Synthetic Lung Ultrasound Data Generation Using Autoencoder With Generative Adversarial Network
Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome t...
Saved in:
| Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 72; no. 5; pp. 624 - 635 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.05.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0885-3010, 1525-8955, 1525-8955 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome these limitations, this study introduces a novel supervised autoencoder generative adversarial network (SA-GAN) for data augmentation, leveraging advanced generative artificial intelligence (AI) to create high-quality synthetic samples for minority classes. In addition, the traditional data augmentation technique is used for comparison. The SA-GAN incorporates an autoencoder to develop a conditional latent space, effectively addressing weight clipping issues and ensuring higher quality synthetic data. The generated samples are evaluated using similarity metrics and expert analysis to validate their utility. Furthermore, state-of-the-art neural networks are used for multiclass classification, and their performance is compared when trained with GAN-based augmentation versus traditional data augmentation techniques. These contributions enhance the robustness and reliability of AI models in mitigating class imbalance in LUS analysis. |
|---|---|
| AbstractList | Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome these limitations, this study introduces a novel supervised autoencoder generative adversarial network (SA-GAN) for data augmentation, leveraging advanced generative artificial intelligence (AI) to create high-quality synthetic samples for minority classes. In addition, the traditional data augmentation technique is used for comparison. The SA-GAN incorporates an autoencoder to develop a conditional latent space, effectively addressing weight clipping issues and ensuring higher quality synthetic data. The generated samples are evaluated using similarity metrics and expert analysis to validate their utility. Furthermore, state-of-the-art neural networks are used for multiclass classification, and their performance is compared when trained with GAN-based augmentation versus traditional data augmentation techniques. These contributions enhance the robustness and reliability of AI models in mitigating class imbalance in LUS analysis. Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome these limitations, this study introduces a novel supervised autoencoder generative adversarial network (SA-GAN) for data augmentation, leveraging advanced generative AI to create high-quality synthetic samples for minority classes. Additionally, the traditional data augmentation technique is employed for comparison. The SA-GAN incorporates an autoencoder to develop a conditional latent space, effectively addressing weight clipping issues and ensuring higher-quality synthetic data. The generated samples are evaluated using similarity metrics and expert analysis to validate their utility. Furthermore, state-of-the-art neural networks are employed for multi-class classification, and their performance is compared when trained with GAN-based augmentation versus traditional data augmentation techniques. These contributions enhance the robustness and reliability of AI models in mitigating class imbalance in LUS analysis.Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented. Traditional oversampling techniques, which simply duplicate original data, have limited effectiveness in addressing this issue. To overcome these limitations, this study introduces a novel supervised autoencoder generative adversarial network (SA-GAN) for data augmentation, leveraging advanced generative AI to create high-quality synthetic samples for minority classes. Additionally, the traditional data augmentation technique is employed for comparison. The SA-GAN incorporates an autoencoder to develop a conditional latent space, effectively addressing weight clipping issues and ensuring higher-quality synthetic data. The generated samples are evaluated using similarity metrics and expert analysis to validate their utility. Furthermore, state-of-the-art neural networks are employed for multi-class classification, and their performance is compared when trained with GAN-based augmentation versus traditional data augmentation techniques. These contributions enhance the robustness and reliability of AI models in mitigating class imbalance in LUS analysis. |
| Author | Afrakhteh, Sajjad Demi, Libertario Smargiassi, Andrea Fatima, Noreen Perrone, Tiziano Inchingolo, Riccardo Mento, Federico |
| Author_xml | – sequence: 1 givenname: Noreen orcidid: 0000-0001-9880-9024 surname: Fatima fullname: Fatima, Noreen organization: Department of Information Engineering and Computer Science, Ultrasound Laboratory Trento (ULTRa), University of Trento, Trento, Italy – sequence: 2 givenname: Federico orcidid: 0000-0002-6571-7809 surname: Mento fullname: Mento, Federico organization: Department of Information Engineering and Computer Science, Ultrasound Laboratory Trento (ULTRa), University of Trento, Trento, Italy – sequence: 3 givenname: Sajjad orcidid: 0000-0002-4184-9436 surname: Afrakhteh fullname: Afrakhteh, Sajjad organization: Department of Information Engineering and Computer Science, Ultrasound Laboratory Trento (ULTRa), University of Trento, Trento, Italy – sequence: 4 givenname: Tiziano orcidid: 0000-0001-8268-3121 surname: Perrone fullname: Perrone, Tiziano organization: Dipartimento di Emergenza ed Urgenza, Humanitas Gavazzeni Bergamo, Bergamo, Italy – sequence: 5 givenname: Andrea orcidid: 0000-0003-0637-7282 surname: Smargiassi fullname: Smargiassi, Andrea organization: Department of Medical and Surgical Sciences, Pulmonary Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy – sequence: 6 givenname: Riccardo orcidid: 0000-0003-2843-9966 surname: Inchingolo fullname: Inchingolo, Riccardo organization: Department of Medical and Surgical Sciences, Pulmonary Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy – sequence: 7 givenname: Libertario orcidid: 0000-0002-0635-2133 surname: Demi fullname: Demi, Libertario email: libertario.demi@unitn.it organization: Department of Information Engineering and Computer Science, Ultrasound Laboratory Trento (ULTRa), University of Trento, Trento, Italy |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40146656$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtvEzEUhS1URNPCH0AIjcSGzQS_Yy-jlBSkCBY0YmndzNxQl4ldbE9R_z1uEirUBfLievGd-zjnjJyEGJCQ14xOGaP2w9V6uVxMOeVqKpRSUs6ekQlTXLXGKnVCJtQY1QrK6Ck5y_mGUial5S_Iqaw_rZWeEPftPpRrLL5rVmP40ayHkiDHMfTNBRRoLjFgguJjaNbZV2A-loihiz2m5rsv14_EHTbz_g5ThuRhaL5g-R3Tz5fk-RaGjK-O9Zyslx-vFp_a1dfLz4v5qu2ENaVFyXq65QCWSQsMmDViU4_Q1lLTY8eh51ZvtowJbRA09BLUhlGpwVptrDgn7w99b1P8NWIubudzh8MAAeOYnWCGy9lsJmhF3z1Bb-KYQt3OCU6ZEVruqbdHatzssHe3ye8g3bu_1lWAH4AuxZwTbh8RRt1DPm6fj3vIxx3zqSLzRNT5sre32u6H_0vfHKQeEf-ZZaXg9f0BXvKcyA |
| CODEN | ITUCER |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0327546 |
| Cites_doi | 10.1109/TITS.2022.3207798 10.1016/j.ultras.2023.106994 10.1016/j.eng.2018.11.020 10.1109/TNNLS.2023.3239033 10.1142/S0219622022500791 10.1007/978-3-540-27868-9_88 10.1109/ACCESS.2018.2865249 10.1002/jum.15285 10.1109/IUS51837.2023.10307947 10.1007/s11042-022-13476-w 10.1016/j.neucom.2018.09.013 10.1007/978-3-319-66179-7_48 10.1109/ICASSP.2018.8461430 10.1109/TMI.2020.2994459 10.1109/IRI49571.2020.00012 10.3390/rs11243040 10.1007/978-3-030-59722-1_64 10.1007/978-3-319-59050-9_12 10.1002/jum.16088 10.1016/j.media.2022.102461 10.3390/v14030612 10.1016/j.neunet.2018.07.011 10.1016/j.cmpb.2021.106018 10.1016/j.eswa.2021.114582 10.1109/TELFOR52709.2021.9653392 10.1007/s00521-021-06163-8 10.1504/IJCSE.2020.106866 10.1080/09720529.2020.1728895 10.1109/ACCESS.2019.2907728 10.1002/jum.16052 10.1016/B978-0-12-815739-8.00011-0 10.1186/s40537-021-00414-0 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SP 7U5 8FD F28 FR3 L7M 7X8 |
| DOI | 10.1109/TUFFC.2025.3555447 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Solid State and Superconductivity Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1525-8955 |
| EndPage | 635 |
| ExternalDocumentID | 40146656 10_1109_TUFFC_2025_3555447 10943232 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: European Union, nor can the European Union be held responsible for them. Part of this work was also supported by a research grant provided in compliance with Mission 6/component 2/Investment: 2.1 “Strengthening and enhancing biomedical research in the National Health System (NHS)”, financed by the European Union- NextGenerationEU, CUP grantid: E63C22003260001 – fundername: European Union-NextGenerationEU, in the framework of the iNEST - Interconnected Nord-Est Innovation Ecosystem grantid: iNEST ECS00000043–CUP E63C22001030007 |
| GroupedDBID | --- -~X .GJ 0R~ 186 29I 3EH 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ UKR VH1 ZXP ZY4 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7SP 7U5 8FD F28 FR3 L7M 7X8 |
| ID | FETCH-LOGICAL-c398t-e41d0f2aa9149a1a1983b95569908dec2ad296bf11368ea6ad4a5b1046a996893 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001484011400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-3010 1525-8955 |
| IngestDate | Fri Oct 03 00:41:54 EDT 2025 Thu Nov 27 15:41:50 EST 2025 Sat May 31 02:14:03 EDT 2025 Sat Nov 29 07:55:57 EST 2025 Tue Nov 18 22:11:34 EST 2025 Wed Aug 27 01:53:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c398t-e41d0f2aa9149a1a1983b95569908dec2ad296bf11368ea6ad4a5b1046a996893 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0637-7282 0000-0002-4184-9436 0000-0003-2843-9966 0000-0002-0635-2133 0000-0001-9880-9024 0000-0002-6571-7809 0000-0001-8268-3121 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10943232 |
| PMID | 40146656 |
| PQID | 3201836430 |
| PQPubID | 85455 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TUFFC_2025_3555447 pubmed_primary_40146656 proquest_miscellaneous_3182477730 proquest_journals_3201836430 ieee_primary_10943232 crossref_citationtrail_10_1109_TUFFC_2025_3555447 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
| PublicationTitleAbbrev | T-UFFC |
| PublicationTitleAlternate | IEEE Trans Ultrason Ferroelectr Freq Control |
| PublicationYear | 2025 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 ref14 ref31 ref30 ref33 ref32 Pinaya (ref19) 2020 ref2 ref1 ref17 ref16 ref18 Arbel (ref34); 32 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 Zhou (ref11) ref4 ref3 ref6 ref5 Durgadevi (ref10) |
| References_xml | – ident: ref26 doi: 10.1109/TITS.2022.3207798 – ident: ref25 doi: 10.1016/j.ultras.2023.106994 – ident: ref2 doi: 10.1016/j.eng.2018.11.020 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref11 article-title: Don’t let your discriminator be fooled – ident: ref20 doi: 10.1109/TNNLS.2023.3239033 – ident: ref27 doi: 10.1142/S0219622022500791 – ident: ref7 doi: 10.1007/978-3-540-27868-9_88 – ident: ref35 doi: 10.1109/ACCESS.2018.2865249 – ident: ref4 doi: 10.1002/jum.15285 – ident: ref33 doi: 10.1109/IUS51837.2023.10307947 – ident: ref9 doi: 10.1007/s11042-022-13476-w – ident: ref12 doi: 10.1016/j.neucom.2018.09.013 – ident: ref14 doi: 10.1007/978-3-319-66179-7_48 – ident: ref15 doi: 10.1109/ICASSP.2018.8461430 – ident: ref18 doi: 10.1109/TMI.2020.2994459 – ident: ref32 doi: 10.1109/IRI49571.2020.00012 – ident: ref8 doi: 10.3390/rs11243040 – ident: ref28 doi: 10.1007/978-3-030-59722-1_64 – volume: 32 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref34 article-title: Maximum mean discrepancy gradient flow – ident: ref13 doi: 10.1007/978-3-319-59050-9_12 – ident: ref3 doi: 10.1002/jum.16088 – ident: ref17 doi: 10.1016/j.media.2022.102461 – ident: ref1 doi: 10.3390/v14030612 – ident: ref6 doi: 10.1016/j.neunet.2018.07.011 – ident: ref16 doi: 10.1016/j.cmpb.2021.106018 – ident: ref22 doi: 10.1016/j.eswa.2021.114582 – ident: ref31 doi: 10.1109/TELFOR52709.2021.9653392 – ident: ref23 doi: 10.1007/s00521-021-06163-8 – start-page: 1 volume-title: Proc. 6th Int. Conf. Commun. Electron. Syst. (ICCES) ident: ref10 article-title: Generative Adversarial Network (GAN): A general review on different variants of GAN and applications – ident: ref21 doi: 10.1504/IJCSE.2020.106866 – ident: ref24 doi: 10.1080/09720529.2020.1728895 – ident: ref30 doi: 10.1109/ACCESS.2019.2907728 – ident: ref5 doi: 10.1002/jum.16052 – start-page: 193 volume-title: Machine Learning year: 2020 ident: ref19 article-title: Autoencoders doi: 10.1016/B978-0-12-815739-8.00011-0 – ident: ref29 doi: 10.1186/s40537-021-00414-0 |
| SSID | ssj0014492 |
| Score | 2.462805 |
| Snippet | Class imbalance is a significant challenge in medical image analysis, particularly in lung ultrasound (LUS), where severe patterns are often underrepresented.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 624 |
| SubjectTerms | Algorithms Artificial intelligence Autoencoder Autoencoders COVID-19 Data augmentation deep convolutional (DC) discriminator generative adversarial network (GAN) Generative Adversarial Networks Generative artificial intelligence Hospitals Humans Image analysis Image Processing, Computer-Assisted - methods Kernel Lung - diagnostic imaging lung ultrasound (LUS) Lungs Medical imaging multiclass classification Neural networks Neural Networks, Computer Pneumonia supervised autoencoder (SA) Synthetic data Training Ultrasonic imaging Ultrasonography - methods |
| Title | Synthetic Lung Ultrasound Data Generation Using Autoencoder With Generative Adversarial Network |
| URI | https://ieeexplore.ieee.org/document/10943232 https://www.ncbi.nlm.nih.gov/pubmed/40146656 https://www.proquest.com/docview/3201836430 https://www.proquest.com/docview/3182477730 |
| Volume | 72 |
| WOSCitedRecordID | wos001484011400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1525-8955 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014492 issn: 0885-3010 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB-qtNA-WGttPauyhb6V2E12s8k-iu3RBzkEPXpvYT8mVJBcueQE_3tnN7lwLwp9C2TyQX4zzEzm4wfwjTvO0QmR1D63ibTeJNo7m6BSuhZFrbI6rsy_KmazcrHQ18OwepyFQcTYfIbn4TDW8v3SrcOvMrJwLQWFADuwUxRFP6w1lgykjAzIZDV5QlrLNxMyXP-4nU-nl5QLZvk5uddcykC9J8PaFBWIq7ccUmRYeT7YjE5n-v4_X3cf9obokl306vABXmFzAO-2dg4ewJvY8-naj1DdPDYU_pEouyKTZ_P7bmXaQLPEfprOsH4jdQCOxcYCdrHulmHvpccV-3PX_R0lHpBFYufWBHVms761_BDm01-3l7-TgW8hcUKXXYIy9bzOjNGUNpnUpLoUVue5Io9VenSZ8ZlWtg40MCUaZbw0uQ1FYkNZEwU-n2C3WTZ4BKzONNfO1MI6TbhIU9i0QC5diWiVVBNINx-9csMy8sCJcV_FpITrKmJWBcyqAbMJfB-v-dev4nhR-jAgsiXZgzGBkw241WCubSUoDCoFBWd8Al_H02RooXpiGlyuSYYyMUlqF2Q-90ox3nyjS8fPPPQLvA3v1jdKnsBut1rjKbx2D91duzojbV6UZ1GbnwCd4-33 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0KtUHP9qqp1VX8E1SN9nNJvtYqkfF8xC8w74tm90JFkquXHIF_3tnN7lwLxV8C2Q2WfKbYWcyHz-AD9xxjk6IpPZ5lcjK20R7VyWolK5FUausjiPzZ8V8Xl5c6B9Ds3rshUHEWHyGJ-Ey5vL9ym3CrzKycC0FuQB34V4uZZb27Vpj0kDKyIFMdpMnpLd82yPD9afFcjo9o2gwy0_ogKXFgXxPhsEpKlBX7xxJkWPldnczHjvTJ_-54afwePAv2WmvEM_gDjYH8Ghn6uABPIhVn649BPPzT0MOIImyGRk9W151a9sGoiX22XaW9TOpA3Qslhaw0023CpMvPa7Zr8vu9yhxgyxSO7c2KDSb98XlR7CcflmcnScD40LihC67BGXqeZ1ZqylwsqlNdSkqneeKzqzSo8usz7Sq6kAEU6JV1kubVyFNbCluItfnOew1qwZfAqszzbWztaicJlykLaq0QC5diVgpqSaQbj-6ccM48sCKcWViWMK1iZiZgJkZMJvAx3HNdT-M45_SRwGRHckejAkcb8E1g8G2RpAjVApyz_gE3o-3ydRC_sQ2uNqQDMVisiiKIPOiV4rx4VtdenXLS9_B_vni-8zMvs6_vYaHYZ992eQx7HXrDb6B--6mu2zXb6NO_wWJj_BW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthetic+Lung+Ultrasound+Data+Generation+Using+Autoencoder+With+Generative+Adversarial+Network&rft.jtitle=IEEE+transactions+on+ultrasonics%2C+ferroelectrics%2C+and+frequency+control&rft.au=Fatima%2C+Noreen&rft.au=Mento%2C+Federico&rft.au=Afrakhteh%2C+Sajjad&rft.au=Perrone%2C+Tiziano&rft.date=2025-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-3010&rft.eissn=1525-8955&rft.volume=72&rft.issue=11&rft.spage=624&rft.epage=635&rft_id=info:doi/10.1109%2FTUFFC.2025.3555447&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3010&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3010&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3010&client=summon |