Watershed groundwater level multistep ahead forecasts by fusing convolutional-based autoencoder and LSTM models

The development of deep learning-based groundwater level forecast models can tackle the challenge of high dimensional groundwater dynamics, predict groundwater variation trends accurately, and manage groundwater resources effectively, thereby contributing to sustainable water resources management. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental management Jg. 351; S. 119789
Hauptverfasser: Kow, Pu-Yun, Liou, Jia-Yi, Sun, Wei, Chang, Li-Chiu, Chang, Fi-John
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.02.2024
Schlagworte:
ISSN:0301-4797, 1095-8630, 1095-8630
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The development of deep learning-based groundwater level forecast models can tackle the challenge of high dimensional groundwater dynamics, predict groundwater variation trends accurately, and manage groundwater resources effectively, thereby contributing to sustainable water resources management. This study proposed a novel ConvAE-LSTM model, which fused a Convolutional-based Autoencoder model (ConvAE) and a Long Short-Term Memory Neural Network model (LSTM), to provide accurate spatiotemporal groundwater level forecasts over the next three months. The HBV-light and LSTM models are chosen as benchmarks. An ensemble of point data and the corresponding derived images concerning the past (observations) and the future (forecasts from a conceptual model) of groundwater levels at 33 groundwater wells in Jhuoshuei River basin of Taiwan between 2000 and 2019 constituted the case study. The findings showcase the effectiveness of the ConvAE-LSTM model in extracting crucial features from both point and imagery datasets. This model successfully establishes spatiotemporal dependencies between regional images and groundwater level data over diverse time frames, leading to accurate multi-step-ahead forecasts of groundwater levels. Notably, the ConvAE-LSTM model exhibits a substantial improvement, with the R-squared values showing an increase of more than 18%, 22%, and 49% for the R1, R2, and R3 regions, respectively, compared to the HBV-light model. Additionally, it outperforms the LSTM model in this regard. This study represents a noteworthy milestone in environmental modeling, offering key insights for designing sustainable groundwater management strategies to ensure the long-term availability of this vital resource. [Display omitted] •Build a novel ConvAE-LSTM groundwater forecast model by fusing ConvAE and LSTM.•ConvAE-LSTM deeply extracts features from observed (past) and simulated (future) data.•ConvAE-LSTM effectively extracts spatial information from high dimensional images.•ConvAE-LSTM outperforms HBV-light due to state transition overcoming data uncertainty.•ConvAE-LSTM makes accurate regional multi-horizon groundwater level forecasts.
AbstractList The development of deep learning-based groundwater level forecast models can tackle the challenge of high dimensional groundwater dynamics, predict groundwater variation trends accurately, and manage groundwater resources effectively, thereby contributing to sustainable water resources management. This study proposed a novel ConvAE-LSTM model, which fused a Convolutional-based Autoencoder model (ConvAE) and a Long Short-Term Memory Neural Network model (LSTM), to provide accurate spatiotemporal groundwater level forecasts over the next three months. The HBV-light and LSTM models are chosen as benchmarks. An ensemble of point data and the corresponding derived images concerning the past (observations) and the future (forecasts from a conceptual model) of groundwater levels at 33 groundwater wells in Jhuoshuei River basin of Taiwan between 2000 and 2019 constituted the case study. The findings showcase the effectiveness of the ConvAE-LSTM model in extracting crucial features from both point and imagery datasets. This model successfully establishes spatiotemporal dependencies between regional images and groundwater level data over diverse time frames, leading to accurate multi-step-ahead forecasts of groundwater levels. Notably, the ConvAE-LSTM model exhibits a substantial improvement, with the R-squared values showing an increase of more than 18%, 22%, and 49% for the R1, R2, and R3 regions, respectively, compared to the HBV-light model. Additionally, it outperforms the LSTM model in this regard. This study represents a noteworthy milestone in environmental modeling, offering key insights for designing sustainable groundwater management strategies to ensure the long-term availability of this vital resource. [Display omitted] •Build a novel ConvAE-LSTM groundwater forecast model by fusing ConvAE and LSTM.•ConvAE-LSTM deeply extracts features from observed (past) and simulated (future) data.•ConvAE-LSTM effectively extracts spatial information from high dimensional images.•ConvAE-LSTM outperforms HBV-light due to state transition overcoming data uncertainty.•ConvAE-LSTM makes accurate regional multi-horizon groundwater level forecasts.
The development of deep learning-based groundwater level forecast models can tackle the challenge of high dimensional groundwater dynamics, predict groundwater variation trends accurately, and manage groundwater resources effectively, thereby contributing to sustainable water resources management. This study proposed a novel ConvAE-LSTM model, which fused a Convolutional-based Autoencoder model (ConvAE) and a Long Short-Term Memory Neural Network model (LSTM), to provide accurate spatiotemporal groundwater level forecasts over the next three months. The HBV-light and LSTM models are chosen as benchmarks. An ensemble of point data and the corresponding derived images concerning the past (observations) and the future (forecasts from a conceptual model) of groundwater levels at 33 groundwater wells in Jhuoshuei River basin of Taiwan between 2000 and 2019 constituted the case study. The findings showcase the effectiveness of the ConvAE-LSTM model in extracting crucial features from both point and imagery datasets. This model successfully establishes spatiotemporal dependencies between regional images and groundwater level data over diverse time frames, leading to accurate multi-step-ahead forecasts of groundwater levels. Notably, the ConvAE-LSTM model exhibits a substantial improvement, with the R-squared values showing an increase of more than 18%, 22%, and 49% for the R1, R2, and R3 regions, respectively, compared to the HBV-light model. Additionally, it outperforms the LSTM model in this regard. This study represents a noteworthy milestone in environmental modeling, offering key insights for designing sustainable groundwater management strategies to ensure the long-term availability of this vital resource.
The development of deep learning-based groundwater level forecast models can tackle the challenge of high dimensional groundwater dynamics, predict groundwater variation trends accurately, and manage groundwater resources effectively, thereby contributing to sustainable water resources management. This study proposed a novel ConvAE-LSTM model, which fused a Convolutional-based Autoencoder model (ConvAE) and a Long Short-Term Memory Neural Network model (LSTM), to provide accurate spatiotemporal groundwater level forecasts over the next three months. The HBV-light and LSTM models are chosen as benchmarks. An ensemble of point data and the corresponding derived images concerning the past (observations) and the future (forecasts from a conceptual model) of groundwater levels at 33 groundwater wells in Jhuoshuei River basin of Taiwan between 2000 and 2019 constituted the case study. The findings showcase the effectiveness of the ConvAE-LSTM model in extracting crucial features from both point and imagery datasets. This model successfully establishes spatiotemporal dependencies between regional images and groundwater level data over diverse time frames, leading to accurate multi-step-ahead forecasts of groundwater levels. Notably, the ConvAE-LSTM model exhibits a substantial improvement, with the R-squared values showing an increase of more than 18%, 22%, and 49% for the R1, R2, and R3 regions, respectively, compared to the HBV-light model. Additionally, it outperforms the LSTM model in this regard. This study represents a noteworthy milestone in environmental modeling, offering key insights for designing sustainable groundwater management strategies to ensure the long-term availability of this vital resource.The development of deep learning-based groundwater level forecast models can tackle the challenge of high dimensional groundwater dynamics, predict groundwater variation trends accurately, and manage groundwater resources effectively, thereby contributing to sustainable water resources management. This study proposed a novel ConvAE-LSTM model, which fused a Convolutional-based Autoencoder model (ConvAE) and a Long Short-Term Memory Neural Network model (LSTM), to provide accurate spatiotemporal groundwater level forecasts over the next three months. The HBV-light and LSTM models are chosen as benchmarks. An ensemble of point data and the corresponding derived images concerning the past (observations) and the future (forecasts from a conceptual model) of groundwater levels at 33 groundwater wells in Jhuoshuei River basin of Taiwan between 2000 and 2019 constituted the case study. The findings showcase the effectiveness of the ConvAE-LSTM model in extracting crucial features from both point and imagery datasets. This model successfully establishes spatiotemporal dependencies between regional images and groundwater level data over diverse time frames, leading to accurate multi-step-ahead forecasts of groundwater levels. Notably, the ConvAE-LSTM model exhibits a substantial improvement, with the R-squared values showing an increase of more than 18%, 22%, and 49% for the R1, R2, and R3 regions, respectively, compared to the HBV-light model. Additionally, it outperforms the LSTM model in this regard. This study represents a noteworthy milestone in environmental modeling, offering key insights for designing sustainable groundwater management strategies to ensure the long-term availability of this vital resource.
ArticleNumber 119789
Author Sun, Wei
Chang, Li-Chiu
Chang, Fi-John
Kow, Pu-Yun
Liou, Jia-Yi
Author_xml – sequence: 1
  givenname: Pu-Yun
  orcidid: 0000-0001-5718-9316
  surname: Kow
  fullname: Kow, Pu-Yun
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
– sequence: 2
  givenname: Jia-Yi
  surname: Liou
  fullname: Liou, Jia-Yi
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
– sequence: 3
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
– sequence: 4
  givenname: Li-Chiu
  surname: Chang
  fullname: Chang, Li-Chiu
  organization: Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City, 25137, Taiwan
– sequence: 5
  givenname: Fi-John
  orcidid: 0000-0002-1655-8573
  surname: Chang
  fullname: Chang, Fi-John
  email: changfj@ntu.edu.tw
  organization: Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, 10617, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38100860$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vEzEURS1URNPCTwB5yWbCs-fLIxYIVdAiBbGgiKXlsd-0jjx2sD1B_fc4SmDBJivryefexT1X5MIHj4S8ZrBmwLp32_UW_X5Wfs2B12vGhl4Mz8iKwdBWoqvhgqygBlY1_dBfkquUtgBQc9a_IJe1YACigxUJP1XGmB7R0IcYFm9-H27qcI-OzovLNmXcUfWIytApRNQq5UTHJzotyfoHqoPfB7dkG7xy1ahSaVJLDuh1MKVJeUM33--_0rmcLr0kzyflEr46vdfkx-dP9zd31ebb7Zebj5tK14PIFTZGNBzV0HTT2IDpxlqMvBNdr0ajp6ERmpkBtDBa9ROUnxax7Yxq-YTAx_qavD327mL4tWDKcrZJo3PKY1iSrKGBRnDO4SzKB-BD13PeF_TNCV3GGY3cRTur-CT_7lmA9gjoGFKKOP1DGMiDN7mVJ2_y4E0evZXc-_9y2mZ1GDVHZd3Z9IdjugyMe4tRJm2LADS2CMvSBHum4Q-ddLkV
CitedBy_id crossref_primary_10_1016_j_envsoft_2024_106290
crossref_primary_10_1016_j_jhydrol_2024_131250
crossref_primary_10_1016_j_jhydrol_2025_133097
crossref_primary_10_1038_s41598_025_16454_y
crossref_primary_10_3390_rs17030365
crossref_primary_10_1016_j_oceaneng_2024_119335
crossref_primary_10_1016_j_compag_2025_110129
crossref_primary_10_3390_app15031351
crossref_primary_10_1016_j_jenvman_2024_122275
crossref_primary_10_1016_j_jclepro_2024_141266
crossref_primary_10_1007_s11269_024_03990_x
crossref_primary_10_3390_w16223328
Cites_doi 10.1016/j.neucom.2013.09.055
10.1002/2016WR019933
10.3390/hydrology7040075
10.1007/s10333-013-0391-1
10.1016/j.jenvman.2022.116339
10.1016/j.jhydrol.2021.126433
10.1016/j.jhydrol.2021.126735
10.1016/j.jenvman.2022.114560
10.2166/hydro.2017.011
10.1061/(ASCE)0733-9372(2009)135:1(17)
10.1155/2016/3632943
10.1016/j.jhydrol.2016.08.006
10.3390/fi14090259
10.1016/j.scitotenv.2017.04.142
10.1029/2001WR000399
10.1007/s10489-022-03835-3
10.1007/s11831-022-09715-w
10.1016/j.jhydrol.2017.10.015
10.1016/j.jenvman.2023.117942
10.1016/j.ijepes.2019.105761
10.1016/j.jclepro.2018.10.243
10.1016/j.eswa.2022.118481
10.1162/neco_a_01199
10.1016/j.jenvman.2023.117287
10.1016/j.energy.2021.120331
10.3390/w14091494
10.1115/1.4051949
10.3390/su12218932
10.1007/s11356-021-15563-1
10.3390/su14031371
10.1016/j.jenvman.2021.112657
10.1140/epjp/i2018-12120-1
10.1016/j.neucom.2022.03.014
10.1029/2019JD031485
10.1038/s43586-022-00172-0
10.1016/j.jhydrol.2021.126371
10.1038/s41558-022-01355-z
10.2166/nh.1997.0009
10.1016/j.jenvman.2022.117182
10.1016/j.advwatres.2020.103595
10.3390/w11081554
10.1007/s00254-004-0983-6
10.5194/adgeo-5-105-2005
10.1016/j.jhydrol.2020.124631
10.1016/j.enggeo.2010.05.011
10.1016/j.jenvman.2021.112502
10.1016/j.jenvman.2021.113060
10.3390/w14152307
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2023.119789
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
ExternalDocumentID 38100860
10_1016_j_jenvman_2023_119789
S030147972302577X
Genre Journal Article
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
3EH
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYJJ
AAYWO
ABEFU
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ACRPL
ADBBV
ADEZE
ADFGL
ADMUD
ADNMO
ADXHL
AEBSH
AEFWE
AEGFY
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AI.
AIDBO
AIEXJ
AIIUN
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLECG
BLXMC
BNPGV
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSH
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
UHS
UQL
VH1
WH7
WUQ
XPP
XSW
Y6R
YK3
YV5
ZCA
ZMT
ZU3
ZY4
~02
~G-
~KM
9DU
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
AACTN
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-e4d842ea946fb40d6b38b26867abdcf948c1d90c8dca7f02685ee56da52fe02b3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001160228600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-4797
1095-8630
IngestDate Thu Oct 02 21:43:48 EDT 2025
Sun Nov 09 13:21:15 EST 2025
Thu Apr 03 07:06:21 EDT 2025
Sat Nov 29 07:02:24 EST 2025
Tue Nov 18 22:22:16 EST 2025
Sat May 24 17:07:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Long short-term memory neural network (LSTM)
Convolutional neural network (CNN)
Groundwater level forecast
HBV-Light model
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-e4d842ea946fb40d6b38b26867abdcf948c1d90c8dca7f02685ee56da52fe02b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1655-8573
0000-0001-5718-9316
PMID 38100860
PQID 2902967227
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3040482220
proquest_miscellaneous_2902967227
pubmed_primary_38100860
crossref_primary_10_1016_j_jenvman_2023_119789
crossref_citationtrail_10_1016_j_jenvman_2023_119789
elsevier_sciencedirect_doi_10_1016_j_jenvman_2023_119789
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tao, Hameed, Marhoon, Zounemat-Kermani, Heddam, Kim, Sulaiman, Tan, Sa’adi, Mehr, Allawi (bib46) 2022; 489
Chen, Wang, Hsu, Yu, Kuo (bib10) 2010; 115
Wang, Chen, Wu, Wang (bib49) 2020; 118
Chang, Lin, Chang, Kao, Chang (bib6) 2014; 12
Gong, Liu, Le, Saha, Mansour, Venkatesh, Hengel (bib17) 2019
Pan, Kao (bib39) 2009; 135
Tewari, Zollhofer, Kim, Garrido, Bernard, Perez, Theobalt (bib47) 2017
(bib50) 2019
Zhang, Yao, Wu, Huang, Zhou, Yang, Liu (bib56) 2021; 290
Sahoo, Russo, Elliott, Foster (bib45) 2017; 53
Rahman, Hosono, Quilty, Das, Basak (bib42) 2020; 141
Bailey, Bieger, Arnold, Bosch (bib3) 2020; 7
Di Salvo (bib14) 2022; 14
Li, Jia, Han, Bai (bib25) 2021; 225
Kow, Lee, Sun, Yao, Chang (bib24) 2022; 210
Bai, Tsai, Chiang, Chang, Chang, Chang, Chang (bib2) 2019; 11
Liou, Cheng, Liou, Liou (bib28) 2014; 139
(bib51) 2023
Chang, Huang, Cheng, Chang (bib8) 2017; 598
Pandey, Kumar, Malik, Kuriqi (bib40) 2020; 12
McCabe, Markstrom (bib32) 2007; vol. 1088
Okkan, Ersoy, Kumanlioglu, Fistikoglu (bib37) 2021; 598
Lutz, Immerzeel, Siderius, Wijngaard, Nepal, Shrestha (bib30) 2022; 12
Xing, Ma, Yang (bib52) 2016; 2016
Yuan, Wang, He, Lu, Sun, Li (bib55) 2022; 324
Farfán, Palacios, Ulloa, Avilés (bib15) 2020; 27
Jiang, Tao, Zhu, Zhang, Chen (bib20) 2023; 53
Huang, Lai, Wu (bib18) 2022; 14
Nath, Saha, Middya, Roy (bib35) 2021
Kao, Zhou, Chang, Chang (bib21) 2020; 583
Yu, Si, Hu, Zhang (bib54) 2019; 31
Min, Hao, Sheng, Huang, Qin (bib33) 2023; 330
Chang, Wang, Wang, Hsu, Hsu (bib9) 2022; 14
Osman, Ahmed, Huang, Kumar, Birima, Sherif, Sefelnasr, Ebraheemand, El-Shafie (bib38) 2022; 29
Roushangar, Alizadeh, Nourani (bib43) 2018; 20
Beck, Pan, Lin, Seibert, van Dijk, Wood (bib4) 2020; 125
Jagelke, Barthel (bib19) 2005; 5
Ullah, Altaf Khan, Farooq (bib48) 2018; 133
Chen, Chang, Chang (bib11) 2018; 556
Liu, Pan, Liao, Huang, Ouyang (bib29) 2004; 45
(bib36) 2023
Zhou, Chang, Chang, Kao, Wang (bib58) 2019; 209
Chang, Chang, Huang, Kao (bib7) 2016; 541
Lima, Fernández Ramírez, Carvalho, Batista, Freitas (bib26) 2022; 144
Yin, Fan, Tangdamrongsub, Hu, Zhang (bib53) 2021; 602
Bergström (bib5) 1995
Kao, Liou, Lee, Chang (bib22) 2021; 598
Zheng, Wang, Liu, Zhang, Ding, Xie (bib57) 2021; 295
Cheng, Sun, Takeuchi, Katto (bib13) 2018; 2018
Luo, Caldas, Goodin (bib31) 2021; 289
Afrifa, Zhang, Appiahene, Varadarajan (bib1) 2022; 14
Mohammadi, Moazenzadeh, Christian, Duan (bib34) 2021; 28
Lindström (bib27) 1997; 28
Park, Bethke, Torgersen, Johnson (bib41) 2002; 38
Kow, Hsia, Chang, Chang (bib23) 2022; 307
Gharekhani, Nadiri, Khatibi, Nikoo, Barzegar, Sadeghfam, Moghaddam (bib16) 2023; 332
Chen, Yu, Zhang, Wu, Li (bib12) 2023; 339
Rudin (bib44) 2022; 2
Beck (10.1016/j.jenvman.2023.119789_bib4) 2020; 125
Ullah (10.1016/j.jenvman.2023.119789_bib48) 2018; 133
Chang (10.1016/j.jenvman.2023.119789_bib6) 2014; 12
Mohammadi (10.1016/j.jenvman.2023.119789_bib34) 2021; 28
Chen (10.1016/j.jenvman.2023.119789_bib10) 2010; 115
Jiang (10.1016/j.jenvman.2023.119789_bib20) 2023; 53
Bergström (10.1016/j.jenvman.2023.119789_bib5) 1995
Xing (10.1016/j.jenvman.2023.119789_bib52) 2016; 2016
Chang (10.1016/j.jenvman.2023.119789_bib7) 2016; 541
Kao (10.1016/j.jenvman.2023.119789_bib22) 2021; 598
Zheng (10.1016/j.jenvman.2023.119789_bib57) 2021; 295
Yuan (10.1016/j.jenvman.2023.119789_bib55) 2022; 324
Kow (10.1016/j.jenvman.2023.119789_bib24) 2022; 210
Okkan (10.1016/j.jenvman.2023.119789_bib37) 2021; 598
Pan (10.1016/j.jenvman.2023.119789_bib39) 2009; 135
Zhang (10.1016/j.jenvman.2023.119789_bib56) 2021; 290
Yin (10.1016/j.jenvman.2023.119789_bib53) 2021; 602
Chang (10.1016/j.jenvman.2023.119789_bib9) 2022; 14
Li (10.1016/j.jenvman.2023.119789_bib25) 2021; 225
Lima (10.1016/j.jenvman.2023.119789_bib26) 2022; 144
Rahman (10.1016/j.jenvman.2023.119789_bib42) 2020; 141
Farfán (10.1016/j.jenvman.2023.119789_bib15) 2020; 27
Roushangar (10.1016/j.jenvman.2023.119789_bib43) 2018; 20
Bai (10.1016/j.jenvman.2023.119789_bib2) 2019; 11
Kow (10.1016/j.jenvman.2023.119789_bib23) 2022; 307
Liu (10.1016/j.jenvman.2023.119789_bib29) 2004; 45
(10.1016/j.jenvman.2023.119789_bib51) 2023
Liou (10.1016/j.jenvman.2023.119789_bib28) 2014; 139
Osman (10.1016/j.jenvman.2023.119789_bib38) 2022; 29
Di Salvo (10.1016/j.jenvman.2023.119789_bib14) 2022; 14
Luo (10.1016/j.jenvman.2023.119789_bib31) 2021; 289
Lutz (10.1016/j.jenvman.2023.119789_bib30) 2022; 12
Nath (10.1016/j.jenvman.2023.119789_bib35) 2021
Park (10.1016/j.jenvman.2023.119789_bib41) 2002; 38
Huang (10.1016/j.jenvman.2023.119789_bib18) 2022; 14
Afrifa (10.1016/j.jenvman.2023.119789_bib1) 2022; 14
Jagelke (10.1016/j.jenvman.2023.119789_bib19) 2005; 5
Bailey (10.1016/j.jenvman.2023.119789_bib3) 2020; 7
Lindström (10.1016/j.jenvman.2023.119789_bib27) 1997; 28
Min (10.1016/j.jenvman.2023.119789_bib33) 2023; 330
Chen (10.1016/j.jenvman.2023.119789_bib12) 2023; 339
Gharekhani (10.1016/j.jenvman.2023.119789_bib16) 2023; 332
Kao (10.1016/j.jenvman.2023.119789_bib21) 2020; 583
Pandey (10.1016/j.jenvman.2023.119789_bib40) 2020; 12
Chang (10.1016/j.jenvman.2023.119789_bib8) 2017; 598
Cheng (10.1016/j.jenvman.2023.119789_bib13) 2018; 2018
Wang (10.1016/j.jenvman.2023.119789_bib49) 2020; 118
Sahoo (10.1016/j.jenvman.2023.119789_bib45) 2017; 53
Yu (10.1016/j.jenvman.2023.119789_bib54) 2019; 31
Gong (10.1016/j.jenvman.2023.119789_bib17) 2019
Zhou (10.1016/j.jenvman.2023.119789_bib58) 2019; 209
McCabe (10.1016/j.jenvman.2023.119789_bib32) 2007; vol. 1088
Tewari (10.1016/j.jenvman.2023.119789_bib47) 2017
Tao (10.1016/j.jenvman.2023.119789_bib46) 2022; 489
Chen (10.1016/j.jenvman.2023.119789_bib11) 2018; 556
Rudin (10.1016/j.jenvman.2023.119789_bib44) 2022; 2
References_xml – volume: 541
  start-page: 965
  year: 2016
  end-page: 976
  ident: bib7
  article-title: Prediction of monthly regional groundwater levels through hybrid soft-computing techniques
  publication-title: J. Hydrol
– volume: 324
  year: 2022
  ident: bib55
  article-title: Influence of cascade reservoir operation in the Upper Mekong River on the general hydrological regime: a combined data-driven modeling approach
  publication-title: J. Environ. Manag.
– volume: 330
  year: 2023
  ident: bib33
  article-title: Transfer performance of gated recurrent unit model for runoff prediction based on the comprehensive spatiotemporal similarity of catchments
  publication-title: J. Environ. Manag.
– volume: 339
  year: 2023
  ident: bib12
  article-title: Environmental impact assessment of multi-source solid waste based on a life cycle assessment, principal component analysis, and random forest algorithm
  publication-title: J. Environ. Manag.
– volume: 28
  start-page: 153
  year: 1997
  end-page: 168
  ident: bib27
  article-title: A simple automatic calibration routine for the HBV model
  publication-title: Hydrol. Res.
– volume: 115
  start-page: 122
  year: 2010
  end-page: 131
  ident: bib10
  article-title: Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan
  publication-title: Eng. Geol.
– volume: 14
  start-page: 2307
  year: 2022
  ident: bib14
  article-title: Improving results of existing groundwater numerical models using machine learning techniques: a review
  publication-title: Water
– volume: 295
  year: 2021
  ident: bib57
  article-title: Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models
  publication-title: J. Environ. Manag.
– volume: 489
  start-page: 271
  year: 2022
  end-page: 308
  ident: bib46
  article-title: Groundwater level prediction using machine learning models: a comprehensive review
  publication-title: Neurocomputing
– start-page: 1705
  year: 2019
  end-page: 1714
  ident: bib17
  article-title: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– volume: 139
  start-page: 84
  year: 2014
  end-page: 96
  ident: bib28
  article-title: Autoencoder for words
  publication-title: Neurocomputing
– volume: vol. 1088
  year: 2007
  ident: bib32
  publication-title: A Monthly Water-Balance Model Driven by a Graphical User Interface
– volume: 20
  start-page: 69
  year: 2018
  end-page: 87
  ident: bib43
  article-title: Improving capability of conceptual modeling of watershed rainfall–runoff using hybrid wavelet-extreme learning machine approach
  publication-title: J. Hydroinf.
– volume: 209
  start-page: 134
  year: 2019
  end-page: 145
  ident: bib58
  article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
  publication-title: J. Clean. Prod.
– volume: 125
  year: 2020
  ident: bib4
  article-title: Global fully distributed parameter regionalization based on observed streamflow from 4,229 headwater catchments
  publication-title: J. Geophys. Res. Atmos.
– year: 2019
  ident: bib50
  article-title: Taiwan Landsubsidence report
– volume: 598
  start-page: 828
  year: 2017
  end-page: 838
  ident: bib8
  article-title: Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management
  publication-title: Sci. Total Environ.
– volume: 602
  year: 2021
  ident: bib53
  article-title: Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE–A case study over the state of Victoria, Australia
  publication-title: J. Hydrol.
– volume: 598
  year: 2021
  ident: bib37
  article-title: Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: a nested hybrid rainfall-runoff modeling
  publication-title: J. Hydrol.
– volume: 12
  start-page: 8932
  year: 2020
  ident: bib40
  article-title: Artificial neural network optimized with a genetic algorithm for seasonal groundwater table depth prediction in Uttar Pradesh, India
  publication-title: Sustainability
– volume: 583
  year: 2020
  ident: bib21
  article-title: Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
– volume: 307
  year: 2022
  ident: bib23
  article-title: Real-time image-based air quality estimation by deep learning neural networks
  publication-title: J. Environ. Manag.
– volume: 27
  year: 2020
  ident: bib15
  article-title: A hybrid neural network-based technique to improve the flow forecasting of physical and data-driven models: methodology and case studies in Andean watersheds
  publication-title: J. Hydrol. Reg. Stud.
– volume: 28
  start-page: 65752
  year: 2021
  end-page: 65768
  ident: bib34
  article-title: Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models
  publication-title: Environ. Sci. Pollut. Res.
– volume: 133
  start-page: 1
  year: 2018
  end-page: 18
  ident: bib48
  article-title: Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative
  publication-title: Eur. Phys. J. Plus
– volume: 14
  start-page: 259
  year: 2022
  ident: bib1
  article-title: Mathematical and machine learning models for groundwater level changes: a systematic review and bibliographic analysis
  publication-title: Future Internet
– volume: 12
  start-page: 566
  year: 2022
  end-page: 573
  ident: bib30
  article-title: South Asian agriculture increasingly dependent on meltwater and groundwater
  publication-title: Nat. Clim. Change
– volume: 135
  start-page: 17
  year: 2009
  end-page: 24
  ident: bib39
  article-title: GA-QP model to optimize sewer system design
  publication-title: J. Environ. Eng.
– volume: 5
  start-page: 105
  year: 2005
  end-page: 111
  ident: bib19
  article-title: Conceptualization and implementation of a regional groundwater model for the Neckar catchment in the framework of an integrated regional model
  publication-title: Adv. Geosci.
– volume: 2
  start-page: 81
  year: 2022
  ident: bib44
  article-title: Why black box machine learning should be avoided for high-stakes decisions, in brief
  publication-title: Nature Reviews Methods Primers
– volume: 290
  year: 2021
  ident: bib56
  article-title: Turbidity prediction of lake-type raw water using random forest model based on meteorological data: a case study of Tai lake, China
  publication-title: J. Environ. Manag.
– volume: 45
  start-page: 1154
  year: 2004
  end-page: 1166
  ident: bib29
  article-title: Characterization of land subsidence in the Choshui River alluvial fan, Taiwan
  publication-title: Environ. Geol.
– volume: 289
  year: 2021
  ident: bib31
  article-title: Estimating environmental vulnerability in the Cerrado with machine learning and Twitter data
  publication-title: J. Environ. Manag.
– volume: 53
  start-page: 7599
  year: 2023
  end-page: 7613
  ident: bib20
  article-title: Exploiting PSO-SVM and sample entropy in BEMD for the prediction of interval-valued time series and its application to daily PM2. 5 concentration forecasting
  publication-title: Appl. Intell.
– volume: 14
  start-page: 1494
  year: 2022
  ident: bib9
  article-title: Evaluation of the groundwater and Irrigation quality in the Zhuoshui river alluvial fan between wet and dry seasons
  publication-title: Water
– volume: 2016
  year: 2016
  ident: bib52
  article-title: Stacked denoise autoencoder based feature extraction and classification for hyperspectral images
  publication-title: J. Sens.
– volume: 7
  start-page: 75
  year: 2020
  ident: bib3
  article-title: A new physically-based spatially-distributed groundwater flow module for SWAT+
  publication-title: Hydrology
– volume: 14
  start-page: 1371
  year: 2022
  ident: bib18
  article-title: A system dynamics approach to modeling groundwater dynamics: case study of the Choshui River Basin
  publication-title: Sustainability
– volume: 38
  year: 2002
  ident: bib41
  article-title: Transport modeling applied to the interpretation of groundwater 36Cl age
  publication-title: Water Resour. Res.
– volume: 141
  year: 2020
  ident: bib42
  article-title: Multiscale groundwater level forecasting: coupling new machine learning approaches with wavelet transforms
  publication-title: Adv. Water Resour.
– volume: 12
  start-page: 365
  year: 2014
  end-page: 377
  ident: bib6
  article-title: Investigating the interactive mechanisms between surface water and groundwater over the Jhuoshuei river basin in central Taiwan
  publication-title: Paddy Water Environ.
– year: 2023
  ident: bib51
  article-title: Jhuoshuei River Basin Water Demand
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: bib54
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
– volume: 332
  year: 2023
  ident: bib16
  article-title: Quantifying the groundwater total contamination risk using an inclusive multi-level modelling strategy
  publication-title: J. Environ. Manag.
– volume: 556
  start-page: 131
  year: 2018
  end-page: 142
  ident: bib11
  article-title: Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps
  publication-title: J. Hydrol.
– year: 2023
  ident: bib36
  article-title: What does the government do to prevent and control ground subsidence at this stage?
– volume: 144
  year: 2022
  ident: bib26
  article-title: A comparison between deep learning and support vector regression techniques applied to solar forecast in Spain
  publication-title: J. Sol. Energy Eng.
– volume: 210
  year: 2022
  ident: bib24
  article-title: Integrate deep learning and physically-based models for multi-step-ahead microclimate forecasting
  publication-title: Expert Syst. Appl.
– volume: 598
  year: 2021
  ident: bib22
  article-title: Fusing stacked autoencoder and long short-term memory for regional multistep-ahead flood inundation forecasts
  publication-title: J. Hydrol.
– volume: 11
  start-page: 1554
  year: 2019
  ident: bib2
  article-title: Modeling and investigating the mechanisms of groundwater level variation in the Jhuoshui River Basin of central Taiwan
  publication-title: Water
– volume: 2018
  start-page: 253
  year: 2018
  end-page: 257
  ident: bib13
  article-title: Deep convolutional autoencoder-based lossy image compression
  publication-title: PCS
– volume: 118
  year: 2020
  ident: bib49
  article-title: A novel smart meter data compression method via stacked convolutional sparse auto-encoder
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 443
  year: 1995
  end-page: 476
  ident: bib5
  article-title: The HBV model
  publication-title: Computer models of watershed hydrology
– start-page: 1
  year: 2021
  end-page: 20
  ident: bib35
  article-title: Long-term time-series pollution forecast using statistical and deep learning methods
  publication-title: Neural Comput. Appl.
– volume: 29
  start-page: 3843
  year: 2022
  end-page: 3859
  ident: bib38
  article-title: Past, present and perspective methodology for groundwater modeling-based machine learning approaches
  publication-title: Arch. Comput. Methods Eng.
– volume: 53
  start-page: 3878
  year: 2017
  end-page: 3895
  ident: bib45
  article-title: Machine learning algorithms for modeling groundwater level changes in agricultural regions of the
  publication-title: U.S. Water Resour. Res
– start-page: 1274
  year: 2017
  end-page: 1283
  ident: bib47
  article-title: Mofa: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– volume: 225
  year: 2021
  ident: bib25
  article-title: Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA)
  publication-title: Energy
– volume: 2018
  start-page: 253
  year: 2018
  ident: 10.1016/j.jenvman.2023.119789_bib13
  article-title: Deep convolutional autoencoder-based lossy image compression
  publication-title: PCS
– volume: 139
  start-page: 84
  year: 2014
  ident: 10.1016/j.jenvman.2023.119789_bib28
  article-title: Autoencoder for words
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.055
– volume: 53
  start-page: 3878
  year: 2017
  ident: 10.1016/j.jenvman.2023.119789_bib45
  article-title: Machine learning algorithms for modeling groundwater level changes in agricultural regions of the
  publication-title: U.S. Water Resour. Res
  doi: 10.1002/2016WR019933
– volume: 7
  start-page: 75
  issue: 4
  year: 2020
  ident: 10.1016/j.jenvman.2023.119789_bib3
  article-title: A new physically-based spatially-distributed groundwater flow module for SWAT+
  publication-title: Hydrology
  doi: 10.3390/hydrology7040075
– volume: 12
  start-page: 365
  year: 2014
  ident: 10.1016/j.jenvman.2023.119789_bib6
  article-title: Investigating the interactive mechanisms between surface water and groundwater over the Jhuoshuei river basin in central Taiwan
  publication-title: Paddy Water Environ.
  doi: 10.1007/s10333-013-0391-1
– volume: 324
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib55
  article-title: Influence of cascade reservoir operation in the Upper Mekong River on the general hydrological regime: a combined data-driven modeling approach
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.116339
– start-page: 1
  year: 2021
  ident: 10.1016/j.jenvman.2023.119789_bib35
  article-title: Long-term time-series pollution forecast using statistical and deep learning methods
  publication-title: Neural Comput. Appl.
– volume: 598
  year: 2021
  ident: 10.1016/j.jenvman.2023.119789_bib37
  article-title: Embedding machine learning techniques into a conceptual model to improve monthly runoff simulation: a nested hybrid rainfall-runoff modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126433
– volume: 602
  year: 2021
  ident: 10.1016/j.jenvman.2023.119789_bib53
  article-title: Comparison of physical and data-driven models to forecast groundwater level changes with the inclusion of GRACE–A case study over the state of Victoria, Australia
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126735
– volume: 307
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib23
  article-title: Real-time image-based air quality estimation by deep learning neural networks
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.114560
– volume: 20
  start-page: 69
  issue: 1
  year: 2018
  ident: 10.1016/j.jenvman.2023.119789_bib43
  article-title: Improving capability of conceptual modeling of watershed rainfall–runoff using hybrid wavelet-extreme learning machine approach
  publication-title: J. Hydroinf.
  doi: 10.2166/hydro.2017.011
– volume: 135
  start-page: 17
  issue: 1
  year: 2009
  ident: 10.1016/j.jenvman.2023.119789_bib39
  article-title: GA-QP model to optimize sewer system design
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2009)135:1(17)
– volume: 2016
  year: 2016
  ident: 10.1016/j.jenvman.2023.119789_bib52
  article-title: Stacked denoise autoencoder based feature extraction and classification for hyperspectral images
  publication-title: J. Sens.
  doi: 10.1155/2016/3632943
– volume: 541
  start-page: 965
  year: 2016
  ident: 10.1016/j.jenvman.2023.119789_bib7
  article-title: Prediction of monthly regional groundwater levels through hybrid soft-computing techniques
  publication-title: J. Hydrol
  doi: 10.1016/j.jhydrol.2016.08.006
– volume: 14
  start-page: 259
  issue: 9
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib1
  article-title: Mathematical and machine learning models for groundwater level changes: a systematic review and bibliographic analysis
  publication-title: Future Internet
  doi: 10.3390/fi14090259
– volume: 598
  start-page: 828
  year: 2017
  ident: 10.1016/j.jenvman.2023.119789_bib8
  article-title: Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.04.142
– volume: 38
  issue: 5
  year: 2002
  ident: 10.1016/j.jenvman.2023.119789_bib41
  article-title: Transport modeling applied to the interpretation of groundwater 36Cl age
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR000399
– volume: 53
  start-page: 7599
  issue: 7
  year: 2023
  ident: 10.1016/j.jenvman.2023.119789_bib20
  article-title: Exploiting PSO-SVM and sample entropy in BEMD for the prediction of interval-valued time series and its application to daily PM2. 5 concentration forecasting
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03835-3
– volume: 29
  start-page: 3843
  issue: 6
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib38
  article-title: Past, present and perspective methodology for groundwater modeling-based machine learning approaches
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-022-09715-w
– volume: 556
  start-page: 131
  year: 2018
  ident: 10.1016/j.jenvman.2023.119789_bib11
  article-title: Exploring the spatio-temporal interrelation between groundwater and surface water by using the self-organizing maps
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.10.015
– volume: 339
  year: 2023
  ident: 10.1016/j.jenvman.2023.119789_bib12
  article-title: Environmental impact assessment of multi-source solid waste based on a life cycle assessment, principal component analysis, and random forest algorithm
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.117942
– start-page: 1705
  year: 2019
  ident: 10.1016/j.jenvman.2023.119789_bib17
  article-title: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– volume: 118
  year: 2020
  ident: 10.1016/j.jenvman.2023.119789_bib49
  article-title: A novel smart meter data compression method via stacked convolutional sparse auto-encoder
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.105761
– volume: 27
  year: 2020
  ident: 10.1016/j.jenvman.2023.119789_bib15
  article-title: A hybrid neural network-based technique to improve the flow forecasting of physical and data-driven models: methodology and case studies in Andean watersheds
  publication-title: J. Hydrol. Reg. Stud.
– start-page: 1274
  year: 2017
  ident: 10.1016/j.jenvman.2023.119789_bib47
  article-title: Mofa: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– volume: 209
  start-page: 134
  year: 2019
  ident: 10.1016/j.jenvman.2023.119789_bib58
  article-title: Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.10.243
– volume: vol. 1088
  year: 2007
  ident: 10.1016/j.jenvman.2023.119789_bib32
– volume: 210
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib24
  article-title: Integrate deep learning and physically-based models for multi-step-ahead microclimate forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118481
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 10.1016/j.jenvman.2023.119789_bib54
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 332
  year: 2023
  ident: 10.1016/j.jenvman.2023.119789_bib16
  article-title: Quantifying the groundwater total contamination risk using an inclusive multi-level modelling strategy
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.117287
– volume: 225
  year: 2021
  ident: 10.1016/j.jenvman.2023.119789_bib25
  article-title: Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA)
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120331
– year: 2023
  ident: 10.1016/j.jenvman.2023.119789_bib51
– volume: 14
  start-page: 1494
  issue: 9
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib9
  article-title: Evaluation of the groundwater and Irrigation quality in the Zhuoshui river alluvial fan between wet and dry seasons
  publication-title: Water
  doi: 10.3390/w14091494
– volume: 144
  issue: 1
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib26
  article-title: A comparison between deep learning and support vector regression techniques applied to solar forecast in Spain
  publication-title: J. Sol. Energy Eng.
  doi: 10.1115/1.4051949
– volume: 12
  start-page: 8932
  issue: 21
  year: 2020
  ident: 10.1016/j.jenvman.2023.119789_bib40
  article-title: Artificial neural network optimized with a genetic algorithm for seasonal groundwater table depth prediction in Uttar Pradesh, India
  publication-title: Sustainability
  doi: 10.3390/su12218932
– volume: 28
  start-page: 65752
  year: 2021
  ident: 10.1016/j.jenvman.2023.119789_bib34
  article-title: Improving streamflow simulation by combining hydrological process-driven and artificial intelligence-based models
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-15563-1
– volume: 14
  start-page: 1371
  issue: 3
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib18
  article-title: A system dynamics approach to modeling groundwater dynamics: case study of the Choshui River Basin
  publication-title: Sustainability
  doi: 10.3390/su14031371
– volume: 290
  year: 2021
  ident: 10.1016/j.jenvman.2023.119789_bib56
  article-title: Turbidity prediction of lake-type raw water using random forest model based on meteorological data: a case study of Tai lake, China
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112657
– volume: 133
  start-page: 1
  year: 2018
  ident: 10.1016/j.jenvman.2023.119789_bib48
  article-title: Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2018-12120-1
– start-page: 443
  year: 1995
  ident: 10.1016/j.jenvman.2023.119789_bib5
  article-title: The HBV model
  publication-title: Computer models of watershed hydrology
– volume: 489
  start-page: 271
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib46
  article-title: Groundwater level prediction using machine learning models: a comprehensive review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.03.014
– volume: 125
  issue: 17
  year: 2020
  ident: 10.1016/j.jenvman.2023.119789_bib4
  article-title: Global fully distributed parameter regionalization based on observed streamflow from 4,229 headwater catchments
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2019JD031485
– volume: 2
  start-page: 81
  issue: 1
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib44
  article-title: Why black box machine learning should be avoided for high-stakes decisions, in brief
  publication-title: Nature Reviews Methods Primers
  doi: 10.1038/s43586-022-00172-0
– volume: 598
  year: 2021
  ident: 10.1016/j.jenvman.2023.119789_bib22
  article-title: Fusing stacked autoencoder and long short-term memory for regional multistep-ahead flood inundation forecasts
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126371
– volume: 12
  start-page: 566
  issue: 6
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib30
  article-title: South Asian agriculture increasingly dependent on meltwater and groundwater
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-022-01355-z
– volume: 28
  start-page: 153
  issue: 3
  year: 1997
  ident: 10.1016/j.jenvman.2023.119789_bib27
  article-title: A simple automatic calibration routine for the HBV model
  publication-title: Hydrol. Res.
  doi: 10.2166/nh.1997.0009
– volume: 330
  year: 2023
  ident: 10.1016/j.jenvman.2023.119789_bib33
  article-title: Transfer performance of gated recurrent unit model for runoff prediction based on the comprehensive spatiotemporal similarity of catchments
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.117182
– volume: 141
  year: 2020
  ident: 10.1016/j.jenvman.2023.119789_bib42
  article-title: Multiscale groundwater level forecasting: coupling new machine learning approaches with wavelet transforms
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103595
– volume: 11
  start-page: 1554
  issue: 8
  year: 2019
  ident: 10.1016/j.jenvman.2023.119789_bib2
  article-title: Modeling and investigating the mechanisms of groundwater level variation in the Jhuoshui River Basin of central Taiwan
  publication-title: Water
  doi: 10.3390/w11081554
– volume: 45
  start-page: 1154
  year: 2004
  ident: 10.1016/j.jenvman.2023.119789_bib29
  article-title: Characterization of land subsidence in the Choshui River alluvial fan, Taiwan
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-004-0983-6
– volume: 5
  start-page: 105
  year: 2005
  ident: 10.1016/j.jenvman.2023.119789_bib19
  article-title: Conceptualization and implementation of a regional groundwater model for the Neckar catchment in the framework of an integrated regional model
  publication-title: Adv. Geosci.
  doi: 10.5194/adgeo-5-105-2005
– volume: 583
  year: 2020
  ident: 10.1016/j.jenvman.2023.119789_bib21
  article-title: Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124631
– volume: 115
  start-page: 122
  issue: 1–2
  year: 2010
  ident: 10.1016/j.jenvman.2023.119789_bib10
  article-title: Correlation between groundwater level and altitude variations in land subsidence area of the Choshuichi Alluvial Fan, Taiwan
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2010.05.011
– volume: 289
  year: 2021
  ident: 10.1016/j.jenvman.2023.119789_bib31
  article-title: Estimating environmental vulnerability in the Cerrado with machine learning and Twitter data
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112502
– volume: 295
  year: 2021
  ident: 10.1016/j.jenvman.2023.119789_bib57
  article-title: Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.113060
– volume: 14
  start-page: 2307
  issue: 15
  year: 2022
  ident: 10.1016/j.jenvman.2023.119789_bib14
  article-title: Improving results of existing groundwater numerical models using machine learning techniques: a review
  publication-title: Water
  doi: 10.3390/w14152307
SSID ssj0003217
Score 2.4882243
Snippet The development of deep learning-based groundwater level forecast models can tackle the challenge of high dimensional groundwater dynamics, predict groundwater...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119789
SubjectTerms case studies
Convolutional neural network (CNN)
data collection
Deep learning
environmental management
groundwater
Groundwater level forecast
HBV-Light model
Long short-term memory neural network (LSTM)
neural networks
Taiwan
water management
water table
watersheds
Title Watershed groundwater level multistep ahead forecasts by fusing convolutional-based autoencoder and LSTM models
URI https://dx.doi.org/10.1016/j.jenvman.2023.119789
https://www.ncbi.nlm.nih.gov/pubmed/38100860
https://www.proquest.com/docview/2902967227
https://www.proquest.com/docview/3040482220
Volume 351
WOSCitedRecordID wos001160228600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DQleEAw2ymUyEm9VSuakvjxOVRGXMk1aYd1T5MSu1qpKq6Up499zTpykEVs1QOIlaq26dfp9OT7n-FwIeedrHmgjwFINdOCFobKeSoTwLItjoyyzrChf_H0oTk_leKzOWq11lQuznos0lTc3avlfoYYxABtTZ_8C7vpLYQBeA-hwBdjh-kfAX2gsmHkFiiRmbKTmB77vzDE4yIUPAq7LjgYhbDDG0CY6W2WohU7yMgM3XZcL1HMPdznT0flqgRUvsfAEetqH56OvrolOtkW7bSTQYX7KrSCbL-5M6Sz3LvNNVNB0kRe0mmrvcro5ryok44WtR_qVl3s49fpX07zpumBhFe1c-dOqnJpNAFORx-Ufo79PNGV04KrS3pL3zvUw687gruBWutgMvosno64v0W-ltM8LA1JgozVQ9YQY75A9JnoKBPreyafB-HO9hwes6NVcr2WT-_X-zh_bptVss1oK7WX0hDwugaEnji5PScum--RhlZWe7ZODQRMwWor87BlZ1HyiDT7Rgk-05hMt-ERrPtH4J3V8onfwiTb4RIFPFPlEHZ-ek28fBqP-R6_s0uElgZIrz4ZGhsxqFfJJHPqGx4GMGZdc6NgkExXK5NgoP5Em0WICJr_sWdvjRvfYxPosDg7IbrpI7QtCbYAF57jlCdjJYEhpbmOuQYMGHGzIe20SVv9ylJQl7LGTyjyqYhVnUQlOhOBEDpw26dbTlq6Gy30TZAVhVCqiTsGMgHf3TX1bQR6BoMbTN53aRZ5FTPlMccGY2P6ZALbUEFV2v00OHV_qFWMpPl9y_-W_L-4VebR5DF-T3dV1bt-QB8kaqHJ9RHbEWB6VT8Iv3ZjW8g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Watershed+groundwater+level+multistep+ahead+forecasts+by+fusing+convolutional-based+autoencoder+and+LSTM+models&rft.jtitle=Journal+of+environmental+management&rft.au=Kow%2C+Pu-Yun&rft.au=Liou%2C+Jia-Yi&rft.au=Sun%2C+Wei&rft.au=Chang%2C+Li-Chiu&rft.date=2024-02-01&rft.pub=Elsevier+Ltd&rft.issn=0301-4797&rft.volume=351&rft_id=info:doi/10.1016%2Fj.jenvman.2023.119789&rft.externalDocID=S030147972302577X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon