Functional data clustering: a survey

Clustering techniques for functional data are reviewed. Four groups of clustering algorithms for functional data are proposed. The first group consists of methods working directly on the evaluation points of the curves. The second groups is defined by filtering methods which first approximate the cu...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in data analysis and classification Ročník 8; číslo 3; s. 231 - 255
Hlavní autori: Jacques, Julien, Preda, Cristian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2014
Springer Verlag
Predmet:
ISSN:1862-5347, 1862-5355
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Clustering techniques for functional data are reviewed. Four groups of clustering algorithms for functional data are proposed. The first group consists of methods working directly on the evaluation points of the curves. The second groups is defined by filtering methods which first approximate the curves into a finite basis of functions and second perform clustering using the basis expansion coefficients. The third groups is composed of methods which perform simultaneously dimensionality reduction of the curves and clustering, leading to functional representation of data depending on clusters. The last group consists of distance-based methods using clustering algorithms based on specific distances for functional data. A software review as well as an illustration of the application of these algorithms on real data are presented.
AbstractList The main contributions to functional data clustering are reviewed. Most approaches used for clustering functional data are based on the following three methodologies: dimension reduction before clustering, nonparametric methods using specific distances or dissimilarities between curves and model-based clustering methods. These latter assume a probabilistic distribution on either the principal components or coefficients of functional data expansion into a finite dimensional basis of functions. Numerical illustrations as well as a software review are presented. Nous présentons dans cet article une revue des méthodes de classification automatique pour données fonctionelles. Ces techniques peuvent être classées en trois catégories: les méthodes procédant à une étape de réduction de dimension avant la classification, les méthodes non paramétriques qui utilisent des techniques de classification automatique classiques couplées à des distances ou dissimilarités spécifiques aux données fonctionnelles, et enfin, les techniques à base de modèles génératifs. Ces dernières supposent un modèle probabiliste soit sur les scores d'une analyse en composantes principales fonctionnelle, soit sur les coefficients des approximations des courbes dans une base de fonctions de dimension finie. Une illustration numérique ainsi qu'une revue des logiciels disponibles sont également présentées.
Clustering techniques for functional data are reviewed. Four groups of clustering algorithms for functional data are proposed. The first group consists of methods working directly on the evaluation points of the curves. The second groups is defined by filtering methods which first approximate the curves into a finite basis of functions and second perform clustering using the basis expansion coefficients. The third groups is composed of methods which perform simultaneously dimensionality reduction of the curves and clustering, leading to functional representation of data depending on clusters. The last group consists of distance-based methods using clustering algorithms based on specific distances for functional data. A software review as well as an illustration of the application of these algorithms on real data are presented.
Author Preda, Cristian
Jacques, Julien
Author_xml – sequence: 1
  givenname: Julien
  surname: Jacques
  fullname: Jacques, Julien
  email: julien.jacques@polytech-lille.fr
  organization: Laboratoire Paul Painlevé, UMR CNRS 8524, Université Lille 1 and Inria Lille-Nord Europe
– sequence: 2
  givenname: Cristian
  surname: Preda
  fullname: Preda, Cristian
  organization: Laboratoire Paul Painlevé, UMR CNRS 8524, Université Lille 1 and Inria Lille-Nord Europe
BackLink https://inria.hal.science/hal-00771030$$DView record in HAL
BookMark eNp9kMFKw0AQhhdRsK0-gLccvHiIzmSz2Y23UqwVCl70vEw3G02JSdlNCnl7N0R68NDDMMPwfwPzzdll0zaWsTuERwSQTx4x42kMyEMJFQ8XbIYqS2LBhbg8zam8ZnPv9wAZpCBm7H7dN6ar2obqqKCOIlP3vrOuar6eI4p87452uGFXJdXe3v71Bftcv3ysNvH2_fVttdzGhueqi8vEmCIRpUJByU4pIbOMc57nYQ2yUJanmBChKsHsdoUymNtMirS0IWpTzhfsYbr7TbU-uOqH3KBbqvRmudXjLnwqETgcMWRxyhrXeu9seQIQ9KhET0p0UKJHJXoIjPzHmKqj8fvOUVWfJZOJ9IdRjXV63_YuSPNnoF9oT3ZP
CitedBy_id crossref_primary_10_1016_j_jmva_2021_104861
crossref_primary_10_1007_s00180_020_00958_4
crossref_primary_10_1109_JSEN_2024_3488513
crossref_primary_10_1007_s13748_017_0135_3
crossref_primary_10_1007_s00180_016_0676_0
crossref_primary_10_1080_02331888_2018_1487120
crossref_primary_10_1007_s00180_022_01259_8
crossref_primary_10_1007_s10994_025_06858_2
crossref_primary_10_1016_j_ins_2018_06_035
crossref_primary_10_1007_s41237_018_0066_8
crossref_primary_10_1016_j_jmva_2021_104869
crossref_primary_10_1371_journal_pone_0157988
crossref_primary_10_1016_j_neucom_2024_129231
crossref_primary_10_1080_00036846_2024_2387858
crossref_primary_10_1007_s10100_017_0515_6
crossref_primary_10_1002_bimj_201400251
crossref_primary_10_3390_math13050858
crossref_primary_10_1016_j_jmva_2021_104874
crossref_primary_10_1016_j_cpc_2025_109771
crossref_primary_10_1002_cjs_11803
crossref_primary_10_1007_s00477_017_1441_9
crossref_primary_10_1016_j_ins_2021_05_004
crossref_primary_10_1007_s10994_023_06499_3
crossref_primary_10_1016_j_neucom_2024_129245
crossref_primary_10_3389_fgene_2022_859462
crossref_primary_10_1007_s10260_023_00719_9
crossref_primary_10_1080_03610926_2021_1872636
crossref_primary_10_1093_cercor_bhab530
crossref_primary_10_1002_wics_1538
crossref_primary_10_3390_stats4010014
crossref_primary_10_1007_s11036_016_0733_5
crossref_primary_10_1007_s00362_023_01467_4
crossref_primary_10_1007_s11135_022_01605_4
crossref_primary_10_1007_s11222_015_9585_2
crossref_primary_10_1016_j_asoc_2018_08_030
crossref_primary_10_1038_s41598_023_31011_1
crossref_primary_10_1111_insr_12588
crossref_primary_10_1287_ijds_2022_0034
crossref_primary_10_1007_s11634_020_00432_5
crossref_primary_10_1007_s10203_023_00417_x
crossref_primary_10_1080_03610918_2020_1764033
crossref_primary_10_1007_s11222_023_10213_7
crossref_primary_10_1007_s11634_024_00611_8
crossref_primary_10_1016_j_csda_2022_107496
crossref_primary_10_5194_nhess_21_1209_2021
crossref_primary_10_1080_10485252_2024_2358435
crossref_primary_10_1080_10618600_2024_2431057
crossref_primary_10_1371_journal_pone_0242197
crossref_primary_10_1016_j_spl_2017_07_004
crossref_primary_10_1080_14763141_2024_2398508
crossref_primary_10_1007_s10182_016_0280_1
crossref_primary_10_1016_j_amc_2022_127712
crossref_primary_10_1111_rssb_12155
crossref_primary_10_1007_s00180_018_0817_8
crossref_primary_10_1016_j_eswa_2020_113949
crossref_primary_10_1111_rssc_12260
crossref_primary_10_1177_00131644221143474
crossref_primary_10_1080_2573234X_2019_1645574
crossref_primary_10_1007_s11634_023_00538_6
crossref_primary_10_1145_3581789
crossref_primary_10_1109_TVCG_2017_2744338
crossref_primary_10_1007_s00477_025_02986_2
crossref_primary_10_1007_s10115_018_1169_y
crossref_primary_10_1080_10618600_2022_2156522
crossref_primary_10_1002_cjs_11680
crossref_primary_10_1371_journal_pone_0233630
crossref_primary_10_1016_j_dsp_2019_04_011
crossref_primary_10_1007_s13272_022_00577_3
crossref_primary_10_1080_10618600_2022_2149540
crossref_primary_10_1080_03610926_2023_2246089
crossref_primary_10_1007_s00477_024_02700_8
crossref_primary_10_1002_qre_3268
crossref_primary_10_1027_1015_5759_a000578
crossref_primary_10_1016_j_pocean_2023_103120
crossref_primary_10_1007_s10479_020_03763_w
crossref_primary_10_1007_s12561_019_09232_8
crossref_primary_10_1016_j_ijepes_2024_109977
crossref_primary_10_1111_sjos_12692
crossref_primary_10_1007_s11634_023_00542_w
crossref_primary_10_1021_acsagscitech_4c00810
crossref_primary_10_1080_14763141_2024_2368064
crossref_primary_10_1002_sta4_240
crossref_primary_10_1007_s00357_019_09313_9
crossref_primary_10_1007_s13385_015_0106_7
crossref_primary_10_3233_JIFS_169102
crossref_primary_10_1007_s11634_017_0290_1
crossref_primary_10_1007_s11634_022_00510_w
crossref_primary_10_1016_j_ecolmodel_2022_109905
crossref_primary_10_1038_s41598_023_38147_0
crossref_primary_10_1016_j_jtrangeo_2020_102899
crossref_primary_10_1093_jrsssc_qlae060
crossref_primary_10_1016_j_ins_2022_05_112
crossref_primary_10_1007_s00180_023_01340_w
crossref_primary_10_1016_j_ecolind_2018_03_013
crossref_primary_10_1016_j_spl_2018_02_032
crossref_primary_10_1002_cjs_11668
crossref_primary_10_1016_j_csda_2021_107376
crossref_primary_10_1007_s11222_023_10379_0
crossref_primary_10_3390_rs14051179
crossref_primary_10_1007_s10182_015_0253_9
crossref_primary_10_1214_23_BA1380
crossref_primary_10_1007_s10680_021_09588_y
crossref_primary_10_1007_s11222_022_10128_9
crossref_primary_10_1038_s41598_022_06767_7
crossref_primary_10_6339_22_JDS1036
crossref_primary_10_1007_s00357_023_09456_w
crossref_primary_10_3390_d12080313
crossref_primary_10_1177_0962280220921912
crossref_primary_10_1007_s11749_024_00952_8
crossref_primary_10_1080_10543406_2019_1572614
crossref_primary_10_1016_j_jbi_2015_08_010
crossref_primary_10_1016_j_jspi_2015_12_003
crossref_primary_10_1007_s11222_023_10288_2
crossref_primary_10_1002_joc_5504
crossref_primary_10_1016_j_jmva_2020_104626
crossref_primary_10_2298_FIL2419911M
crossref_primary_10_1080_02664763_2022_2108773
crossref_primary_10_1007_s10509_022_04050_9
crossref_primary_10_15332_23393076_8097
crossref_primary_10_1016_j_engappai_2019_08_012
crossref_primary_10_1177_1094428117725793
crossref_primary_10_1016_j_jeconom_2020_01_020
crossref_primary_10_1080_24725854_2023_2222162
crossref_primary_10_1111_rssc_12404
crossref_primary_10_1080_10485252_2020_1759597
crossref_primary_10_1111_biom_13349
crossref_primary_10_1007_s11634_021_00482_3
crossref_primary_10_1016_j_knosys_2018_01_035
crossref_primary_10_1002_bimj_201500027
crossref_primary_10_1080_00949655_2023_2215371
crossref_primary_10_1093_jrsssc_qlad017
crossref_primary_10_1007_s00180_018_00864_w
crossref_primary_10_1002_sim_10192
crossref_primary_10_1016_j_engappai_2023_106625
crossref_primary_10_1214_21_AOAS1470
crossref_primary_10_1007_s11192_023_04722_5
crossref_primary_10_1080_10618600_2024_2429706
crossref_primary_10_1007_s11222_024_10537_y
crossref_primary_10_1002_asmb_2690
crossref_primary_10_3390_rs10040585
crossref_primary_10_1007_s11356_023_30048_z
crossref_primary_10_1002_sim_9687
crossref_primary_10_1007_s13735_017_0122_2
crossref_primary_10_1016_j_csda_2021_107219
crossref_primary_10_1111_rssc_12310
crossref_primary_10_1016_j_jmva_2018_11_007
crossref_primary_10_3390_en11071893
crossref_primary_10_1007_s11135_024_01959_x
crossref_primary_10_1016_j_csda_2023_107810
crossref_primary_10_1007_s10255_024_1116_5
crossref_primary_10_1007_s00357_021_09402_8
crossref_primary_10_1016_j_neucom_2018_02_055
crossref_primary_10_1007_s41109_022_00482_y
crossref_primary_10_1007_s11634_022_00500_y
crossref_primary_10_1109_JBHI_2024_3496122
crossref_primary_10_1111_jors_12480
crossref_primary_10_1214_22_BA1320
crossref_primary_10_1016_j_artmed_2018_12_009
crossref_primary_10_1002_bimj_202300363
crossref_primary_10_1016_j_neucom_2016_01_102
crossref_primary_10_1016_j_segan_2025_101742
crossref_primary_10_1186_s13321_019_0405_0
crossref_primary_10_1016_j_inffus_2024_102736
crossref_primary_10_1155_arat_5890464
crossref_primary_10_1371_journal_pone_0310991
crossref_primary_10_1007_s00180_023_01380_2
crossref_primary_10_1016_j_csda_2014_05_010
crossref_primary_10_1016_j_ecosta_2023_03_002
crossref_primary_10_1007_s00180_016_0694_y
crossref_primary_10_1016_j_heliyon_2023_e20639
crossref_primary_10_1002_cjs_11838
crossref_primary_10_1088_1742_6596_2449_1_012016
crossref_primary_10_1016_j_ins_2019_03_022
crossref_primary_10_1007_s11634_024_00612_7
crossref_primary_10_1007_s13253_021_00455_1
crossref_primary_10_3390_e18120450
crossref_primary_10_1002_env_2437
crossref_primary_10_1016_j_patrec_2020_04_024
crossref_primary_10_1080_00220973_2022_2161088
crossref_primary_10_1016_j_ijforecast_2025_04_001
crossref_primary_10_1080_01621459_2022_2066536
crossref_primary_10_1080_14763141_2019_1655089
crossref_primary_10_1093_jrsssc_qlad100
crossref_primary_10_1177_0962280220965630
crossref_primary_10_1007_s11634_024_00590_w
crossref_primary_10_3390_math8112085
crossref_primary_10_1016_j_eswa_2023_120711
crossref_primary_10_1007_s00779_016_0954_4
crossref_primary_10_3390_en12010094
crossref_primary_10_1016_j_ress_2025_110952
crossref_primary_10_1016_j_ins_2021_12_113
crossref_primary_10_1186_s13040_025_00424_1
crossref_primary_10_1007_s12021_020_09456_w
crossref_primary_10_1109_TNNLS_2020_2979444
crossref_primary_10_1007_s11749_019_00669_z
crossref_primary_10_1007_s00362_023_01408_1
crossref_primary_10_1093_jrsssc_qlad014
crossref_primary_10_3390_mi14081624
crossref_primary_10_1016_j_ecoinf_2017_04_010
crossref_primary_10_1111_biom_13258
crossref_primary_10_1007_s00180_018_0808_9
crossref_primary_10_1016_j_compbiomed_2021_104753
crossref_primary_10_1007_s11135_018_0724_7
crossref_primary_10_1177_00131644241299834
crossref_primary_10_1214_21_AOAS1547
crossref_primary_10_1016_j_ijar_2021_10_008
crossref_primary_10_1002_sim_10240
crossref_primary_10_1007_s00180_024_01519_9
crossref_primary_10_1007_s41468_020_00048_w
crossref_primary_10_3390_math12193083
crossref_primary_10_1007_s11634_023_00567_1
crossref_primary_10_3390_app8101766
crossref_primary_10_3390_su11061620
crossref_primary_10_1080_08839514_2020_1842109
crossref_primary_10_1515_jqas_2021_0034
crossref_primary_10_3390_joitmc8010006
crossref_primary_10_1093_eurpub_ckaa038
crossref_primary_10_1016_j_renene_2022_03_049
crossref_primary_10_1016_j_trc_2025_105088
crossref_primary_10_1080_10485252_2023_2206499
Cites_doi 10.1109/18.119732
10.1111/j.1467-9868.2007.00605.x
10.1016/j.csda.2008.11.019
10.1111/j.1541-0420.2011.01714.x
10.1162/089976699300016728
10.1109/34.865189
10.1080/01621459.1963.10500845
10.2307/2532201
10.1111/j.1467-9868.2006.00545.x
10.1016/j.csda.2009.12.008
10.1016/j.patcog.2012.05.016
10.1016/j.neucom.2009.11.022
10.1007/s00180-007-0041-4
10.1198/016214503000189
10.1007/s00357-010-9054-8
10.1016/j.csda.2006.07.011
10.1007/s00180-006-0013-0
10.1016/0031-3203(94)00125-6
10.2307/2346830
10.1137/1.9781611970128
10.1002/env.696
10.1007/s11634-012-0113-3
10.1007/BF01250288
10.1207/s15327906mbr0102_10
10.1007/s00357-003-0007-3
10.1198/016214505000000187
10.1016/j.csda.2012.01.017
10.1214/09-AOS741
10.1080/02331888908802145
10.1007/978-3-642-97610-0
10.1214/aos/1176344136
10.1007/s11634-011-0096-5
10.1007/s11634-011-0095-6
10.1016/S0167-7152(99)00036-X
10.1214/08-AOAS172
10.1016/0047-259X(82)90088-4
10.1109/TAC.1974.1100705
10.1002/0471721182
10.1007/978-1-4612-1154-9
10.1111/j.1541-0420.2012.01828.x
10.1007/978-3-7908-2736-1_43
10.1111/1467-9469.00350
10.1198/016214503000000666
10.1007/b98886
10.1016/j.csda.2012.12.004
10.1007/b98888
10.1007/978-3-7908-2736-1_44
10.2307/20075177
10.1111/j.1467-9876.2012.01062.x
10.1016/j.csda.2007.02.009
10.1016/j.csda.2012.12.008
10.1016/j.neucom.2012.11.042
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2013
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s11634-013-0158-y
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Law
Computer Science
Mathematics
Statistics
Physics
EISSN 1862-5355
EndPage 255
ExternalDocumentID oai:HAL:hal-00771030v1
10_1007_s11634_013_0158_y
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P62
P9R
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z81
Z83
Z88
ZMTXR
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
K7-
PHGZM
PHGZT
PQGLB
1XC
VOOES
ID FETCH-LOGICAL-c398t-f2ccd25f815a2b88576633399ccd07d8e3412aa18f0cbbd8c19e6754fe857e433
IEDL.DBID RSV
ISICitedReferencesCount 256
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000341437800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1862-5347
IngestDate Fri Nov 21 06:31:04 EST 2025
Sat Nov 29 02:25:07 EST 2025
Tue Nov 18 22:31:55 EST 2025
Fri Feb 21 02:36:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 62M99
Basis expansion
Functional data
62-07
62H30
Clustering
Functional principal component analysis
Language English
License http://www.springer.com/tdm
licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-f2ccd25f815a2b88576633399ccd07d8e3412aa18f0cbbd8c19e6754fe857e433
ORCID 0000-0003-4808-2781
0000-0003-1250-177X
OpenAccessLink https://inria.hal.science/hal-00771030
PageCount 25
ParticipantIDs hal_primary_oai_HAL_hal_00771030v1
crossref_primary_10_1007_s11634_013_0158_y
crossref_citationtrail_10_1007_s11634_013_0158_y
springer_journals_10_1007_s11634_013_0158_y
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle Theory, Methods, and Applications in Data Science
PublicationTitle Advances in data analysis and classification
PublicationTitleAbbrev Adv Data Anal Classif
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Verlag
References Kohonen (CR38) 1995
Tuddenham, Snyder (CR66) 1954; 1
Akaike (CR2) 1974; 19
Bouveyron, Jacques (CR12) 2011; 5
Hébrail, Hugueney, Lechevallier, Rossi (CR31) 2010; 73
Serban, Jiang (CR60) 2012; 68
Peng, Müller (CR45) 2008; 2
Sangalli, Secchi, Vantini, Vitelli (CR56) 2010; 54
CR39
Tipping, Bishop (CR64) 1999; 11
Heard, Holmes, Stephens (CR30) 2006; 101
CR34
CR33
Tarpey, Kinateder (CR63) 2003; 20
CR32
James, Sugar (CR35) 2003; 98
Bergé, Bouveyron, Girard (CR5) 2012; 42
Sangalli, Secchi, Vantini, Vitelli (CR55) 2010; 1
Abraham, Cornillon, Matzner-Løber, Molinari (CR1) 2003; 30
Samé, Chamroukhi, Govaert, Aknin (CR54) 2011; 5
CR6
CR8
Boullé (CR9) 2012; 45
Cardot, Ferraty, Sarda (CR14) 1999; 45
CR49
Ray, Mallick (CR50) 2006; 68
Schwarz (CR58) 1978; 6
CR48
Karhunen (CR36) 1947; 1947
CR47
Yamamoto (CR69) 2012; 6
CR44
Saito, Coifman (CR53) 1995; 5
CR43
CR42
Biernacki, Celeux, Govaert (CR7) 2000; 22
Coifman, Wickerhauser (CR18) 1992; 38
Delaigle, Hall (CR22) 2010; 38
Wahba (CR67) 1990
Ward, Joe (CR68) 1963; 58
CR59
Banfield, Raftery (CR4) 1993; 49
CR57
Dauxois, Pousse, Romain (CR21) 1982; 12
CR11
Preda, Saporta, Lévéder (CR46) 2007; 22
CR10
Cox, Cox (CR19) 2001
CR52
CR51
Escabias, Aguilera, Valderrama (CR24) 2005; 16
Celeux, Govaert (CR16) 1995; 28
Slaets, Claeskens, Hubert (CR61) 2012; 56
Cuesta-Albertos, Fraiman (CR20) 2000; 51
CR28
CR27
CR26
CR25
Bouveyron, Girard, Schmid (CR13) 2007; 52
Cattell (CR15) 1966; 1
CR23
Sugar, James (CR62) 2003; 98
Kayano, Dozono, Konishi (CR37) 2010; 27
Loève (CR41) 1945; 220
Hartigan, Wong (CR29) 1978; 28
Liu, Yang (CR40) 2009; 53
Antoniadis, Beder (CR3) 1989; 20
Chiou, Li (CR17) 2007; 69
Tokushige, Yadohisa, Inada (CR65) 2007; 22
M Boullé (158_CR9) 2012; 45
T Tarpey (158_CR63) 2003; 20
L Sangalli (158_CR56) 2010; 54
X Liu (158_CR40) 2009; 53
M Escabias (158_CR24) 2005; 16
S Tokushige (158_CR65) 2007; 22
158_CR25
158_CR27
158_CR26
158_CR23
J Ward (158_CR68) 1963; 58
158_CR62
S Ray (158_CR50) 2006; 68
N Serban (158_CR60) 2012; 68
A Delaigle (158_CR22) 2010; 38
T Cox (158_CR19) 2001
A Samé (158_CR54) 2011; 5
M Loève (158_CR41) 1945; 220
C Biernacki (158_CR7) 2000; 22
A Antoniadis (158_CR3) 1989; 20
158_CR13
158_CR57
J Cuesta-Albertos (158_CR20) 2000; 51
158_CR59
158_CR1
158_CR10
J Dauxois (158_CR21) 1982; 12
158_CR11
J Peng (158_CR45) 2008; 2
158_CR52
G Schwarz (158_CR58) 1978; 6
158_CR2
158_CR51
158_CR8
158_CR6
T Kohonen (158_CR38) 1995
R Cattell (158_CR15) 1966; 1
C Preda (158_CR46) 2007; 22
N Saito (158_CR53) 1995; 5
G Hébrail (158_CR31) 2010; 73
G Wahba (158_CR67) 1990
158_CR39
L Bergé (158_CR5) 2012; 42
ME Tipping (158_CR64) 1999; 11
158_CR47
H Cardot (158_CR14) 1999; 45
R Coifman (158_CR18) 1992; 38
158_CR49
158_CR48
158_CR43
158_CR42
158_CR44
N Heard (158_CR30) 2006; 101
J Hartigan (158_CR29) 1978; 28
L Sangalli (158_CR55) 2010; 1
158_CR28
C Bouveyron (158_CR12) 2011; 5
JM Chiou (158_CR17) 2007; 69
G James (158_CR35) 2003; 98
G Celeux (158_CR16) 1995; 28
158_CR32
158_CR34
158_CR33
M Kayano (158_CR37) 2010; 27
J Banfield (158_CR4) 1993; 49
K Karhunen (158_CR36) 1947; 1947
R Tuddenham (158_CR66) 1954; 1
M Yamamoto (158_CR69) 2012; 6
L Slaets (158_CR61) 2012; 56
References_xml – volume: 38
  start-page: 713
  issue: 2
  year: 1992
  end-page: 718
  ident: CR18
  article-title: Entropy-based algorithms for best basis selection
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.119732
– volume: 69
  start-page: 679
  issue: 4
  year: 2007
  end-page: 699
  ident: CR17
  article-title: Functional clustering and identifying substructures of longitudinal data
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2007.00605.x
– volume: 19
  start-page: 716
  year: 1974
  end-page: 723
  ident: CR2
  article-title: A new look at the statistical model identification
  publication-title: IEEE Trans Autom Control
– ident: CR49
– volume: 1
  start-page: 205
  issue: 1
  year: 2010
  end-page: 224
  ident: CR55
  article-title: Functional clustering and alignment methods with applications
  publication-title: Commun App Ind Math
– ident: CR39
– ident: CR51
– volume: 53
  start-page: 1361
  year: 2009
  end-page: 1376
  ident: CR40
  article-title: Simultaneous curve registration and clustering for functional data
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2008.11.019
– volume: 68
  start-page: 805
  issue: 3
  year: 2012
  end-page: 814
  ident: CR60
  article-title: Multilevel functional clustering analysis
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01714.x
– volume: 11
  start-page: 443
  issue: 2
  year: 1999
  end-page: 482
  ident: CR64
  article-title: Mixtures of principal component analyzers
  publication-title: Neural Comput
  doi: 10.1162/089976699300016728
– volume: 22
  start-page: 719
  issue: 4
  year: 2000
  end-page: 725
  ident: CR7
  article-title: Assessing a mixture model for clustering with the inegrated completed likelihood
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.865189
– ident: CR8
– volume: 52
  start-page: 502
  year: 2007
  end-page: 519
  ident: CR13
  article-title: High dimensional data clustering
  publication-title: Comput Stat Data Anal
– ident: CR25
– ident: CR42
– volume: 58
  start-page: 236
  year: 1963
  end-page: 244
  ident: CR68
  article-title: Hierarchical grouping to optimize an objective function
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500845
– volume: 49
  start-page: 803
  year: 1993
  end-page: 821
  ident: CR4
  article-title: Model-based Gaussian and non-Gaussian clustering
  publication-title: Biometrics
  doi: 10.2307/2532201
– volume: 68
  start-page: 305
  issue: 2
  year: 2006
  end-page: 332
  ident: CR50
  article-title: Functional clustering by Bayesian wavelet methods
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2006.00545.x
– volume: 54
  start-page: 1219
  issue: 5
  year: 2010
  end-page: 1233
  ident: CR56
  article-title: -mean alignment for curve clustering
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.12.008
– volume: 45
  start-page: 4389
  issue: 12
  year: 2012
  end-page: 4401
  ident: CR9
  article-title: Functional data clustering via piecewise constant nonparametric density estimation
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.05.016
– volume: 73
  start-page: 1125
  issue: 7–9
  year: 2010
  end-page: 1141
  ident: CR31
  article-title: Exploratory analysis of functional data via clustering and optimal segmentation
  publication-title: Neurocomput EEG Neurocomput
  doi: 10.1016/j.neucom.2009.11.022
– volume: 30
  start-page: 581
  issue: 3
  year: 2003
  end-page: 595
  ident: CR1
  article-title: Unsupervised curve clustering using B-splines
  publication-title: Scand J Stat Theory Appl
– ident: CR11
– volume: 22
  start-page: 223
  issue: 2
  year: 2007
  end-page: 235
  ident: CR46
  article-title: PLS classification of functional data
  publication-title: Comput Stat
  doi: 10.1007/s00180-007-0041-4
– ident: CR57
– ident: CR32
– volume: 98
  start-page: 397
  issue: 462
  year: 2003
  end-page: 408
  ident: CR35
  article-title: Clustering for sparsely sampled functional data
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214503000189
– volume: 27
  start-page: 211
  year: 2010
  end-page: 230
  ident: CR37
  article-title: Functional cluster analysis via orthonormalized gaussian basis expansions and its application
  publication-title: J Classif
  doi: 10.1007/s00357-010-9054-8
– volume: 1
  start-page: 188
  year: 1954
  end-page: 364
  ident: CR66
  article-title: Physical growth of california boys and girls from birth to eighteen years
  publication-title: Univ Calif Public Child Dev
– volume: 51
  start-page: 4864
  year: 2000
  end-page: 4877
  ident: CR20
  article-title: Impartial trimmed k-means for functional data
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2006.07.011
– ident: CR26
– volume: 22
  start-page: 1
  year: 2007
  end-page: 16
  ident: CR65
  article-title: Crisp and fuzzy k-means clustering algorithms for multivariate functional data
  publication-title: Comput Stat
  doi: 10.1007/s00180-006-0013-0
– ident: CR43
– ident: CR47
– volume: 28
  start-page: 781
  year: 1995
  end-page: 793
  ident: CR16
  article-title: Gaussian parsimonious clustering models
  publication-title: J Pattern Recognit Soc
  doi: 10.1016/0031-3203(94)00125-6
– volume: 28
  start-page: 100
  year: 1978
  end-page: 108
  ident: CR29
  article-title: Algorithm as 1326: a k-means clustering algorithm
  publication-title: Appl Stat
  doi: 10.2307/2346830
– year: 1990
  ident: CR67
  publication-title: Spline models for observational data
  doi: 10.1137/1.9781611970128
– ident: CR10
– ident: CR33
– volume: 220
  start-page: 469
  year: 1945
  ident: CR41
  article-title: Fonctions aléatoires de second ordre
  publication-title: C R Acad Sci Paris
– volume: 16
  start-page: 95
  year: 2005
  end-page: 107
  ident: CR24
  article-title: Modeling environmental data by functional principal component logistic regression
  publication-title: Environmetrics
  doi: 10.1002/env.696
– ident: CR6
– volume: 6
  start-page: 219
  year: 2012
  end-page: 247
  ident: CR69
  article-title: Clustering of functional data in a low-dimensional subspace
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-012-0113-3
– volume: 5
  start-page: 337
  issue: 4
  year: 1995
  end-page: 358
  ident: CR53
  article-title: Local discriminant bases and thier applications
  publication-title: J Math Imaging Vis
  doi: 10.1007/BF01250288
– volume: 1
  start-page: 245
  issue: 2
  year: 1966
  end-page: 276
  ident: CR15
  article-title: The scree test for the number of factors
  publication-title: Multivar Behav Res
  doi: 10.1207/s15327906mbr0102_10
– volume: 20
  start-page: 93
  issue: 1
  year: 2003
  end-page: 114
  ident: CR63
  article-title: Clustering functional data
  publication-title: J Classif
  doi: 10.1007/s00357-003-0007-3
– ident: CR27
– ident: CR23
– volume: 101
  start-page: 18
  issue: 473
  year: 2006
  end-page: 29
  ident: CR30
  article-title: A quantitative study of gene regulation involved in the immune response of anopheline mosquitoes: an application of Bayesian hierarchical clustering of curves
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214505000000187
– ident: CR44
– volume: 98
  start-page: 750
  issue: 463
  year: 2003
  end-page: 763
  ident: CR62
  article-title: Finding the number of clusters in a dataset: an information-theoretic approach
  publication-title: J Am Stat Assoc
– ident: CR48
– volume: 56
  start-page: 2360
  issue: 7
  year: 2012
  end-page: 2374
  ident: CR61
  article-title: Phase and amplitude-based clustering for functional data
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2012.01.017
– volume: 38
  start-page: 1171
  year: 2010
  end-page: 1193
  ident: CR22
  article-title: Defining probability density for a distribution of random functions
  publication-title: Ann Stat
  doi: 10.1214/09-AOS741
– ident: CR52
– volume: 20
  start-page: 77
  issue: 1
  year: 1989
  end-page: 93
  ident: CR3
  article-title: Joint estimation of the mean and the covariance of a Banach valued Gaussian vector
  publication-title: Statistics
  doi: 10.1080/02331888908802145
– year: 1995
  ident: CR38
  publication-title: Self-organizing maps
  doi: 10.1007/978-3-642-97610-0
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  end-page: 464
  ident: CR58
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 5
  start-page: 301
  issue: 4
  year: 2011
  end-page: 322
  ident: CR54
  article-title: Model-based clustering and segmentation of times series with changes in regime
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-011-0096-5
– volume: 42
  start-page: 1
  issue: 6
  year: 2012
  end-page: 29
  ident: CR5
  article-title: HDclassif : an R package for model-based clustering and discriminant analysis of high-dimensional data
  publication-title: J Stat Softw
– year: 2001
  ident: CR19
  publication-title: Multidimensional scaling
– volume: 5
  start-page: 281
  issue: 4
  year: 2011
  end-page: 300
  ident: CR12
  article-title: Model-based clustering of time series in group-specific functional subspaces
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-011-0095-6
– volume: 45
  start-page: 11
  year: 1999
  end-page: 22
  ident: CR14
  article-title: Functional linear model
  publication-title: Stat Probab Lett
  doi: 10.1016/S0167-7152(99)00036-X
– ident: CR34
– volume: 1947
  start-page: 79
  issue: 37
  year: 1947
  ident: CR36
  article-title: Über lineare Methoden in der Wahrscheinlichkeitsrechnung
  publication-title: Ann Acad Sci Fennicae Ser A I Math-Phys
– ident: CR59
– volume: 2
  start-page: 1056
  issue: 3
  year: 2008
  end-page: 1077
  ident: CR45
  article-title: Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions
  publication-title: Ann Appl Stat
  doi: 10.1214/08-AOAS172
– ident: CR28
– volume: 12
  start-page: 136
  issue: 1
  year: 1982
  end-page: 154
  ident: CR21
  article-title: Asymptotic theory for the principal component analysis of a vector random function: some applications to statistical inference
  publication-title: J Multivar Anal
  doi: 10.1016/0047-259X(82)90088-4
– ident: 158_CR2
  doi: 10.1109/TAC.1974.1100705
– volume: 68
  start-page: 305
  issue: 2
  year: 2006
  ident: 158_CR50
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2006.00545.x
– ident: 158_CR43
  doi: 10.1002/0471721182
– ident: 158_CR44
– volume: 38
  start-page: 713
  issue: 2
  year: 1992
  ident: 158_CR18
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/18.119732
– volume-title: Spline models for observational data
  year: 1990
  ident: 158_CR67
  doi: 10.1137/1.9781611970128
– ident: 158_CR25
– volume: 101
  start-page: 18
  issue: 473
  year: 2006
  ident: 158_CR30
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214505000000187
– volume: 1
  start-page: 188
  year: 1954
  ident: 158_CR66
  publication-title: Univ Calif Public Child Dev
– ident: 158_CR57
– ident: 158_CR8
  doi: 10.1007/978-1-4612-1154-9
– volume: 53
  start-page: 1361
  year: 2009
  ident: 158_CR40
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2008.11.019
– volume: 58
  start-page: 236
  year: 1963
  ident: 158_CR68
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1963.10500845
– volume-title: Multidimensional scaling
  year: 2001
  ident: 158_CR19
– ident: 158_CR27
  doi: 10.1111/j.1541-0420.2012.01828.x
– volume: 28
  start-page: 100
  year: 1978
  ident: 158_CR29
  publication-title: Appl Stat
  doi: 10.2307/2346830
– ident: 158_CR51
  doi: 10.1007/978-3-7908-2736-1_43
– volume: 1
  start-page: 205
  issue: 1
  year: 2010
  ident: 158_CR55
  publication-title: Commun App Ind Math
– volume: 45
  start-page: 4389
  issue: 12
  year: 2012
  ident: 158_CR9
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2012.05.016
– volume: 16
  start-page: 95
  year: 2005
  ident: 158_CR24
  publication-title: Environmetrics
  doi: 10.1002/env.696
– ident: 158_CR39
– volume: 220
  start-page: 469
  year: 1945
  ident: 158_CR41
  publication-title: C R Acad Sci Paris
– volume: 5
  start-page: 337
  issue: 4
  year: 1995
  ident: 158_CR53
  publication-title: J Math Imaging Vis
  doi: 10.1007/BF01250288
– ident: 158_CR10
– volume: 6
  start-page: 219
  year: 2012
  ident: 158_CR69
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-012-0113-3
– volume: 2
  start-page: 1056
  issue: 3
  year: 2008
  ident: 158_CR45
  publication-title: Ann Appl Stat
  doi: 10.1214/08-AOAS172
– ident: 158_CR1
  doi: 10.1111/1467-9469.00350
– volume: 5
  start-page: 281
  issue: 4
  year: 2011
  ident: 158_CR12
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-011-0095-6
– volume: 22
  start-page: 719
  issue: 4
  year: 2000
  ident: 158_CR7
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.865189
– volume: 20
  start-page: 93
  issue: 1
  year: 2003
  ident: 158_CR63
  publication-title: J Classif
  doi: 10.1007/s00357-003-0007-3
– ident: 158_CR6
– ident: 158_CR28
– volume: 68
  start-page: 805
  issue: 3
  year: 2012
  ident: 158_CR60
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01714.x
– volume: 49
  start-page: 803
  year: 1993
  ident: 158_CR4
  publication-title: Biometrics
  doi: 10.2307/2532201
– volume: 38
  start-page: 1171
  year: 2010
  ident: 158_CR22
  publication-title: Ann Stat
  doi: 10.1214/09-AOS741
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: 158_CR58
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 54
  start-page: 1219
  issue: 5
  year: 2010
  ident: 158_CR56
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.12.008
– volume-title: Self-organizing maps
  year: 1995
  ident: 158_CR38
  doi: 10.1007/978-3-642-97610-0
– ident: 158_CR52
– ident: 158_CR62
  doi: 10.1198/016214503000000666
– volume: 1
  start-page: 245
  issue: 2
  year: 1966
  ident: 158_CR15
  publication-title: Multivar Behav Res
  doi: 10.1207/s15327906mbr0102_10
– ident: 158_CR48
  doi: 10.1007/b98886
– volume: 73
  start-page: 1125
  issue: 7–9
  year: 2010
  ident: 158_CR31
  publication-title: Neurocomput EEG Neurocomput
  doi: 10.1016/j.neucom.2009.11.022
– volume: 27
  start-page: 211
  year: 2010
  ident: 158_CR37
  publication-title: J Classif
  doi: 10.1007/s00357-010-9054-8
– ident: 158_CR34
  doi: 10.1016/j.csda.2012.12.004
– ident: 158_CR42
– ident: 158_CR49
  doi: 10.1007/b98888
– volume: 51
  start-page: 4864
  year: 2000
  ident: 158_CR20
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2006.07.011
– volume: 28
  start-page: 781
  year: 1995
  ident: 158_CR16
  publication-title: J Pattern Recognit Soc
  doi: 10.1016/0031-3203(94)00125-6
– volume: 5
  start-page: 301
  issue: 4
  year: 2011
  ident: 158_CR54
  publication-title: Adv Data Anal Classif
  doi: 10.1007/s11634-011-0096-5
– volume: 69
  start-page: 679
  issue: 4
  year: 2007
  ident: 158_CR17
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.1467-9868.2007.00605.x
– ident: 158_CR47
– volume: 20
  start-page: 77
  issue: 1
  year: 1989
  ident: 158_CR3
  publication-title: Statistics
  doi: 10.1080/02331888908802145
– ident: 158_CR59
  doi: 10.1007/978-3-7908-2736-1_44
– volume: 1947
  start-page: 79
  issue: 37
  year: 1947
  ident: 158_CR36
  publication-title: Ann Acad Sci Fennicae Ser A I Math-Phys
– volume: 42
  start-page: 1
  issue: 6
  year: 2012
  ident: 158_CR5
  publication-title: J Stat Softw
– ident: 158_CR23
  doi: 10.2307/20075177
– volume: 56
  start-page: 2360
  issue: 7
  year: 2012
  ident: 158_CR61
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2012.01.017
– ident: 158_CR32
  doi: 10.1111/j.1467-9876.2012.01062.x
– volume: 11
  start-page: 443
  issue: 2
  year: 1999
  ident: 158_CR64
  publication-title: Neural Comput
  doi: 10.1162/089976699300016728
– ident: 158_CR13
  doi: 10.1016/j.csda.2007.02.009
– volume: 22
  start-page: 223
  issue: 2
  year: 2007
  ident: 158_CR46
  publication-title: Comput Stat
  doi: 10.1007/s00180-007-0041-4
– volume: 12
  start-page: 136
  issue: 1
  year: 1982
  ident: 158_CR21
  publication-title: J Multivar Anal
  doi: 10.1016/0047-259X(82)90088-4
– volume: 45
  start-page: 11
  year: 1999
  ident: 158_CR14
  publication-title: Stat Probab Lett
  doi: 10.1016/S0167-7152(99)00036-X
– volume: 98
  start-page: 397
  issue: 462
  year: 2003
  ident: 158_CR35
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214503000189
– volume: 22
  start-page: 1
  year: 2007
  ident: 158_CR65
  publication-title: Comput Stat
  doi: 10.1007/s00180-006-0013-0
– ident: 158_CR11
  doi: 10.1016/j.csda.2012.12.008
– ident: 158_CR26
– ident: 158_CR33
  doi: 10.1016/j.neucom.2012.11.042
SSID ssj0060405
Score 2.4808152
Snippet Clustering techniques for functional data are reviewed. Four groups of clustering algorithms for functional data are proposed. The first group consists of...
The main contributions to functional data clustering are reviewed. Most approaches used for clustering functional data are based on the following three...
SourceID hal
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 231
SubjectTerms Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Economics
Finance
Health Sciences
Humanities
Insurance
Law
Management
Mathematics
Mathematics and Statistics
Medicine
Physics
Regular Article
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
Statistics Theory
Title Functional data clustering: a survey
URI https://link.springer.com/article/10.1007/s11634-013-0158-y
https://inria.hal.science/hal-00771030
Volume 8
WOSCitedRecordID wos000341437800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1862-5355
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060405
  issn: 1862-5347
  databaseCode: RSV
  dateStart: 20070301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5sfdWD1ahYXwTpSVlokk2y8SZi6aEt4oveQrLZxUOp0rSV_ntn8mhRVNDrMFmW2cfMZL79BqAZ-X7Ll4Spsh3NuMUjJmIesMjSXhLEWRCQNZvw-30xGAR3xTvutES7lyXJ7KZePnbD0IEQE4T_cQWbV2AVvZ2gfg33D8_l9evhriTcooWhOnMd7pelzO-G-OSMKi8EhfxSD83cTLv-rwnuwHYRVZrX-TbYhRU1MqBedmwwiwNswGb5Djk1oNKN3g3Y6i14W1G20StK7QasZ9hQEtYoIM35nPeg2UZHmP8_NAldasrhlLgWcKJXZmSm0_FMzffhqX37eNNhRacFJp1ATJi2pUxsVwvLjexYCExCPMfB2AXFLT8RCn2dHUWW0C0Zx4mQVqAw0-BaoarijnMA1dHrSB2C6fo8FtT0ytGCS4HZI2YkIva0bSeBlqoBrdLkoSxoyKkbxjBcEiiTHUO0Y0h2DOcNuFh88pZzcPymfI7ruNAj9uzOdTckGVEXUVe1mdWAy3IJw-LMpj8PefQn7WOoYVDFcxzaCVQn46k6hTU5w5Uan2V79QPwJt6E
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5sPVofrEbFegbpkxLIsWk2vhWxVGyLaJW-hWSziw-lSi_pv3cmR4uigr4Ok2WZPWYm8-03ALXQ80xPEKbKdpTBLBYaPGK-EVqqHvtREgQkzSa8bpf3-_599o57nKPd85JkclMvH7th6ECICcL_uNyYF2CVocMiwvyHx-f8-q3jriTcooWhuuE6zMtLmd8N8ckZFV4ICvmlHpq4mWblXxPchq0sqtQb6TbYgRU51KCSd2zQswOsQSl_hzzWoNAO3zXY7Cx4W1G20clK7RqsJ9hQEpYpIE35nHeh1kRHmP4_1AldqovBlLgWcKJXeqiPp6OZnO_BU_Omd90ysk4LhnB8PjGULURsu4pbbmhHnGMSUnccjF1QbHoxl-jr7DC0uDJFFMVcWL7ETIMpiaqSOc4-FIevQ3kAuuuxiFPTK0dxJjhmj5iR8KiubDv2lZBVMHOTByKjIaduGINgSaBMdgzQjgHZMZhX4WLxyVvKwfGb8jmu40KP2LNbjXZAMqIuoq5qM6sKl_kSBtmZHf885OGftM-g1Op12kH7tnt3BGUMsFiKSTuG4mQ0lSewJma4aqPTZN9-AGac4Wg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5s1VoPVqNifQbpSQltkk2z8VbUUrEtBR94C8lmFw-llr6k_96ZPFoUFcTrMFmW2cfMZL79BqASuG7NFYSpsmxlMJMFBg-ZZwSmqkdeGAcBcbMJt9vlLy9eL-1zOs7Q7llJMnnTQCxNg0l1GKnq8uEbhhGEniAskMONeQ5WGeHoKV1_eM6u4jruUMIwmhi2G47N3Kys-d0QnxxT7pVgkV9qo7HLaZb-Pdlt2EqjTb2RbI8dWJEDDUpZJwc9PdgabGTvk8ca5NrBuwabnQWfK8oKnbQEr8F6jBklYZEC1YTneRcqTXSQyX9FnVCnuuhPiYMBJ32lB_p4OprJ-R48NW8fr1tG2oHBELbHJ4ayhIgsR3HTCayQc0xO6raNMQ2Ka27EJfpAKwhMrmoiDCMuTE9iBsKURFXJbHsf8oO3gTwA3XFZyKkZlq04ExyzSsxUeFhXlhV5Ssgy1DLz-yKlJ6cuGX1_SaxMdvTRjj7Z0Z-X4WLxyTDh5vhN-RzXdKFHrNqtRtsnGVEaUbe1mVmGy2w5_fQsj38e8vBP2mdQ6N00_fZd9_4Iihh3sQSqdgz5yWgqT2BNzHDRRqfxFv4AWyrqTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+data+clustering%3A+a+survey&rft.jtitle=Advances+in+data+analysis+and+classification&rft.au=Jacques%2C+Julien&rft.au=Preda%2C+Cristian&rft.date=2014-09-01&rft.issn=1862-5347&rft.eissn=1862-5355&rft.volume=8&rft.issue=3&rft.spage=231&rft.epage=255&rft_id=info:doi/10.1007%2Fs11634-013-0158-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11634_013_0158_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-5347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-5347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-5347&client=summon