Synthetic Lung Ultrasound Data Generation Using Autoencoder With Generative Adversarial Network

Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 72; no. 5; pp. 624 - 635
Main Authors: Fatima, Noreen, Mento, Federico, Afrakhteh, Sajjad, Perrone, Tiziano, Smargiassi, Andrea, Inchingolo, Riccardo, Demi, Libertario
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0885-3010, 1525-8955, 1525-8955
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome these limitations, this study introduces a novel supervised autoencoder generative adversarial network (SA-GAN) for data augmentation, leveraging advanced generative artificial intelligence (AI) to create high-quality synthetic samples for minority classes. In addition, the traditional data augmentation technique is used for comparison. The SA-GAN incorporates an autoencoder to develop a conditional latent space, effectively addressing weight clipping issues and ensuring higher quality synthetic data. The generated samples are evaluated using similarity metrics and expert analysis to validate their utility. Furthermore, state-of-the-art neural networks are used for multiclass classification, and their performance is compared when trained with GAN-based augmentation versus traditional data augmentation techniques. These contributions enhance the robustness and reliability of AI models in mitigating class imbalance in LUS analysis.
AbstractList Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome these limitations, this study introduces a novel supervised autoencoder generative adversarial network (SA-GAN) for data augmentation, leveraging advanced generative artificial intelligence (AI) to create high-quality synthetic samples for minority classes. In addition, the traditional data augmentation technique is used for comparison. The SA-GAN incorporates an autoencoder to develop a conditional latent space, effectively addressing weight clipping issues and ensuring higher quality synthetic data. The generated samples are evaluated using similarity metrics and expert analysis to validate their utility. Furthermore, state-of-the-art neural networks are used for multiclass classification, and their performance is compared when trained with GAN-based augmentation versus traditional data augmentation techniques. These contributions enhance the robustness and reliability of AI models in mitigating class imbalance in LUS analysis.
Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome these limitations, this study introduces a novel supervised autoencoder generative adversarial network (SA-GAN) for data augmentation, leveraging advanced generative AI to create high-quality synthetic samples for minority classes. Additionally, the traditional data augmentation technique is employed for comparison. The SA-GAN incorporates an autoencoder to develop a conditional latent space, effectively addressing weight clipping issues and ensuring higher-quality synthetic data. The generated samples are evaluated using similarity metrics and expert analysis to validate their utility. Furthermore, state-of-the-art neural networks are employed for multi-class classification, and their performance is compared when trained with GAN-based augmentation versus traditional data augmentation techniques. These contributions enhance the robustness and reliability of AI models in mitigating class imbalance in LUS analysis.Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome these limitations, this study introduces a novel supervised autoencoder generative adversarial network (SA-GAN) for data augmentation, leveraging advanced generative AI to create high-quality synthetic samples for minority classes. Additionally, the traditional data augmentation technique is employed for comparison. The SA-GAN incorporates an autoencoder to develop a conditional latent space, effectively addressing weight clipping issues and ensuring higher-quality synthetic data. The generated samples are evaluated using similarity metrics and expert analysis to validate their utility. Furthermore, state-of-the-art neural networks are employed for multi-class classification, and their performance is compared when trained with GAN-based augmentation versus traditional data augmentation techniques. These contributions enhance the robustness and reliability of AI models in mitigating class imbalance in LUS analysis.
Author Afrakhteh, Sajjad
Demi, Libertario
Smargiassi, Andrea
Fatima, Noreen
Perrone, Tiziano
Inchingolo, Riccardo
Mento, Federico
Author_xml – sequence: 1
  givenname: Noreen
  orcidid: 0000-0001-9880-9024
  surname: Fatima
  fullname: Fatima, Noreen
  organization: Department of Information Engineering and Computer Science, Ultrasound Laboratory Trento (ULTRa), University of Trento, Trento, Italy
– sequence: 2
  givenname: Federico
  orcidid: 0000-0002-6571-7809
  surname: Mento
  fullname: Mento, Federico
  organization: Department of Information Engineering and Computer Science, Ultrasound Laboratory Trento (ULTRa), University of Trento, Trento, Italy
– sequence: 3
  givenname: Sajjad
  orcidid: 0000-0002-4184-9436
  surname: Afrakhteh
  fullname: Afrakhteh, Sajjad
  organization: Department of Information Engineering and Computer Science, Ultrasound Laboratory Trento (ULTRa), University of Trento, Trento, Italy
– sequence: 4
  givenname: Tiziano
  orcidid: 0000-0001-8268-3121
  surname: Perrone
  fullname: Perrone, Tiziano
  organization: Dipartimento di Emergenza ed Urgenza, Humanitas Gavazzeni Bergamo, Bergamo, Italy
– sequence: 5
  givenname: Andrea
  orcidid: 0000-0003-0637-7282
  surname: Smargiassi
  fullname: Smargiassi, Andrea
  organization: Department of Medical and Surgical Sciences, Pulmonary Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
– sequence: 6
  givenname: Riccardo
  orcidid: 0000-0003-2843-9966
  surname: Inchingolo
  fullname: Inchingolo, Riccardo
  organization: Department of Medical and Surgical Sciences, Pulmonary Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
– sequence: 7
  givenname: Libertario
  orcidid: 0000-0002-0635-2133
  surname: Demi
  fullname: Demi, Libertario
  email: libertario.demi@unitn.it
  organization: Department of Information Engineering and Computer Science, Ultrasound Laboratory Trento (ULTRa), University of Trento, Trento, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40146656$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEUhS1URNPCH0AIjcSGzQS_Yy-jlBSkCBY0YmndzNxQl4ldbE9R_z1uEirUBfLievGd-zjnjJyEGJCQ14xOGaP2w9V6uVxMOeVqKpRSUs6ekQlTXLXGKnVCJtQY1QrK6Ck5y_mGUial5S_Iqaw_rZWeEPftPpRrLL5rVmP40ayHkiDHMfTNBRRoLjFgguJjaNbZV2A-loihiz2m5rsv14_EHTbz_g5ThuRhaL5g-R3Tz5fk-RaGjK-O9Zyslx-vFp_a1dfLz4v5qu2ENaVFyXq65QCWSQsMmDViU4_Q1lLTY8eh51ZvtowJbRA09BLUhlGpwVptrDgn7w99b1P8NWIubudzh8MAAeOYnWCGy9lsJmhF3z1Bb-KYQt3OCU6ZEVruqbdHatzssHe3ye8g3bu_1lWAH4AuxZwTbh8RRt1DPm6fj3vIxx3zqSLzRNT5sre32u6H_0vfHKQeEf-ZZaXg9f0BXvKcyA
CODEN ITUCER
CitedBy_id crossref_primary_10_1371_journal_pone_0327546
Cites_doi 10.1109/TITS.2022.3207798
10.1016/j.ultras.2023.106994
10.1016/j.eng.2018.11.020
10.1109/TNNLS.2023.3239033
10.1142/S0219622022500791
10.1007/978-3-540-27868-9_88
10.1109/ACCESS.2018.2865249
10.1002/jum.15285
10.1109/IUS51837.2023.10307947
10.1007/s11042-022-13476-w
10.1016/j.neucom.2018.09.013
10.1007/978-3-319-66179-7_48
10.1109/ICASSP.2018.8461430
10.1109/TMI.2020.2994459
10.1109/IRI49571.2020.00012
10.3390/rs11243040
10.1007/978-3-030-59722-1_64
10.1007/978-3-319-59050-9_12
10.1002/jum.16088
10.1016/j.media.2022.102461
10.3390/v14030612
10.1016/j.neunet.2018.07.011
10.1016/j.cmpb.2021.106018
10.1016/j.eswa.2021.114582
10.1109/TELFOR52709.2021.9653392
10.1007/s00521-021-06163-8
10.1504/IJCSE.2020.106866
10.1080/09720529.2020.1728895
10.1109/ACCESS.2019.2907728
10.1002/jum.16052
10.1016/B978-0-12-815739-8.00011-0
10.1186/s40537-021-00414-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SP
7U5
8FD
F28
FR3
L7M
7X8
DOI 10.1109/TUFFC.2025.3555447
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Solid State and Superconductivity Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1525-8955
EndPage 635
ExternalDocumentID 40146656
10_1109_TUFFC_2025_3555447
10943232
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Union, nor can the European Union be held responsible for them. Part of this work was also supported by a research grant provided in compliance with Mission 6/component 2/Investment: 2.1 “Strengthening and enhancing biomedical research in the National Health System (NHS)”, financed by the European Union- NextGenerationEU, CUP
  grantid: E63C22003260001
– fundername: European Union-NextGenerationEU, in the framework of the iNEST - Interconnected Nord-Est Innovation Ecosystem
  grantid: iNEST ECS00000043–CUP E63C22001030007
GroupedDBID ---
-~X
.GJ
0R~
186
29I
3EH
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
TWZ
UKR
VH1
ZXP
ZY4
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SP
7U5
8FD
F28
FR3
L7M
7X8
ID FETCH-LOGICAL-c398t-e41d0f2aa9149a1a1983b95569908dec2ad296bf11368ea6ad4a5b1046a996893
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001484011400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-3010
1525-8955
IngestDate Fri Oct 03 00:41:54 EDT 2025
Thu Nov 27 15:41:50 EST 2025
Sat May 31 02:14:03 EDT 2025
Sat Nov 29 07:55:57 EST 2025
Tue Nov 18 22:11:34 EST 2025
Wed Aug 27 01:53:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-e41d0f2aa9149a1a1983b95569908dec2ad296bf11368ea6ad4a5b1046a996893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0637-7282
0000-0002-4184-9436
0000-0003-2843-9966
0000-0002-0635-2133
0000-0001-9880-9024
0000-0002-6571-7809
0000-0001-8268-3121
OpenAccessLink https://ieeexplore.ieee.org/document/10943232
PMID 40146656
PQID 3201836430
PQPubID 85455
PageCount 12
ParticipantIDs crossref_primary_10_1109_TUFFC_2025_3555447
pubmed_primary_40146656
proquest_miscellaneous_3182477730
proquest_journals_3201836430
ieee_primary_10943232
crossref_citationtrail_10_1109_TUFFC_2025_3555447
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on ultrasonics, ferroelectrics, and frequency control
PublicationTitleAbbrev T-UFFC
PublicationTitleAlternate IEEE Trans Ultrason Ferroelectr Freq Control
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref14
ref31
ref30
ref33
ref32
Pinaya (ref19) 2020
ref2
ref1
ref17
ref16
ref18
Arbel (ref34); 32
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
Zhou (ref11)
ref4
ref3
ref6
ref5
Durgadevi (ref10)
References_xml – ident: ref26
  doi: 10.1109/TITS.2022.3207798
– ident: ref25
  doi: 10.1016/j.ultras.2023.106994
– ident: ref2
  doi: 10.1016/j.eng.2018.11.020
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref11
  article-title: Don’t let your discriminator be fooled
– ident: ref20
  doi: 10.1109/TNNLS.2023.3239033
– ident: ref27
  doi: 10.1142/S0219622022500791
– ident: ref7
  doi: 10.1007/978-3-540-27868-9_88
– ident: ref35
  doi: 10.1109/ACCESS.2018.2865249
– ident: ref4
  doi: 10.1002/jum.15285
– ident: ref33
  doi: 10.1109/IUS51837.2023.10307947
– ident: ref9
  doi: 10.1007/s11042-022-13476-w
– ident: ref12
  doi: 10.1016/j.neucom.2018.09.013
– ident: ref14
  doi: 10.1007/978-3-319-66179-7_48
– ident: ref15
  doi: 10.1109/ICASSP.2018.8461430
– ident: ref18
  doi: 10.1109/TMI.2020.2994459
– ident: ref32
  doi: 10.1109/IRI49571.2020.00012
– ident: ref8
  doi: 10.3390/rs11243040
– ident: ref28
  doi: 10.1007/978-3-030-59722-1_64
– volume: 32
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref34
  article-title: Maximum mean discrepancy gradient flow
– ident: ref13
  doi: 10.1007/978-3-319-59050-9_12
– ident: ref3
  doi: 10.1002/jum.16088
– ident: ref17
  doi: 10.1016/j.media.2022.102461
– ident: ref1
  doi: 10.3390/v14030612
– ident: ref6
  doi: 10.1016/j.neunet.2018.07.011
– ident: ref16
  doi: 10.1016/j.cmpb.2021.106018
– ident: ref22
  doi: 10.1016/j.eswa.2021.114582
– ident: ref31
  doi: 10.1109/TELFOR52709.2021.9653392
– ident: ref23
  doi: 10.1007/s00521-021-06163-8
– start-page: 1
  volume-title: Proc. 6th Int. Conf. Commun. Electron. Syst. (ICCES)
  ident: ref10
  article-title: Generative Adversarial Network (GAN): A general review on different variants of GAN and applications
– ident: ref21
  doi: 10.1504/IJCSE.2020.106866
– ident: ref24
  doi: 10.1080/09720529.2020.1728895
– ident: ref30
  doi: 10.1109/ACCESS.2019.2907728
– ident: ref5
  doi: 10.1002/jum.16052
– start-page: 193
  volume-title: Machine Learning
  year: 2020
  ident: ref19
  article-title: Autoencoders
  doi: 10.1016/B978-0-12-815739-8.00011-0
– ident: ref29
  doi: 10.1186/s40537-021-00414-0
SSID ssj0014492
Score 2.462805
Snippet Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 624
SubjectTerms Algorithms
Artificial intelligence
Autoencoder
Autoencoders
COVID-19
Data augmentation
deep convolutional (DC) discriminator
generative adversarial network (GAN)
Generative Adversarial Networks
Generative artificial intelligence
Hospitals
Humans
Image analysis
Image Processing, Computer-Assisted - methods
Kernel
Lung - diagnostic imaging
lung ultrasound (LUS)
Lungs
Medical imaging
multiclass classification
Neural networks
Neural Networks, Computer
Pneumonia
supervised autoencoder (SA)
Synthetic data
Training
Ultrasonic imaging
Ultrasonography - methods
Title Synthetic Lung Ultrasound Data Generation Using Autoencoder With Generative Adversarial Network
URI https://ieeexplore.ieee.org/document/10943232
https://www.ncbi.nlm.nih.gov/pubmed/40146656
https://www.proquest.com/docview/3201836430
https://www.proquest.com/docview/3182477730
Volume 72
WOSCitedRecordID wos001484011400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1525-8955
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014492
  issn: 0885-3010
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS-tAEB-0-OB58PtptcoK3h7xpclusnsUtXiQImixt7DJblCQ9NGkgv-9M7tp6EXBWyCTZMnMZH-T-fgBXIiEy1xJESiD8I2nZRlIJcNAJRwDEF4K46fr36fjsZxO1UPbrO56Yay1rvjMXtKhy-WbWbGgX2Xo4YrHCAHWYT1NU9-s1aUMOHcMyOg1IkCrDZcdMqH69zQZja4xFozEJW6vgnOi3uM0NiUh4uqVDckxrHwNNt2mM9r-4XJ3YKtFl-zKm8MurNlqDzZXZg7uwS9X81nU-5A9flQI_1CU3aPLs8lbM9c10SyxG91o5idSk-KYKyxgV4tmRnMvjZ2z59fmpZN4t8wRO9eazJmNfWn5AUxGt0_Xd0HLtxAUsZJNYPnQhGWktcKwSQ_1UMk4V0IkuGNJY4tIm0gleUk0MNLqRBuuRU5JYo1REwKfP9CrZpU9AoYgKY15FJo8SbnReY5RoEykiYs0xk-E7cNw-dKzoh1GTpwYb5kLSkKVOZ1lpLOs1Vkf_nbX_PejOL6VPiCNrEh6ZfRhsFRu1rprncUIg2SM4Czsw3l3Gh2Nsie6srMFymAkxtHsSObQG0V386UtHX_x0BP4TWvzhZID6DXzhT2FjeK9ea3nZ2jNU3nmrPkTcknrkg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5qVaoPVtuqZ2tdwTdJzY_dZPextD0qvR6Cd9i3ZZPdYKHkyiVX8L93ZjcX7qWCb4HMJiEzk_kmOzMfwBeRc1kqKSJlEb7xoq4jqWQcqZxjAsJrYcN0_UkxncqbG_Wjb1b3vTDOOV985k7o0O_l20W1ol9l6OGKZwgBnsBTwXmahHatYdOAc8-BjH4jIrTbeN0jE6tvs_l4fIbZYCpOMMDiYiLf4zQ4JSfq6o2Q5DlWHoebPuyMd__zgV_Dqx5fstNgEG9gyzV78HJj6uAePPdVn1W7D_rnnwYBIIqyCTo9m991S9MS0RI7N51hYSY1qY750gJ2uuoWNPnSuiX7ddv9HiQeHPPUzq0hg2bTUFx-APPxxezsMuoZF6IqU7KLHE9sXKfGKEycTGISJbNSCZFjzJLWVamxqcrLmohgpDO5sdyIkraJDeZNCH3ewnazaNx7YAiTioynsS3zgltTlpgHylzarCoy_Ei4ESTrl66rfhw5sWLcaZ-WxEp7nWnSme51NoKvw5r7MIzjn9IHpJENyaCMERytlat7h211hkBIZgjP4hF8Hk6jq9H-iWncYoUymIvxoihI5l0wiuHia1v68MhNP8HO5ex6oiffp1eH8IKeM5RNHsF2t1y5j_Cseuhu2-Wxt-m_TDnt8Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+Lung+Ultrasound+Data+Generation+Using+Autoencoder+with+Generative+Adversarial+Network&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Fatima%2C+Noreen&rft.au=Mento%2C+Federico&rft.au=Afrakhteh%2C+Sajjad&rft.au=Perrone%2C+Tiziano&rft.date=2025-05-01&rft.issn=1525-8955&rft.eissn=1525-8955&rft.volume=PP&rft_id=info:doi/10.1109%2FTUFFC.2025.3555447&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon