Nonlinear boundary value problems relative to harmonic functions

We study the problem of finding a function u verifying −Δu=0 in Ω under the boundary condition ∂u∂n+g(u)=μ on ∂Ω where Ω⊂RN is a smooth domain, n is the normal unit outward vector to Ω, μ is a measure on ∂Ω and g a continuous nondecreasing function. We give sufficient condition on g for this problem...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Nonlinear analysis Ročník 201; s. 112090
Hlavní autori: Boukarabila, Y. Oussama, Véron, Laurent
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elmsford Elsevier Ltd 01.12.2020
Elsevier BV
Elsevier
Predmet:
ISSN:0362-546X, 1873-5215
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the problem of finding a function u verifying −Δu=0 in Ω under the boundary condition ∂u∂n+g(u)=μ on ∂Ω where Ω⊂RN is a smooth domain, n is the normal unit outward vector to Ω, μ is a measure on ∂Ω and g a continuous nondecreasing function. We give sufficient condition on g for this problem to be solvable for any measure. When g(r)=|r|p−1r, p>1, we give conditions in order an isolated singularity on ∂Ω to be removable. We also give capacitary conditions on a measure μ in order the problem with g(r)=|r|p−1r to be solvable for some μ. We also study the isolated singularities of functions satisfying −Δu=0inΩ and ∂u∂n+g(u)=0 on ∂Ω∖{0}.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2020.112090