006; 563: 415-441.
– reference: Berberović E, Van Hinsberg NP, Jakirlić S, Roisman IV, Tropea C.Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics2009; 79(3):1-15. Art.no: 036 306.
– reference: Christensen ED.Large eddy simulation of spilling and plunging breakers. Coastal Engineering2006; 53(5-6):463-485.
– reference: Lin PZ, Liu PLF.A numerical study of breaking waves in the surf zone. Journal of Fluid Mechanics1998; 359: 239-264.
– reference: Wilcox DC.Formulation of the k−ω turbulence model revisited.AIAA Journal2008; 46(11):2823-2838. AIAA 45th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007.
– reference: Chapalain G, Cointe R, Temperville A. Observed and modeled resonantly interacting progressive water-waves. Coastal Engineering1992; 16(3):267-300.
– year: 2011
– volume: 3
  start-page: 1
  year: 1992
  end-page: 369
– volume: 35
  start-page: 151
  issue: 2
  year: 2001
  end-page: 172
  article-title: A new volume of fluid advection algorithm: the defined donating region scheme
  publication-title: International Journal for Numerical Methods in Fluids
– start-page: 1
  year: 2010
  end-page: 9
– volume: 79
  start-page: 1
  issue: 3
  year: 2009
  end-page: 15
  article-title: Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution
  publication-title: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics
– volume: 126
  start-page: 1
  issue: 1
  year: 2000
  end-page: 13
  article-title: Numerical simulation of surf zone dynamics
  publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering—ASCE
– volume: 244
  start-page: 236
  issue: 882
  year: 1952
  end-page: 253
  article-title: Part I. The diffraction theory of sea waves and the shelter afforded by breakwaters
  publication-title: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
– volume: 356
  start-page: 297
  year: 1998
  end-page: 326
  article-title: On generalized Bragg scattering of surface waves by bottom ripples
  publication-title: Journal of Fluid Mechanics
– volume: 104
  start-page: 7649
  issue: C4
  year: 1999
  end-page: 7666
  article-title: A third‐generation wave model for coastal regions—1. Model description and validation
  publication-title: Journal of Geophysical Research‐Oceans
– year: 1996
– volume: II
  start-page: 1493
  year: 1988
  end-page: 1507
  article-title: Effects of a vertical seawall on profile response
  publication-title: Proceeding to Coastal Engineering Conference
– volume: 16
  start-page: 267
  issue: 3
  year: 1992
  end-page: 300
  article-title: Observed and modeled resonantly interacting progressive water‐waves
  publication-title: Coastal Engineering
– volume: 126
  start-page: 139
  issue: 1
  year: 1996
  end-page: 151
  article-title: Coupling of two absorbing boundary conditions for 2D time‐domain simulations of free surface gravity waves
  publication-title: Journal of Computational Physics
– volume: 563
  start-page: 415
  year: 2006
  end-page: 441
  article-title: Numerical simulation of lowest‐order short‐crested wave instabilities
  publication-title: Journal of Fluid Mechanics
– volume: 359
  start-page: 239
  year: 1998
  end-page: 264
  article-title: A numerical study of breaking waves in the surf zone
  publication-title: Journal of Fluid Mechanics
– volume: 62
  start-page: 40
  issue: 1
  year: 1986
  end-page: 65
  article-title: Solution of the implicitly discretized fluid–flow equations by operator‐splitting
  publication-title: Journal of Computational Physics
– year: 2010
– volume: 53
  start-page: 463
  issue: 5‐6
  year: 2006
  end-page: 485
  article-title: Large eddy simulation of spilling and plunging breakers
  publication-title: Coastal Engineering
– volume: 153
  start-page: 26
  issue: 1
  year: 1999
  end-page: 50
  article-title: A method for capturing sharp fluid interfaces on arbitrary meshes
  publication-title: Journal of Computational Physics
– volume: 20
  start-page: 359
  issue: 4
  year: 1993
  end-page: 388
  article-title: Bound waves and triad interactions in shallow water
  publication-title: Ocean Engineering
– volume: 24
  start-page: 51
  issue: 1‐2
  year: 1994
  end-page: 80
  article-title: Observation of undertow and turbulence in a laboratory surf zone
  publication-title: Coastal Engineering
– volume: 42
  start-page: 1107
  issue: 6
  year: 2004
  end-page: 1114
  article-title: Wall function boundary conditions including heat transfer and compressibility
  publication-title: AIAA Journal
– volume: 21
  start-page: 129
  issue: 1
  year: 1981
  end-page: 140
  article-title: 2nd‐order directional seas and associated wave‐forces
  publication-title: Society of Petroleum Engineers Journal
– volume: 46
  start-page: 2823
  issue: 11
  year: 2008
  end-page: 2838
  article-title: Formulation of the − turbulence model revisited
  publication-title: AIAA Journal
– volume: 28
  start-page: 983
  issue: 11
  year: 2004
  end-page: 1005
  article-title: Numerical simulation of breaking waves using a two‐phase flow model
  publication-title: Applied Mathematical Modelling
– volume: 45
  start-page: 169
  issue: 3‐4
  year: 2002
  end-page: 198
  article-title: Vertical variation of the flow across the surf zone
  publication-title: Coastal Engineering
– volume: 11
  start-page: 168
  issue: 3
  year: 2001
  end-page: 175
  article-title: Absorption of outgoing waves in a numerical wave tank using a self‐adaptive boundary condition
  publication-title: International Journal of Offshore and Polar Engineering
– volume: I
  start-page: 928
  year: 2000
  end-page: 941
  article-title: Simulation of breaking waves in the surf zone using a Navier–Stokes solver
  publication-title: Proceeding to Coastal Engineering Conference
– volume: 356
  start-page: 3123
  issue: 1749
  year: 1998
  end-page: 3184
  article-title: Higher‐order Boussinesq‐type equations for surface gravity waves: derivation and analysis
  publication-title: Philosophical Transactions of the Royal Society of London Series A—Mathematical, Physical and Engineering Sciences
– year: 2002
– year: 2006
– volume: 134
  start-page: 203
  issue: 4
  year: 2008
  end-page: 217
  article-title: Three‐dimensional numerical model with free water surface and mesh deformation for local sediment scour
  publication-title: Journal of Waterway, Port, Coastal, and Ocean Engineering—ASCE
– volume: 39
  start-page: 201
  issue: 1
  year: 1981
  end-page: 225
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: Journal of Computational Physics
– volume: 28
  start-page: 293
  issue: 2
  year: 1998
  end-page: 315
  article-title: A fractional step method for unsteady free‐surface flow with applications to non‐linear wave dynamics
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 79
  start-page: 1
  issue: 3
  year: 2009
  ident: e_1_2_9_9_1
  article-title: Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution
  publication-title: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics
– ident: e_1_2_9_14_1
  doi: 10.1016/0021-9991(86)90099-9
– ident: e_1_2_9_7_1
  doi: 10.1006/jcph.1999.6276
– ident: e_1_2_9_20_1
  doi: 10.1007/s10665-006-9064-z
– ident: e_1_2_9_28_1
  doi: 10.1016/0378-3839(94)90026-4
– ident: e_1_2_9_26_1
  doi: 10.1006/jcph.1996.0126
– ident: e_1_2_9_6_1
– ident: e_1_2_9_29_1
  doi: 10.1061/(ASCE)0733-950X(2000)126:1(1)
– ident: e_1_2_9_31_1
  doi: 10.1017/S002211209700846X
– ident: e_1_2_9_11_1
  doi: 10.2514/1.36541
– ident: e_1_2_9_34_1
  doi: 10.1002/1097-0363(20010130)35:2<151::AID-FLD87>3.0.CO;2-4
– start-page: 1
  volume-title: Advanced Series on Ocean Engineering
  year: 1992
  ident: e_1_2_9_16_1
– ident: e_1_2_9_40_1
  doi: 10.1017/S0022112097007969
– ident: e_1_2_9_19_1
  doi: 10.1017/S0022112006001236
– ident: e_1_2_9_36_1
– ident: e_1_2_9_37_1
  doi: 10.1061/(ASCE)0733-950X(2008)134:4(203)
– ident: e_1_2_9_13_1
– volume: 11
  start-page: 168
  issue: 3
  year: 2001
  ident: e_1_2_9_27_1
  article-title: Absorption of outgoing waves in a numerical wave tank using a self‐adaptive boundary condition
  publication-title: International Journal of Offshore and Polar Engineering
– ident: e_1_2_9_3_1
  doi: 10.1029/98JC02622
– ident: e_1_2_9_4_1
– ident: e_1_2_9_23_1
  doi: 10.1098/rsta.1952.0003
– start-page: 928
  year: 2000
  ident: e_1_2_9_12_1
  article-title: Simulation of breaking waves in the surf zone using a Navier–Stokes solver
  publication-title: Proceeding to Coastal Engineering Conference
– ident: e_1_2_9_25_1
  doi: 10.1016/0029-8018(93)90002-Y
– ident: e_1_2_9_24_1
– ident: e_1_2_9_21_1
  doi: 10.1016/0378-3839(92)90045-V
– volume-title: Turbulence Modeling for CFD
  year: 2006
  ident: e_1_2_9_10_1
– start-page: 1493
  year: 1988
  ident: e_1_2_9_30_1
  article-title: Effects of a vertical seawall on profile response
  publication-title: Proceeding to Coastal Engineering Conference
– ident: e_1_2_9_5_1
– ident: e_1_2_9_15_1
  doi: 10.1007/978-3-642-56026-2
– ident: e_1_2_9_18_1
  doi: 10.1002/(SICI)1097-0363(19980815)28:2<293::AID-FLD719>3.0.CO;2-1
– ident: e_1_2_9_2_1
  doi: 10.1098/rsta.1998.0309
– ident: e_1_2_9_17_1
  doi: 10.2514/1.3539
– ident: e_1_2_9_35_1
  doi: 10.1016/S0378-3839(02)00033-9
– ident: e_1_2_9_32_1
  doi: 10.1016/j.apm.2004.03.003
– ident: e_1_2_9_33_1
  doi: 10.1016/j.coastaleng.2005.11.001
– ident: e_1_2_9_39_1
  doi: 10.2118/8584-PA
– ident: e_1_2_9_8_1
  doi: 10.1016/0021-9991(81)90145-5
– ident: e_1_2_9_22_1
– ident: e_1_2_9_38_1
  doi: 10.1115/OMAE2010-20368
SSID ssj0009283
Score 2.587798
Snippet SUMMARY The open‐source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations...
The open‐source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 1073
SubjectTerms Applied sciences
Buildings. Public works
Computational methods in fluid dynamics
Exact sciences and technology
finite volume
Fluid dynamics
free surface
Fundamental areas of phenomenology (including applications)
Hydraulic constructions
marine hydrodynamics
Navier-Stokes
Physics
Port facilities and coastal structures. Lighthouses and beacons
turbulent flow
two-phase flows
Title A wave generation toolbox for the open-source CFD library: OpenFoam
URI https://api.istex.fr/ark:/67375/WNG-V4KKZL2H-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.2726
Volume 70
WOSCitedRecordID wos000309732500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL0a7R7gYQwYWgdDRpq2p4zG-XC8N0QbkKiqCcFAvETXufY0rTSoLR2P-wn8xv0S7CRtVwmkSXuKFB0n9v2Ij6ybcwE-JCGiVGgTieLcCyMTeMhRejrxdZSTj4JM2WxC9PvJ1ZX8WldVun9hKn2I-YGby4zye-0SHNX4YCEaagb0mQser0CT27CNGtDsnKUXvYXkLq9EOLnwbSxIfyY92-YHs7FLm1HT2fXeFUfi2NrHVI0tlklrueuk6_8z39fwquaa7LAKjg14oYebsF7zTlZn9XgT1v4SJdyC7iH7hVPNvpeC1M5vbFIUA1XcM0twmSWMzLXc-vP7oTr4Z0dph9VT-8JcgUpa4M0buEi750cnXt1swcsDV4ici8hIVFzJOApNTBKNDmJFmkTSJgpU294h4oEkm7YWLSimOEDfulbpgIJtaAyLoX4LDI3wc9lWaBIKDaKyKOUroTjXEWpqwaeZ1bO8ViJ3DTEGWaWhzDNrq8zZqgX7c-Rtpb7xBOZj6bg5AEc_XbWaiLLL_nH2LTw9ve7xk6zfgr0lz84HcMtp7aqFfVLpwGdflaW9jru--1fgDqxagsUrqchdaExGd_o9vMynkx_j0V4dsI8iPPFd
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aKxLwwGCAKJdhJARPYY1zcQxP07pQ1BAhtMHEi3Uc22haaVBbxh75CfxGfgnHSdpRCSQkniJFnxP7XOJP1sl3AJ5kMaLUSIlk0iqIExcFyFEGNgttUpkQhXFNswlRltnxsXy7AS-X_8K0-hCrAzefGc332ie4P5DevVANdRPznAueXoJeTFFE4d0bvsuPigvNXd6qcHIRUjDIcKk9O-C7y7Fru1HPG_bcV0finAzk2s4W66y12Xbyrf-a8A243rFNtteGx03YsNNt2OqYJ-vyer4N136TJbwFB3vsG55Z9qmRpPaeY4u6nuj6nBHFZUQZmW-69fP7j_bon-3nQ9bN7QXzJSp5jZ9vw1F-cLg_Crp2C0EV-VLkSiROouZapknsUiPR2SjVxhqRDYyJ9IDuGMMjaShxCS1MatIIQ3KutpGJ7sDmtJ7au8DQibCSA40uM7FD1ITSoRaac5ugNX14tjS7qjotct8SY6JaFWWuyFbK26oPj1fIL63-xh8wTxvPrQA4O_X1aiJRH8pX6n08Hn8s-EiVfdhZc-1qACdWS6sW9KTGg399lcqLob_e-1fgI7gyOnxTqOJ1Ob4PV4lu8VY48gFsLmZf7UO4XJ0tTuaznS56fwGM3fVN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD4aLULwwGBsWrkMIyF4Cmuci2N4mtaFoVbRhBhMvFjHOTaa1jVTW8Ye-Qn8Rn4JdpJ2VAIJiadI0XFin0v8yTr5PoDnWYwoNbpCorQM4sRGAXKUgclCk5QUoiBbi02IoshOTuTRGrxZ_AvT8EMsD9x8ZdTfa1_g5oLs7jVrqB3TKy54egO6sdeQ6UB38D4_Hl1z7vKGhZOL0CWDDBfcs32-uxi7sht1vWOvfHckzpyDbKNssYpa620nX_-vCd-Duy3aZHtNetyHNTPZgPUWebK2rmcbcOc3WsIHcLDHvuGlYV9qSmofOTavqrGurpiDuMxBRuZFt35-_9Ec_bP9fMDaub1mvkUlr_B8E47zgw_7h0ErtxCUkW9FLkViJWquZZrENiWJ1kSpJkMi6xNFuu_uEPFIkitcZy0opTTC0AVXm4iiLehMqonZBoZWhKXsa7QZxRZROysdaqE5Nwka6sHLhdtV2XKRe0mMsWpYlLlyvlLeVz14trS8aPg3_mDzoo7c0gCnZ75fTSTqU_FWfYyHw88jfqiKHuyshHY5gDtU61Yt3JPqCP71VSofDfz14b8aPoVbR4Ncjd4Vw0dw26Et3vBGPobOfPrVPIGb5eX8dDbdaZP3Fynt9Mg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+wave+generation+toolbox+for+the+open-source+CFD+library%3A+OpenFoam&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Jacobsen%2C+Niels+G.&rft.au=Fuhrman%2C+David+R.&rft.au=Freds%C3%B8e%2C+J%C3%B8rgen&rft.date=2012-11-30&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=70&rft.issue=9&rft.spage=1073&rft.epage=1088&rft_id=info:doi/10.1002%2Ffld.2726&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_V4KKZL2H_N
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon