Serial Decoders-Based Auto-Encoders for Image Reconstruction

Auto-encoders are composed of coding and decoding units; hence, they hold an inherent potential of being used for high-performance data compression and signal-compressed sensing. The main disadvantages of current auto-encoders comprise the following aspects: the research objective is not to achieve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 12; číslo 16; s. 8256
Hlavní autoři: Li, Honggui, Trocan, Maria, Sawan, Mohamad, Galayko, Dimitri
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.08.2022
Multidisciplinary digital publishing institute (MDPI)
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Auto-encoders are composed of coding and decoding units; hence, they hold an inherent potential of being used for high-performance data compression and signal-compressed sensing. The main disadvantages of current auto-encoders comprise the following aspects: the research objective is not to achieve lossless data reconstruction but efficient feature representation; the evaluation of data recovery performance is neglected; it is difficult to achieve lossless data reconstruction using pure auto-encoders, even with pure deep learning. This paper aims at performing image reconstruction using auto-encoders, employs cascade decoders-based auto-encoders, perfects the performance of image reconstruction, approaches gradually lossless image recovery, and provides a solid theoretical and applicational basis for auto-encoders-based image compression and compressed sensing. The proposed serial decoders-based auto-encoders include the architectures of multi-level decoders and their related progressive optimization sub-problems. The cascade decoders consist of general decoders, residual decoders, adversarial decoders, and their combinations. The effectiveness of residual cascade decoders for image reconstruction is proven in mathematics. Progressive training can efficiently enhance the quality, stability, and variation of image reconstruction. It has been shown by the experimental results that the proposed auto-encoders outperform classical auto-encoders in the performance of image reconstruction.
AbstractList Auto-encoders are composed of coding and decoding units; hence, they hold an inherent potential of being used for high-performance data compression and signal-compressed sensing. The main disadvantages of current auto-encoders comprise the following aspects: the research objective is not to achieve lossless data reconstruction but efficient feature representation; the evaluation of data recovery performance is neglected; it is difficult to achieve lossless data reconstruction using pure auto-encoders, even with pure deep learning. This paper aims at performing image reconstruction using auto-encoders, employs cascade decoders-based auto-encoders, perfects the performance of image reconstruction, approaches gradually lossless image recovery, and provides a solid theoretical and applicational basis for auto-encoders-based image compression and compressed sensing. The proposed serial decoders-based auto-encoders include the architectures of multi-level decoders and their related progressive optimization sub-problems. The cascade decoders consist of general decoders, residual decoders, adversarial decoders, and their combinations. The effectiveness of residual cascade decoders for image reconstruction is proven in mathematics. Progressive training can efficiently enhance the quality, stability, and variation of image reconstruction. It has been shown by the experimental results that the proposed auto-encoders outperform classical auto-encoders in the performance of image reconstruction.
Featured ApplicationThe proposed method can be utilized for highly efficient data compression, signal-compressed sensing, data restoration, etc.AbstractAuto-encoders are composed of coding and decoding units; hence, they hold an inherent potential of being used for high-performance data compression and signal-compressed sensing. The main disadvantages of current auto-encoders comprise the following aspects: the research objective is not to achieve lossless data reconstruction but efficient feature representation; the evaluation of data recovery performance is neglected; it is difficult to achieve lossless data reconstruction using pure auto-encoders, even with pure deep learning. This paper aims at performing image reconstruction using auto-encoders, employs cascade decoders-based auto-encoders, perfects the performance of image reconstruction, approaches gradually lossless image recovery, and provides a solid theoretical and applicational basis for auto-encoders-based image compression and compressed sensing. The proposed serial decoders-based auto-encoders include the architectures of multi-level decoders and their related progressive optimization sub-problems. The cascade decoders consist of general decoders, residual decoders, adversarial decoders, and their combinations. The effectiveness of residual cascade decoders for image reconstruction is proven in mathematics. Progressive training can efficiently enhance the quality, stability, and variation of image reconstruction. It has been shown by the experimental results that the proposed auto-encoders outperform classical auto-encoders in the performance of image reconstruction.
Author Trocan, Maria
Sawan, Mohamad
Galayko, Dimitri
Li, Honggui
Author_xml – sequence: 1
  givenname: Honggui
  orcidid: 0000-0002-6294-1581
  surname: Li
  fullname: Li, Honggui
– sequence: 2
  givenname: Maria
  surname: Trocan
  fullname: Trocan, Maria
– sequence: 3
  givenname: Mohamad
  surname: Sawan
  fullname: Sawan, Mohamad
– sequence: 4
  givenname: Dimitri
  surname: Galayko
  fullname: Galayko, Dimitri
BackLink https://hal.science/hal-04031141$$DView record in HAL
BookMark eNptkVtLxDAQhYMoeH3yDxR8EqnONG3Sgi_rfWFB8PIcpkmqXWqzJl3Bf2_WKqg4LzMcvjmcZLbZeu96y9g-wjHnFZzQYoEZijIrxBrbykCKlOco13_Mm2wvhDnEqpCXCFvs9N76lrrkwmpnrA_pGQVrkslycOllP2pJ43wyfaEnm9xFrA-DX-qhdf0u22ioC3bvq--wx6vLh_ObdHZ7PT2fzFLNq3JItYmRMmOFyCuBRIDEbWE5JyAZE9dAmqPMTSMrIlnrCsrGAI8jGBG5HTYdfY2juVr49oX8u3LUqk_B-SdFfmh1Z1WhtakAy1w3RW5FUXMjpDANz2tRS1NFr8PR65m6X1Y3k5laaZADR8zxDSN7MLIL716XNgxq7pa-j09VmQSBILNyReFIae9C8LZRuh1o9T-Dp7ZTCGp1H_XjPnHn6M_Od5T_6A_b6JBX
CitedBy_id crossref_primary_10_1002_dac_6140
crossref_primary_10_3390_rs15245739
crossref_primary_10_3390_app13105922
Cites_doi 10.1016/j.joes.2018.04.002
10.1109/ICCV.2019.00355
10.1088/2058-9565/aa8072
10.1109/JSEN.2018.2877360
10.1016/j.inffus.2017.10.006
10.1109/LSP.2017.2697970
10.1109/5.726791
10.1016/j.neucom.2017.09.093
10.1088/1741-2552/aae18d
10.1016/j.mri.2018.06.003
10.1109/ACCESS.2018.2830661
10.1109/ISBI48211.2021.9434062
10.1109/TBME.2016.2631620
10.1109/TIP.2018.2817044
10.1109/ICIP.2018.8451841
10.1109/MGRS.2018.2853555
10.1109/TSMC.2016.2637279
10.1016/j.neunet.2018.07.016
10.1109/ICECS.2018.8617908
10.1109/TNNLS.2018.2838679
10.1117/1.JEI.26.5.053016
10.1109/CVPR.2019.01126
10.1016/j.cogsys.2018.07.004
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
DOA
DOI 10.3390/app12168256
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_5ccd90184cf54e65b3d676df34b6b7d9
oai:HAL:hal-04031141v1
10_3390_app12168256
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
IPNFZ
RIG
ID FETCH-LOGICAL-c398t-cd2562de664961aa01a3e5e33a0a7216b0ac3174df79aa7bc908fd03a7b0d6e33
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846158600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:07:15 EDT 2025
Tue Oct 14 20:05:29 EDT 2025
Mon Jun 30 11:14:20 EDT 2025
Sat Nov 29 07:18:18 EST 2025
Tue Nov 18 21:08:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-cd2562de664961aa01a3e5e33a0a7216b0ac3174df79aa7bc908fd03a7b0d6e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6294-1581
0000-0002-7056-7489
OpenAccessLink https://doaj.org/article/5ccd90184cf54e65b3d676df34b6b7d9
PQID 2706107281
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_5ccd90184cf54e65b3d676df34b6b7d9
hal_primary_oai_HAL_hal_04031141v1
proquest_journals_2706107281
crossref_citationtrail_10_3390_app12168256
crossref_primary_10_3390_app12168256
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Multidisciplinary digital publishing institute (MDPI)
Publisher_xml – name: MDPI AG
– name: Multidisciplinary digital publishing institute (MDPI)
References LeCun (ref_29) 1998; 86
Angshul (ref_16) 2018; 106
Majid (ref_23) 2019; 19
ref_11
ref_10
ref_32
Angshul (ref_21) 2018; 52
ref_31
ref_30
Li (ref_25) 2018; 27
ref_18
ref_15
Cho (ref_24) 2018; 23
Grant (ref_2) 2018; 6
Li (ref_17) 2017; 26
Angshul (ref_6) 2019; 30
Yang (ref_22) 2018; 48
Dong (ref_3) 2018; 6
ref_28
ref_27
ref_26
Anupriya (ref_8) 2017; 64
ref_9
Zhang (ref_1) 2018; 42
Sun (ref_20) 2017; 24
Perera (ref_19) 2018; 3
Jonathan (ref_13) 2017; 2
ref_5
ref_4
Wu (ref_7) 2018; 15
Ozal (ref_12) 2018; 52
Han (ref_14) 2018; 275
References_xml – ident: ref_28
– volume: 3
  start-page: 133
  year: 2018
  ident: ref_19
  article-title: Ship performance and navigation data compression and communication under autoencoder system architecture
  publication-title: J. Ocean Eng. Sci.
  doi: 10.1016/j.joes.2018.04.002
– ident: ref_9
– ident: ref_30
– ident: ref_5
– ident: ref_10
  doi: 10.1109/ICCV.2019.00355
– volume: 2
  start-page: 045001
  year: 2017
  ident: ref_13
  article-title: Quantum autoencoders for efficient compression of quantum data
  publication-title: Quantum Sci. Technol.
  doi: 10.1088/2058-9565/aa8072
– ident: ref_11
– volume: 19
  start-page: 632
  year: 2019
  ident: ref_23
  article-title: A deep learning-based compression algorithm for 9-DOF inertial measurement unit signals along with an error compensating mechanism
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2877360
– volume: 42
  start-page: 146
  year: 2018
  ident: ref_1
  article-title: A survey on deep learning for big data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.006
– volume: 24
  start-page: 863
  year: 2017
  ident: ref_20
  article-title: Efficient compressed sensing for wireless neural recording: A deep learning approach
  publication-title: IEEE Signal Proc. Lett.
  doi: 10.1109/LSP.2017.2697970
– volume: 86
  start-page: 2278
  year: 1998
  ident: ref_29
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 275
  start-page: 1500
  year: 2018
  ident: ref_14
  article-title: A sparse autoencoder compressed sensing method for acquiring the pressure array information of clothing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.09.093
– volume: 15
  start-page: 066019
  year: 2018
  ident: ref_7
  article-title: Deep compressive autoencoder for action potential compression in large-scale neural recording
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aae18d
– volume: 52
  start-page: 62
  year: 2018
  ident: ref_21
  article-title: An autoencoder based formulation for compressed sensing reconstruction
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2018.06.003
– volume: 23
  start-page: 383
  year: 2018
  ident: ref_24
  article-title: A technical analysis on deep learning based image and video compression
  publication-title: J. Broadcast Eng.
– volume: 6
  start-page: 24411
  year: 2018
  ident: ref_2
  article-title: A survey of deep learning: Platforms, applications and emerging research trends
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2830661
– ident: ref_32
  doi: 10.1109/ISBI48211.2021.9434062
– volume: 64
  start-page: 2196
  year: 2017
  ident: ref_8
  article-title: Semi-supervised stacked label consistent autoencoder for reconstruction and analysis of biomedical signals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2631620
– volume: 27
  start-page: 3236
  year: 2018
  ident: ref_25
  article-title: Fully connected network-based intra prediction for image coding
  publication-title: IEEE Trans. Image Proc.
  doi: 10.1109/TIP.2018.2817044
– ident: ref_27
  doi: 10.1109/ICIP.2018.8451841
– volume: 6
  start-page: 44
  year: 2018
  ident: ref_3
  article-title: A Review of the autoencoder and its variants: A comparative perspective from target recognition in synthetic-aperture radar images
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2018.2853555
– ident: ref_4
– ident: ref_31
– volume: 48
  start-page: 1065
  year: 2018
  ident: ref_22
  article-title: Autoencoder with invertible functions for dimension reduction and image reconstruction
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2016.2637279
– ident: ref_15
– volume: 106
  start-page: 271
  year: 2018
  ident: ref_16
  article-title: Graph structured autoencoder
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.016
– ident: ref_18
  doi: 10.1109/ICECS.2018.8617908
– volume: 30
  start-page: 312
  year: 2019
  ident: ref_6
  article-title: Blind denoising autoencoder
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2838679
– volume: 26
  start-page: 053016
  year: 2017
  ident: ref_17
  article-title: Deep linear autoencoder and patch clustering based unified 1D coding of image and video
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.26.5.053016
– ident: ref_26
  doi: 10.1109/CVPR.2019.01126
– volume: 52
  start-page: 198
  year: 2018
  ident: ref_12
  article-title: An efficient compression of ECG signals using deep convolutional autoencoders
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.004
SSID ssj0000913810
Score 2.2335079
Snippet Auto-encoders are composed of coding and decoding units; hence, they hold an inherent potential of being used for high-performance data compression and...
Featured ApplicationThe proposed method can be utilized for highly efficient data compression, signal-compressed sensing, data restoration,...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 8256
SubjectTerms adversarial decoders
auto-encoders
cascade decoders
Data compression
Deep learning
Engineering Sciences
general decoders
Neural networks
residual decoders
Sensors
serial decoders
Video compression
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1baxNBFD5o64M-qG0txlZZSh60MDi3ndkFQRJNiFBCEIW-LXPbtqBJzMb-_p7ZnaStiC--LWcPyzLfzLnNzHcA-tIpj56GE-tFILKoPbGl4oQrLZzhNc1d12xCT6fF-Xk5SwW3Jh2r3NjE1lD7hYs18vdco-ehmhfs4_IXiV2j4u5qaqHxEHYjUxnO893haDr7uq2yRNbLgtHuYp7A_D7uCzPOFCZG6p4rahn70cFcxvOQf5jl1teMn_3vXz6HpynKzAbdtNiDB2G-D0_ucA_uw15a1U32NlFPvzuAD12xLPsc4lX3VUOG6OR8Nvi9XpDRvJNlGOZmX36iHcpi7nrLQPsCvo9H3z5NSOqvQJwoizVxHgeB-6CULBUzhjIjQh6EMNRETh9LjcPwQvpal8Zo60qKWFKBj9Qr1DuEnfliHl5ChkkHtZi9Sca9tEwbNAtaU1YYiUJvenC6GerKJfLx2APjR4VJSMSluoNLD_pb5WXHufF3tWHEbKsSibJbwWJ1UaV1V-XOeQx5CunqXAaVW-GVVr4W0iqrfdmDE0T83jcmg7MqytC8CcwW2TXrwfEG7Sot8aa6hfrVv18fwWMe70y0pwaPYQdRCa_hkbteXzWrN2nG3gAWXvKN
  priority: 102
  providerName: ProQuest
Title Serial Decoders-Based Auto-Encoders for Image Reconstruction
URI https://www.proquest.com/docview/2706107281
https://hal.science/hal-04031141
https://doaj.org/article/5ccd90184cf54e65b3d676df34b6b7d9
Volume 12
WOSCitedRecordID wos000846158600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8RADA6iHvQgPnF9UcSDCoPz6kwLXnZ1RUGXRRT0VOZVFHQVd_X3m2mrriJ48daGUNqkk-RrJ18AdqRTHjMNJ9aLQGRWemJzxQlXWjjDS5q6etiE7vWym5u8PzbqK-4Jq-mBa8MdpM55zFmZdGUqg0qt8EorXwppldW-at2jOh8DU1UMzlmkrqob8gTi-vg_mHGmEBCpbymoYurHxHIX90H-CMdVjjmZh7mmOEza9U0twEQYLMLsGGXgIiw0i3GY7DaM0XtLcFh_40qOQ-xQfxmSDuYmn7RfR0-kO6hlCVanydkjho8kQs4v4thluD7pXh2dkmYsAnEiz0bEeXwG7oNSMlfMGMqMCGkQwlATqXgsNQ6rAulLnRujrcspuoAKPKReod4KTA6eBmEVEsQK1CLokox7aZk2uJq1RmsbiUJvWrD_YanCNZzhcXTFQ4HYIZq1GDNrC3Y-lZ9rqozf1TrR5J8qkd-6EqDXi8brxV9eb8E2OuzbNU7b50WUYVQSCPLYG2vBxoc_i2ZlDguusYKhmmds7T9uZB1meGyIqLYEbsAk-i5swrR7G90PX7ZgqtPt9S-3qpcTz_pnF_3bd5nQ5yo
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1daxQxFL2UraA-qK2Kq1UHqaBCMF-TzIAiW9uyS7fLPlSoTzGTZFTQ3bqzVvxT_kZv5mPbivjWB9-GOyGQyZlzcpPcewG2pVMelYaTwotAZFZ6UuSKE660cJaXNHVNsQk9mWTHx_l0DX51sTDxWmXHiTVR-7mLe-QvuUbloZpn7M3JNxKrRsXT1a6ERgOLg_DzB7ps1evRLs7vU873947eDklbVYA4kWdL4jyqPPdBKZkrZi1lVoQ0CGGpjZlsCmodiqr0pc6t1YXLKY6ACnykXoW4AYqUvy4j2HuwPh0dTt-vdnVils2M0SYQUIicxnNohr2iI6YuSF9dIQAF7VO8f_mHDNTatn_zf_sqt-BGu4pOBg3sN2AtzDbh-rncipuw0bJWlTxrU2s_vw2vms3AZDfEUP5FRXZQxH0y-L6ck71ZY0twGZ-MviLPJtE3P8uwewfeXcqY7kJvNp-Fe5CgU0UL9E4l414WTFukPa0py6xEo7d9eNFNrXFtcvVY4-OLQScr4sCcw0EftleNT5qcIn9vthMxsmoSE4HXhvnio2l5xaTOeVzSZdKVqQwqLYRXWvlSyEIV2ud9eIIIu9DHcDA20Yb0LdAbZqesD1sdukxLYZU5g9b9f79-DFeHR4djMx5NDh7ANR7jQ-obklvQwxkKD-GKO11-rhaP2r8lgQ-XDcXfteBQQA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1daxQxFL2UrYg-qK2Kq1UHqaBCaL4mmQFFtm6XLq3LPijUp2kmyaigu3VnrfjX_HXezGS2rYhvffBtuBMCMzk559583AuwLa1yqDSclE54IrPKkTJXnHClhTW8oqlti03oySQ7Osqna_CruwsTjlV2nNgQtZvbsEa-wzUqD9U8YztVPBYxHY5en3wjoYJU2Gntymm0EDnwP39g-Fa_Gg9xrJ9yPtp792afxAoDxIo8WxLrUPG580rJXDFjKDPCp14IQ03IalNSY1Fgpat0bowubU7xa6jAR-qUD4uhSP_r6JJL3oP16fjt9MNqhSdk3MwYbS8FCpHTsCfNsFcMytQFGWyqBaC4fQpnMf-QhEbnRjf_5z90C25E7zoZtNNhA9b8bBOun8u5uAkbkc3q5FlMuf38NrxsFwmToQ9X_Bc12UVxd8ng-3JO9matLUH3Phl_Rf5NQsx-lnn3Dry_lG-6C73ZfObvQYLBFi0xapWMO1kybZAOtaYsMxKNzvThRTfMhY1J10Ptjy8FBl8BE8U5TPRhe9X4pM018vdmuwEvqyYhQXhjmC8-FpFvitRah65eJm2VSq_SUjillauELFWpXd6HJ4i2C33sDw6LYENaFxgls1PWh60OaUWktro4g9n9f79-DFcRf8XheHLwAK7xcG2kOTi5BT0cIP8QrtjT5ed68ShOnASOLxuJvwG5tlkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Serial+Decoders-Based+Auto-Encoders+for+Image+Reconstruction&rft.jtitle=Applied+sciences&rft.au=Li%2C+Honggui&rft.au=Trocan%2C+Maria&rft.au=Sawan%2C+Mohamad&rft.au=Galayko%2C+Dimitri&rft.date=2022-08-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=16&rft.spage=8256&rft_id=info:doi/10.3390%2Fapp12168256&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app12168256
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon