Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility

The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of environmental management Ročník 284; s. 112015
Hlavní autoři: Chen, Wei, Lei, Xinxiang, Chakrabortty, Rabin, Chandra Pal, Subodh, Sahana, Mehebub, Janizadeh, Saeid
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 15.04.2021
Témata:
ISSN:0301-4797, 1095-8630, 1095-8630
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities. [Display omitted] •The gully erosion susceptibility map created at a regional scale using GIS.•BT, BGLM, BRT, XGB, and DB models used for gully erosion modelling.•The proposed models present >90% prediction accuracy.•Predicted maps can be used by policy makers for in-situ soil conservation.
AbstractList The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities. [Display omitted] •The gully erosion susceptibility map created at a regional scale using GIS.•BT, BGLM, BRT, XGB, and DB models used for gully erosion modelling.•The proposed models present >90% prediction accuracy.•Predicted maps can be used by policy makers for in-situ soil conservation.
The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities.
The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities.
The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities.The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities.
ArticleNumber 112015
Author Chen, Wei
Chakrabortty, Rabin
Chandra Pal, Subodh
Lei, Xinxiang
Sahana, Mehebub
Janizadeh, Saeid
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  email: chenwei.0930@163.com
  organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
– sequence: 2
  givenname: Xinxiang
  surname: Lei
  fullname: Lei, Xinxiang
  email: 19209071003@stu.xust.edu.cn
  organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China
– sequence: 3
  givenname: Rabin
  surname: Chakrabortty
  fullname: Chakrabortty, Rabin
  email: rabingeo8@gmail.com
  organization: Department of Geography, The University of Burdwan, West Bengal, India
– sequence: 4
  givenname: Subodh
  orcidid: 0000-0003-0805-8007
  surname: Chandra Pal
  fullname: Chandra Pal, Subodh
  email: geo.subodh@gmail.com, geo.subodh@gmail.com
  organization: Department of Geography, The University of Burdwan, West Bengal, India
– sequence: 5
  givenname: Mehebub
  surname: Sahana
  fullname: Sahana, Mehebub
  email: mehebubsahana@gmail.com
  organization: Research Associate, School of Environment, Education & Development, University of Manchester, UK
– sequence: 6
  givenname: Saeid
  surname: Janizadeh
  fullname: Janizadeh, Saeid
  email: Janizadeh.saeed@gmail.com
  organization: Department of Watershed Management Engineering and Sciences, Faculty in Natural Resources and Marine Science, Tarbiat Modares University, Tehran, 14115-111, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33515838$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vFCEYx4mpsdvqR9Bw9DIrL8MOEw_GNPUlaeJFz4SBh5aVgRWYbfar-GmdcbeaeKknEv4vPDy_C3QWUwSEXlKypoRu3mzXW4j7Ucc1I4yuKWWEiidoRUkvGrnh5AytCCe0abu-O0cXpWwJIZzR7hk651xQIblcoZ_Xex0mXX2KODlsvXOQIVY8pFSqj7cYYoFxCIBHbe58BBxA57goY7IQCtbR4pj2ELAF2P2Vl_s_LS7rEe5T_o5dyvgOtG3MVPHtFMIBQ05lGaBMxcCu-sEHXw_P0VOnQ4EXp_MSfftw_fXqU3Pz5ePnq_c3jeG9rI2RrheOCco72fLWaMYGLcDRTWukHTrNRW8kb2UvGXSWOmmE5YbOitTctPwSvT727nL6MUGpavTzHCHoCGkqignWMs4l_Q9rOy-Vdv2GzdZXJ-s0jGDVLvtR54N6WP1seHs0mPn3JYNTxtffIGrWPihK1AJabdUJtFpAqyPoOS3-ST888Fju3TE3k4O9h6yK8RANWJ_BVGWTf6ThFwB1yHg
CitedBy_id crossref_primary_10_1002_esp_5833
crossref_primary_10_1007_s11356_024_34245_2
crossref_primary_10_1109_JSEN_2021_3066037
crossref_primary_10_3390_su16156569
crossref_primary_10_1007_s12665_023_11190_w
crossref_primary_10_1080_10106049_2021_1920635
crossref_primary_10_3390_bioengineering11010090
crossref_primary_10_1016_j_scitotenv_2023_165289
crossref_primary_10_2489_jswc_2023_00019
crossref_primary_10_1016_j_catena_2024_108186
crossref_primary_10_1016_j_compbiomed_2025_110104
crossref_primary_10_1016_j_jenvman_2024_124011
crossref_primary_10_1007_s10064_022_02806_9
crossref_primary_10_1016_j_geomorph_2021_108027
crossref_primary_10_1016_j_neucom_2024_129197
crossref_primary_10_1016_j_jhazmat_2021_127437
crossref_primary_10_1007_s00477_025_03042_9
crossref_primary_10_3390_soilsystems7020050
crossref_primary_10_1016_j_jclepro_2022_130407
crossref_primary_10_3390_rs16050921
crossref_primary_10_1016_j_geoderma_2024_117053
crossref_primary_10_1016_j_still_2025_106595
crossref_primary_10_1007_s10668_021_01576_w
crossref_primary_10_1016_j_geoderma_2025_117396
crossref_primary_10_3390_computers13070157
crossref_primary_10_1007_s12665_021_10033_w
crossref_primary_10_1016_j_catena_2023_107781
crossref_primary_10_3390_su16103917
crossref_primary_10_1016_j_geoderma_2021_115379
crossref_primary_10_1016_j_catena_2022_106798
crossref_primary_10_1080_10106049_2021_2005698
crossref_primary_10_1007_s42454_024_00053_9
crossref_primary_10_1007_s13762_022_04665_z
crossref_primary_10_1016_j_asr_2025_07_073
crossref_primary_10_1007_s11069_023_06363_6
crossref_primary_10_3390_jcm12134375
crossref_primary_10_1038_s41598_023_30028_w
crossref_primary_10_1007_s11069_022_05520_7
crossref_primary_10_1016_j_ecolind_2023_109904
crossref_primary_10_1016_j_rineng_2025_104307
crossref_primary_10_1371_journal_pone_0322442
crossref_primary_10_1007_s10115_024_02125_3
crossref_primary_10_15446_esrj_v25n4_95748
crossref_primary_10_1016_j_asr_2023_10_051
crossref_primary_10_1007_s11069_024_07026_w
crossref_primary_10_1016_j_catena_2024_108590
crossref_primary_10_1016_j_geoderma_2024_117034
crossref_primary_10_3390_rs14112580
crossref_primary_10_3389_fenvs_2023_1187658
crossref_primary_10_3390_rs16244742
crossref_primary_10_1007_s12517_021_09005_y
crossref_primary_10_1007_s12517_022_10566_9
crossref_primary_10_1016_j_catena_2023_106953
crossref_primary_10_1016_j_geomorph_2023_108671
crossref_primary_10_3390_app13053210
crossref_primary_10_54097_wd8c8r08
crossref_primary_10_1007_s11069_021_04971_8
crossref_primary_10_1177_10815589231171404
crossref_primary_10_1016_j_jenvman_2021_113551
crossref_primary_10_3390_su15021325
crossref_primary_10_1007_s11356_021_17265_0
crossref_primary_10_1016_j_catena_2023_107695
crossref_primary_10_1002_suco_202200850
crossref_primary_10_1016_j_techsoc_2023_102427
crossref_primary_10_1007_s40430_023_04344_1
crossref_primary_10_1016_j_asr_2022_02_027
crossref_primary_10_1016_j_jenvman_2022_115602
crossref_primary_10_1016_j_heliyon_2023_e14518
crossref_primary_10_1080_10106049_2022_2071473
crossref_primary_10_1016_j_jag_2024_104305
crossref_primary_10_1016_j_jenvman_2022_115181
crossref_primary_10_1111_jfr3_12905
crossref_primary_10_1007_s11069_021_04986_1
crossref_primary_10_1080_10106049_2022_2076924
crossref_primary_10_1080_10106049_2021_1996641
crossref_primary_10_1080_10106049_2021_1926558
crossref_primary_10_1016_j_scitotenv_2023_166960
crossref_primary_10_1007_s11069_021_04862_y
crossref_primary_10_1016_j_jenvman_2024_121291
crossref_primary_10_1016_j_ecolind_2024_112348
crossref_primary_10_1080_10106049_2021_1939439
crossref_primary_10_1007_s12665_021_09889_9
crossref_primary_10_1016_j_jhydrol_2025_132840
crossref_primary_10_3390_su131810110
crossref_primary_10_1007_s12145_025_01995_7
crossref_primary_10_1016_j_brainres_2022_148131
crossref_primary_10_1080_10106049_2021_1953618
crossref_primary_10_3390_s25092881
crossref_primary_10_1016_j_asr_2024_12_021
crossref_primary_10_1007_s11042_023_16874_w
crossref_primary_10_1002_ldr_4721
crossref_primary_10_3390_biomimetics9070440
crossref_primary_10_1007_s12210_025_01362_0
crossref_primary_10_3389_feart_2023_1187384
crossref_primary_10_1002_gj_4709
crossref_primary_10_1016_j_jclepro_2025_145645
crossref_primary_10_1080_10106049_2022_2035830
crossref_primary_10_3390_land11101711
crossref_primary_10_1016_j_ecoinf_2021_101422
crossref_primary_10_1080_10106049_2022_2043452
crossref_primary_10_1080_10106049_2022_2076909
crossref_primary_10_1016_j_jenvman_2022_114589
crossref_primary_10_1038_s41598_025_03176_4
crossref_primary_10_1016_j_catena_2021_105344
crossref_primary_10_1016_j_catena_2024_108275
crossref_primary_10_1007_s10706_024_03031_9
crossref_primary_10_1111_pce_15393
Cites_doi 10.1111/j.1365-2656.2008.01390.x
10.1016/j.scitotenv.2019.02.436
10.3390/app7101000
10.1006/jcss.1997.1504
10.1177/1536867X0500500304
10.1016/j.ecolmodel.2009.06.020
10.1016/j.gsf.2019.10.001
10.1111/j.1365-2656.2011.01803.x
10.3390/rs12111890
10.1007/s00180-012-0382-5
10.1002/mp.14068
10.1007/s40808-018-0540-z
10.1016/j.catena.2006.05.014
10.1016/j.geomorph.2013.08.021
10.1016/S0341-8162(02)00143-1
10.1016/j.jclepro.2020.122757
10.1007/s12303-018-0067-3
10.3390/ijgi9070443
10.1016/j.catena.2019.04.032
10.1080/19475705.2020.1753824
10.1016/j.jhydrol.2020.124602
10.1016/j.indcrop.2020.112515
10.1016/j.ejor.2016.10.031
10.1007/s42452-019-0422-7
10.1016/j.asr.2019.04.033
10.1007/s10346-015-0614-1
10.1016/j.scitotenv.2017.07.198
10.1002/sim.5753
10.1016/j.geoderma.2018.05.027
10.3390/rs11090999
10.1016/j.scitotenv.2019.06.205
10.3390/rs12142180
10.1007/s11069-016-2239-7
10.1002/esp.1501
10.3390/rs12152478
10.3390/sym12030325
10.3390/app10010016
10.1016/j.asr.2019.12.003
10.1016/j.aci.2017.09.005
10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
10.1007/s40710-017-0248-5
10.1111/j.1539-6924.2012.01792.x
10.1016/j.catena.2020.104777
10.1007/s41324-017-0107-5
10.1016/j.scitotenv.2019.01.221
10.3390/w12010113
10.1007/s11069-020-04213-3
10.1007/s12665-019-8658-5
10.1016/j.scitotenv.2018.11.235
10.1002/ajpa.22448
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2021.112015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
ExternalDocumentID 33515838
10_1016_j_jenvman_2021_112015
S0301479721000773
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
APXCP
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSB
SSH
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
9DU
AAQXK
AAYJJ
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFJKZ
AGQPQ
AI.
AIDBO
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
D-I
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEW
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
~HD
AACTN
AFKWA
AJOXV
AMFUW
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-c8f95f251378434ca22ba5ef164c8db7a359c8348982e7d1f8c5d3c1b7a8a3c43
ISICitedReferencesCount 123
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621652400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-4797
1095-8630
IngestDate Thu Oct 02 21:46:12 EDT 2025
Wed Oct 01 08:23:40 EDT 2025
Wed Feb 19 02:29:31 EST 2025
Tue Nov 18 22:31:00 EST 2025
Sat Nov 29 06:56:19 EST 2025
Sat Jun 21 16:53:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Climatic factors
Predictive accuracy
Gully head-cut erosion
Soil conservation
Language English
License Copyright © 2021 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-c8f95f251378434ca22ba5ef164c8db7a359c8348982e7d1f8c5d3c1b7a8a3c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0805-8007
PMID 33515838
PQID 2483817962
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524233814
proquest_miscellaneous_2483817962
pubmed_primary_33515838
crossref_citationtrail_10_1016_j_jenvman_2021_112015
crossref_primary_10_1016_j_jenvman_2021_112015
elsevier_sciencedirect_doi_10_1016_j_jenvman_2021_112015
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wang, Lei, Chen, Shahabi, Shirzadi (bib63) 2020; 12
Schonlau (bib60) 2005; 5
Gheisarnejad, Farsizadeh, Tavana, Khooban (bib30) 2020
Azareh, Rahmati, Rafiei-Sardooi, Sankey, Lee, Shahabi (bib8) 2019; 655
Bunker, Thabtah (bib10) 2019; 15
Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, rker (bib20) 2014; 204
Boinee (bib9) 2006
Chen, He, Benesty, Khotilovich, Tang, Cho (bib14) 2015
Lesschen, Kok, Verburg, Cammeraat (bib40) 2007; 71
Arabameri, Asadi Nalivan, Saha, Roy, Pradhan, Tiefenbacher (bib2) 2020; 12
Freund, Schapire (bib27) 1997; 55
McCaffrey, Griffin, Almirall, Slaughter, Ramchand, Burgette (bib42) 2013; 32
De'Ath (bib23) 2007; 88
Chen, Guestrin (bib15) 2016
Cherif, Kortebi (bib18) 2019
Razavi-Termeh, Sadeghi-Niaraki, Choi (bib55) 2020; 11
Pal, Chowdhuri (bib47) 2019; 1
Oh, Lee (bib44) 2017; 7
Garosi, Sheklabadi, Pourghasemi, Besalatpour, Conoscenti, Van Oost (bib28) 2018; 330
Rahmati, Haghizadeh, Pourghasemi, Noormohamadi (bib54) 2016; 82
Wang, Chen, Lu, Zhang, Pan, Bao, Su, Qian (bib62) 2020; 47
Cox (bib22) 2012; 32
Peng, Lin, Zhang, Xu (bib49) 2014
Roy, Chakrabortty, Chowdhuri, Malik, Das, Pal (bib57) 2020
Nikita (bib43) 2014; 153
Zhao, Chen (bib65) 2020; 10
Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (bib64) 2016; 13
Arabameri, Pradhan, Rezaei (bib3) 2019; 23
Pham, Khosravi, Prakash (bib50) 2017; 4
Pourghasemi, Yousefi, Kornejady, Cerd (bib53) 2017; 609
Kuznetsov, Mohri, Syed (bib37) 2014
Pal, Chakrabortty (bib46) 2019; 64
Chen, Zhao, Tsangaratos, Shahabi, Ilia, Xue (bib17) 2020; 583
Gumus, Kiran (bib31) 2017
Ridgeway (bib56) 1999
Chen, Li (bib16) 2020; 195
Roy, Pal, Chakrabortty, Chowdhuri, Malik, Das (bib58) 2020
Saha, Gayen, Pourghasemi, Tiefenbacher (bib59) 2019; 78
Achour, Pourghasemi (bib1) 2020; 11
Chakrabortty, Pal, Sahana, Mondal, Dou, Pham, Yunus (bib13) 2020; 104
Hofner, Mayr, Robinzonov, Schmid (bib34) 2014; 29
Chowdhuri, Pal, Chakrabortty (bib19) 2020; 65
Lei, Chen, Pham (bib39) 2020; 9
Gayen, Pourghasemi, Saha, Keesstra, Bai (bib29) 2019; 668
Friedman (bib26) 2001
Lei, Chen, Avand, Janizadeh, Kariminejad, Shahabi (bib38) 2020; 12
Arabameri, Pradhan, Rezaei, Conoscenti (bib4) 2019; 180
Gutiérrez, Schnabel, Contador (bib32) 2009; 220
Poesen (bib51) 1993
Zhao, Chen (bib66) 2020; 12
Tutz, Groll (bib61) 2010
Arekhi, Niazi (bib7) 2010; 17
Buston, Elith (bib11) 2011; 80
Pal, Shit (bib48) 2017; 25
Elith, Leathwick, Hastie (bib25) 2008; 77
Pal, Chakrabortty (bib45) 2019; 5
Kheir, Wilson, Deng (bib35) 2007; 32
Poesen, Nachtergaele, Verstraeten, Valentin (bib52) 2003; 50
Cortes, Mohri, Syed (bib21) 2014
Huang, Feng, Lin, Pu, Tan, Tu, Han, Hou, Zhang, Zhang (bib33) 2020; 152
Dou, Yunus, Bui, Merghadi, Sahana, Zhu (bib24) 2019; 662
Krauss, Do, Huck (bib36) 2017; 259
Chakrabortty, Pal, Chowdhuri, Malik, Das (bib12) 2020
Arabameri, Pradhan, Rezaei, Lee (bib5) 2019; 11
Li, Chen (bib41) 2020; 12
Arabameri, Yamani, Pradhan, Melesse, Shirani, Bui (bib6) 2019; 688
Buston (10.1016/j.jenvman.2021.112015_bib11) 2011; 80
Li (10.1016/j.jenvman.2021.112015_bib41) 2020; 12
Boinee (10.1016/j.jenvman.2021.112015_bib9) 2006
Chen (10.1016/j.jenvman.2021.112015_bib17) 2020; 583
Pal (10.1016/j.jenvman.2021.112015_bib45) 2019; 5
Roy (10.1016/j.jenvman.2021.112015_bib58) 2020
Zhao (10.1016/j.jenvman.2021.112015_bib66) 2020; 12
Azareh (10.1016/j.jenvman.2021.112015_bib8) 2019; 655
Freund (10.1016/j.jenvman.2021.112015_bib27) 1997; 55
McCaffrey (10.1016/j.jenvman.2021.112015_bib42) 2013; 32
Pal (10.1016/j.jenvman.2021.112015_bib48) 2017; 25
Arabameri (10.1016/j.jenvman.2021.112015_bib2) 2020; 12
Tutz (10.1016/j.jenvman.2021.112015_bib61) 2010
Lesschen (10.1016/j.jenvman.2021.112015_bib40) 2007; 71
Peng (10.1016/j.jenvman.2021.112015_bib49) 2014
Roy (10.1016/j.jenvman.2021.112015_bib57) 2020
Conoscenti (10.1016/j.jenvman.2021.112015_bib20) 2014; 204
Arabameri (10.1016/j.jenvman.2021.112015_bib4) 2019; 180
Cherif (10.1016/j.jenvman.2021.112015_bib18) 2019
Poesen (10.1016/j.jenvman.2021.112015_bib52) 2003; 50
Rahmati (10.1016/j.jenvman.2021.112015_bib54) 2016; 82
Wang (10.1016/j.jenvman.2021.112015_bib63) 2020; 12
Pourghasemi (10.1016/j.jenvman.2021.112015_bib53) 2017; 609
Cox (10.1016/j.jenvman.2021.112015_bib22) 2012; 32
Garosi (10.1016/j.jenvman.2021.112015_bib28) 2018; 330
Huang (10.1016/j.jenvman.2021.112015_bib33) 2020; 152
Pal (10.1016/j.jenvman.2021.112015_bib46) 2019; 64
Hofner (10.1016/j.jenvman.2021.112015_bib34) 2014; 29
Friedman (10.1016/j.jenvman.2021.112015_bib26) 2001
Elith (10.1016/j.jenvman.2021.112015_bib25) 2008; 77
Chen (10.1016/j.jenvman.2021.112015_bib14) 2015
Krauss (10.1016/j.jenvman.2021.112015_bib36) 2017; 259
Razavi-Termeh (10.1016/j.jenvman.2021.112015_bib55) 2020; 11
Chowdhuri (10.1016/j.jenvman.2021.112015_bib19) 2020; 65
Arekhi (10.1016/j.jenvman.2021.112015_bib7) 2010; 17
Lei (10.1016/j.jenvman.2021.112015_bib39) 2020; 9
Poesen (10.1016/j.jenvman.2021.112015_bib51) 1993
Youssef (10.1016/j.jenvman.2021.112015_bib64) 2016; 13
Zhao (10.1016/j.jenvman.2021.112015_bib65) 2020; 10
Saha (10.1016/j.jenvman.2021.112015_bib59) 2019; 78
Arabameri (10.1016/j.jenvman.2021.112015_bib3) 2019; 23
Ridgeway (10.1016/j.jenvman.2021.112015_bib56) 1999
Gumus (10.1016/j.jenvman.2021.112015_bib31) 2017
Arabameri (10.1016/j.jenvman.2021.112015_bib6) 2019; 688
Lei (10.1016/j.jenvman.2021.112015_bib38) 2020; 12
Chakrabortty (10.1016/j.jenvman.2021.112015_bib12) 2020
Oh (10.1016/j.jenvman.2021.112015_bib44) 2017; 7
Chen (10.1016/j.jenvman.2021.112015_bib15) 2016
Gheisarnejad (10.1016/j.jenvman.2021.112015_bib30) 2020
Achour (10.1016/j.jenvman.2021.112015_bib1) 2020; 11
Bunker (10.1016/j.jenvman.2021.112015_bib10) 2019; 15
Cortes (10.1016/j.jenvman.2021.112015_bib21) 2014
Kheir (10.1016/j.jenvman.2021.112015_bib35) 2007; 32
Chen (10.1016/j.jenvman.2021.112015_bib16) 2020; 195
Pham (10.1016/j.jenvman.2021.112015_bib50) 2017; 4
Dou (10.1016/j.jenvman.2021.112015_bib24) 2019; 662
De'Ath (10.1016/j.jenvman.2021.112015_bib23) 2007; 88
Kuznetsov (10.1016/j.jenvman.2021.112015_bib37) 2014
Schonlau (10.1016/j.jenvman.2021.112015_bib60) 2005; 5
Wang (10.1016/j.jenvman.2021.112015_bib62) 2020; 47
Chakrabortty (10.1016/j.jenvman.2021.112015_bib13) 2020; 104
Gutiérrez (10.1016/j.jenvman.2021.112015_bib32) 2009; 220
Pal (10.1016/j.jenvman.2021.112015_bib47) 2019; 1
Gayen (10.1016/j.jenvman.2021.112015_bib29) 2019; 668
Arabameri (10.1016/j.jenvman.2021.112015_bib5) 2019; 11
Nikita (10.1016/j.jenvman.2021.112015_bib43) 2014; 153
References_xml – volume: 32
  start-page: 1770
  year: 2007
  end-page: 1782
  ident: bib35
  article-title: Use of terrain variables for mapping gully erosion susceptibility in Lebanon
  publication-title: Earth Surf. Process. Landforms: The Journal of the British Geomorphological Research Group
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib15
  article-title: Xgboost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining
– start-page: 1
  year: 2020
  end-page: 25
  ident: bib12
  article-title: Assessing the importance of static and dynamic causative factors on erosion potentiality using SWAT, EBF with uncertainty and plausibility, logistic regression and novel ensemble model in a sub-tropical environment
  publication-title: Journal of the Indian Society of Remote Sensing
– volume: 88
  start-page: 243
  year: 2007
  end-page: 251
  ident: bib23
  article-title: Boosted trees for ecological modeling and prediction
  publication-title: Ecology
– start-page: 1
  year: 2020
  end-page: 26
  ident: bib57
  article-title: Development of different machine learning ensemble classifier for gully erosion susceptibility in gandheswari watershed of West Bengal, India
  publication-title: Machine Learning for Intelligent Decision Science, Algorithms for Intelligent Systems
– start-page: 1100
  year: 2017
  end-page: 1103
  ident: bib31
  article-title: Crude oil price forecasting using XGBoost
  publication-title: International Conference on Computer Science and Engineering (UBMK)
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib27
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
– start-page: 122757
  year: 2020
  ident: bib58
  article-title: Threats of climate and land use change on future flood susceptibility
  publication-title: J. Clean. Prod.
– volume: 64
  start-page: 352
  year: 2019
  end-page: 377
  ident: bib46
  article-title: Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model
  publication-title: Adv. Space Res.
– volume: 583
  start-page: 124602
  year: 2020
  ident: bib17
  article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping
  publication-title: J. Hydrol.
– volume: 104
  start-page: 1259
  year: 2020
  end-page: 1294
  ident: bib13
  article-title: Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India
  publication-title: Nat. Hazards
– volume: 668
  start-page: 124
  year: 2019
  end-page: 138
  ident: bib29
  article-title: Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms
  publication-title: Sci. Total Environ.
– volume: 152
  start-page: 112515
  year: 2020
  ident: bib33
  article-title: Significant boost in xylose yield and enhanced economic value with one-pot process using deep eutectic solvent for the pretreatment and saccharification of rice straw
  publication-title: Ind. Crop. Prod.
– start-page: 197
  year: 2010
  end-page: 215
  ident: bib61
  article-title: Generalized Linear Mixed Models Based on Boosting. Statistical Modelling and Regression Structures
– volume: 32
  start-page: 1607
  year: 2012
  end-page: 1629
  ident: bib22
  article-title: Rationally, each latest model focuses its attention on more complicated findings to match up until now, because then and at end of the program we produce a good lesser biased learner. As base models for boosting, we have to choose the less complicated and less variance models with that may be associated with bias
  publication-title: Risk Anal.: Int. J.
– year: 2015
  ident: bib14
  article-title: Xgboost: extreme Gradient Boosting
– volume: 32
  start-page: 3388
  year: 2013
  end-page: 3414
  ident: bib42
  article-title: A tutorial on propensity score estimation for multiple treatments using generalized boosted models
  publication-title: Stat. Med.
– year: 2006
  ident: bib9
  article-title: Insights into Machine Learning: Data Clustering and Classification Algorithms for Astrophysical Experiments
– start-page: 2501
  year: 2014
  end-page: 2509
  ident: bib37
  article-title: Multi-class deep boosting
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 325
  year: 2020
  ident: bib63
  article-title: Hybrid computational intelligence methods for landslide susceptibility mapping
  publication-title: Symmetry
– volume: 7
  start-page: 1000
  year: 2017
  ident: bib44
  article-title: Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree
  publication-title: Appl. Sci.
– volume: 12
  start-page: 2478
  year: 2020
  ident: bib38
  article-title: GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran
  publication-title: Rem. Sens.
– volume: 204
  start-page: 399
  year: 2014
  end-page: 411
  ident: bib20
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy)
  publication-title: Geomorphology
– volume: 5
  start-page: 330
  year: 2005
  end-page: 354
  ident: bib60
  article-title: Boosted regression (boosting): an introductory tutorial and a Stata plugin
  publication-title: STATA J.
– volume: 688
  start-page: 903
  year: 2019
  end-page: 916
  ident: bib6
  article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 1738
  year: 2020
  end-page: 1749
  ident: bib62
  article-title: Feature‐shared adaptive‐boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images
  publication-title: Med. Phys.
– volume: 12
  start-page: 1890
  year: 2020
  ident: bib2
  article-title: Novel ensemble approaches of machine learning techniques in modeling the gully erosion susceptibility
  publication-title: Rem. Sens.
– volume: 195
  start-page: 104777
  year: 2020
  ident: bib16
  article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models
  publication-title: Catena
– volume: 50
  start-page: 91
  year: 2003
  end-page: 133
  ident: bib52
  article-title: Gully erosion and environmental change: importance and research needs
  publication-title: Catena
– volume: 15
  start-page: 27
  year: 2019
  end-page: 33
  ident: bib10
  article-title: A machine learning framework for sport result prediction
  publication-title: Applied computing informatics
– volume: 259
  start-page: 689
  year: 2017
  end-page: 702
  ident: bib36
  article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500
  publication-title: Eur. J. Oper. Res.
– volume: 9
  start-page: 443
  year: 2020
  ident: bib39
  article-title: Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis
  publication-title: ISPRS Int. J. Geo-Inf.
– volume: 23
  start-page: 669
  year: 2019
  end-page: 686
  ident: bib3
  article-title: Spatial prediction of gully erosion using ALOS PALSAR data and ensemble bivariate and data mining models
  publication-title: Geosciences
– volume: 80
  start-page: 528
  year: 2011
  end-page: 538
  ident: bib11
  article-title: Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis
  publication-title: J. Anim. Ecol.
– volume: 4
  start-page: 711
  year: 2017
  end-page: 730
  ident: bib50
  article-title: Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India
  publication-title: Environmental Processes
– volume: 153
  start-page: 473
  year: 2014
  end-page: 483
  ident: bib43
  article-title: The use of generalized linear models and generalized estimating equations in bioarchaeological studies
  publication-title: Am. J. Phys. Anthropol.
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib49
  article-title: Deep boosting: layered feature mining for general image classification
  publication-title: IEEE International Conference on Multimedia and Expo (ICME)
– volume: 10
  start-page: 16
  year: 2020
  ident: bib65
  article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques
  publication-title: Appl. Sci.
– volume: 655
  start-page: 684
  year: 2019
  end-page: 696
  ident: bib8
  article-title: Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models
  publication-title: Sci. Total Environ.
– year: 2014
  ident: bib21
  article-title: Deep Boosting
– volume: 1
  start-page: 416
  year: 2019
  ident: bib47
  article-title: GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India
  publication-title: SN Applied Sciences
– volume: 330
  start-page: 65
  year: 2018
  end-page: 78
  ident: bib28
  article-title: Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping
  publication-title: Geoderma
– volume: 220
  start-page: 3630
  year: 2009
  end-page: 3637
  ident: bib32
  article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies
  publication-title: Ecol. Model.
– volume: 82
  start-page: 1231
  year: 2016
  end-page: 1258
  ident: bib54
  article-title: Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison
  publication-title: Nat. Hazards
– volume: 13
  start-page: 839
  year: 2016
  end-page: 856
  ident: bib64
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
– volume: 29
  start-page: 3
  year: 2014
  end-page: 35
  ident: bib34
  article-title: Model-based boosting in R: a hands-on tutorial using the R package mboost
  publication-title: Comput. Stat.
– start-page: 221
  year: 1993
  end-page: 239
  ident: bib51
  article-title: Gully typology and gully control measures in the European loess belt. Farm land erosion in temperate plains environments hills
  publication-title: Proceedings
– volume: 25
  start-page: 399
  year: 2017
  end-page: 409
  ident: bib48
  article-title: Application of RUSLE model for soil loss estimation of Jaipanda watershed, West Bengal
  publication-title: Spatial Information Research
– volume: 11
  start-page: 871
  year: 2020
  end-page: 883
  ident: bib1
  article-title: How do machine learning techniques help in increasing accuracy of landslide susceptibility maps?
  publication-title: Geoscience Frontiers
– volume: 12
  start-page: 113
  year: 2020
  ident: bib41
  article-title: Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques
  publication-title: Water
– year: 1999
  ident: bib56
  article-title: Generalization of Boosting Algorithms and Applications of Bayesian Inference for Massive Datasets
– start-page: 1
  year: 2020
  ident: bib30
  article-title: A novel deep learning controller for DC/DC buck-boost converters in wireless power transfer feeding CPLs
  publication-title: IEEE Trans. Ind. Electron.
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: bib25
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– volume: 12
  start-page: 2180
  year: 2020
  ident: bib66
  article-title: Optimization of computational intelligence models for landslide susceptibility evaluation
  publication-title: Rem. Sens.
– volume: 180
  start-page: 282
  year: 2019
  end-page: 297
  ident: bib4
  article-title: Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques
  publication-title: Catena
– volume: 609
  start-page: 764
  year: 2017
  end-page: 775
  ident: bib53
  article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
  publication-title: Sci. Total Environ.
– volume: 17
  start-page: 1
  year: 2010
  end-page: 27
  ident: bib7
  article-title: Assessment of GIS and RS applications to estimate soil erosion and sediment loading by using RUSLE model (Case Study: upstream basin of Ilam dam)
  publication-title: J. Soil Water Conserv.
– volume: 65
  start-page: 1466
  year: 2020
  end-page: 1489
  ident: bib19
  article-title: Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India
  publication-title: Adv. Space Res.
– volume: 11
  start-page: 999
  year: 2019
  ident: bib5
  article-title: Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR-RF integrated model and multiresolution DEMs
  publication-title: Rem. Sens.
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib18
  article-title: On Using eXtreme Gradient Boosting (XGBoost) Machine Learning Algorithm for Home Network Traffic Classification
– volume: 662
  start-page: 332
  year: 2019
  end-page: 346
  ident: bib24
  article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan
  publication-title: Sci. Total Environ.
– volume: 71
  start-page: 110
  year: 2007
  end-page: 121
  ident: bib40
  article-title: Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain
  publication-title: Catena
– volume: 11
  start-page: 821
  year: 2020
  end-page: 845
  ident: bib55
  article-title: Gully erosion susceptibility mapping using artificial intelligence and statistical models
  publication-title: Geomatics, Nat. Hazards Risk
– volume: 5
  start-page: 369
  year: 2019
  end-page: 393
  ident: bib45
  article-title: Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India
  publication-title: Modeling Earth Systems Environmental Earth Sciences
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib26
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 78
  start-page: 649
  year: 2019
  ident: bib59
  article-title: Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India
  publication-title: Environmental Earth Sciences
– volume: 77
  start-page: 802
  year: 2008
  ident: 10.1016/j.jenvman.2021.112015_bib25
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– start-page: 221
  year: 1993
  ident: 10.1016/j.jenvman.2021.112015_bib51
  article-title: Gully typology and gully control measures in the European loess belt. Farm land erosion in temperate plains environments hills
  publication-title: Proceedings
– volume: 668
  start-page: 124
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib29
  article-title: Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.436
– volume: 7
  start-page: 1000
  year: 2017
  ident: 10.1016/j.jenvman.2021.112015_bib44
  article-title: Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree
  publication-title: Appl. Sci.
  doi: 10.3390/app7101000
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.jenvman.2021.112015_bib27
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 5
  start-page: 330
  year: 2005
  ident: 10.1016/j.jenvman.2021.112015_bib60
  article-title: Boosted regression (boosting): an introductory tutorial and a Stata plugin
  publication-title: STATA J.
  doi: 10.1177/1536867X0500500304
– volume: 220
  start-page: 3630
  year: 2009
  ident: 10.1016/j.jenvman.2021.112015_bib32
  article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2009.06.020
– volume: 11
  start-page: 871
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib1
  article-title: How do machine learning techniques help in increasing accuracy of landslide susceptibility maps?
  publication-title: Geoscience Frontiers
  doi: 10.1016/j.gsf.2019.10.001
– volume: 80
  start-page: 528
  year: 2011
  ident: 10.1016/j.jenvman.2021.112015_bib11
  article-title: Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2011.01803.x
– volume: 12
  start-page: 1890
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib2
  article-title: Novel ensemble approaches of machine learning techniques in modeling the gully erosion susceptibility
  publication-title: Rem. Sens.
  doi: 10.3390/rs12111890
– volume: 29
  start-page: 3
  year: 2014
  ident: 10.1016/j.jenvman.2021.112015_bib34
  article-title: Model-based boosting in R: a hands-on tutorial using the R package mboost
  publication-title: Comput. Stat.
  doi: 10.1007/s00180-012-0382-5
– volume: 47
  start-page: 1738
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib62
  article-title: Feature‐shared adaptive‐boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images
  publication-title: Med. Phys.
  doi: 10.1002/mp.14068
– start-page: 1
  year: 2014
  ident: 10.1016/j.jenvman.2021.112015_bib49
  article-title: Deep boosting: layered feature mining for general image classification
– volume: 5
  start-page: 369
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib45
  article-title: Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India
  publication-title: Modeling Earth Systems Environmental Earth Sciences
  doi: 10.1007/s40808-018-0540-z
– volume: 71
  start-page: 110
  year: 2007
  ident: 10.1016/j.jenvman.2021.112015_bib40
  article-title: Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain
  publication-title: Catena
  doi: 10.1016/j.catena.2006.05.014
– volume: 204
  start-page: 399
  year: 2014
  ident: 10.1016/j.jenvman.2021.112015_bib20
  article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.08.021
– volume: 50
  start-page: 91
  year: 2003
  ident: 10.1016/j.jenvman.2021.112015_bib52
  article-title: Gully erosion and environmental change: importance and research needs
  publication-title: Catena
  doi: 10.1016/S0341-8162(02)00143-1
– start-page: 122757
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib58
  article-title: Threats of climate and land use change on future flood susceptibility
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122757
– volume: 23
  start-page: 669
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib3
  article-title: Spatial prediction of gully erosion using ALOS PALSAR data and ensemble bivariate and data mining models
  publication-title: Geosciences
  doi: 10.1007/s12303-018-0067-3
– volume: 9
  start-page: 443
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib39
  article-title: Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi9070443
– start-page: 1
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib30
  article-title: A novel deep learning controller for DC/DC buck-boost converters in wireless power transfer feeding CPLs
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 2501
  year: 2014
  ident: 10.1016/j.jenvman.2021.112015_bib37
  article-title: Multi-class deep boosting
– volume: 180
  start-page: 282
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib4
  article-title: Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques
  publication-title: Catena
  doi: 10.1016/j.catena.2019.04.032
– start-page: 1
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib57
  article-title: Development of different machine learning ensemble classifier for gully erosion susceptibility in gandheswari watershed of West Bengal, India
– volume: 11
  start-page: 821
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib55
  article-title: Gully erosion susceptibility mapping using artificial intelligence and statistical models
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2020.1753824
– start-page: 1189
  year: 2001
  ident: 10.1016/j.jenvman.2021.112015_bib26
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
– year: 2006
  ident: 10.1016/j.jenvman.2021.112015_bib9
– volume: 583
  start-page: 124602
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib17
  article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124602
– volume: 152
  start-page: 112515
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib33
  article-title: Significant boost in xylose yield and enhanced economic value with one-pot process using deep eutectic solvent for the pretreatment and saccharification of rice straw
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2020.112515
– volume: 259
  start-page: 689
  year: 2017
  ident: 10.1016/j.jenvman.2021.112015_bib36
  article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.10.031
– volume: 1
  start-page: 416
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib47
  article-title: GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-019-0422-7
– year: 1999
  ident: 10.1016/j.jenvman.2021.112015_bib56
– start-page: 1
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib18
– volume: 64
  start-page: 352
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib46
  article-title: Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2019.04.033
– volume: 13
  start-page: 839
  year: 2016
  ident: 10.1016/j.jenvman.2021.112015_bib64
  article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0614-1
– year: 2015
  ident: 10.1016/j.jenvman.2021.112015_bib14
– volume: 609
  start-page: 764
  year: 2017
  ident: 10.1016/j.jenvman.2021.112015_bib53
  article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.07.198
– volume: 32
  start-page: 3388
  year: 2013
  ident: 10.1016/j.jenvman.2021.112015_bib42
  article-title: A tutorial on propensity score estimation for multiple treatments using generalized boosted models
  publication-title: Stat. Med.
  doi: 10.1002/sim.5753
– start-page: 1
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib12
  article-title: Assessing the importance of static and dynamic causative factors on erosion potentiality using SWAT, EBF with uncertainty and plausibility, logistic regression and novel ensemble model in a sub-tropical environment
  publication-title: Journal of the Indian Society of Remote Sensing
– volume: 330
  start-page: 65
  year: 2018
  ident: 10.1016/j.jenvman.2021.112015_bib28
  article-title: Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.05.027
– start-page: 1100
  year: 2017
  ident: 10.1016/j.jenvman.2021.112015_bib31
  article-title: Crude oil price forecasting using XGBoost
– volume: 11
  start-page: 999
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib5
  article-title: Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR-RF integrated model and multiresolution DEMs
  publication-title: Rem. Sens.
  doi: 10.3390/rs11090999
– year: 2014
  ident: 10.1016/j.jenvman.2021.112015_bib21
– volume: 688
  start-page: 903
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib6
  article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.06.205
– volume: 12
  start-page: 2180
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib66
  article-title: Optimization of computational intelligence models for landslide susceptibility evaluation
  publication-title: Rem. Sens.
  doi: 10.3390/rs12142180
– volume: 82
  start-page: 1231
  year: 2016
  ident: 10.1016/j.jenvman.2021.112015_bib54
  article-title: Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2239-7
– volume: 32
  start-page: 1770
  year: 2007
  ident: 10.1016/j.jenvman.2021.112015_bib35
  article-title: Use of terrain variables for mapping gully erosion susceptibility in Lebanon
  publication-title: Earth Surf. Process. Landforms: The Journal of the British Geomorphological Research Group
  doi: 10.1002/esp.1501
– volume: 12
  start-page: 2478
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib38
  article-title: GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran
  publication-title: Rem. Sens.
  doi: 10.3390/rs12152478
– volume: 12
  start-page: 325
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib63
  article-title: Hybrid computational intelligence methods for landslide susceptibility mapping
  publication-title: Symmetry
  doi: 10.3390/sym12030325
– volume: 10
  start-page: 16
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib65
  article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques
  publication-title: Appl. Sci.
  doi: 10.3390/app10010016
– start-page: 785
  year: 2016
  ident: 10.1016/j.jenvman.2021.112015_bib15
  article-title: Xgboost: a scalable tree boosting system
– volume: 65
  start-page: 1466
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib19
  article-title: Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2019.12.003
– volume: 15
  start-page: 27
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib10
  article-title: A machine learning framework for sport result prediction
  publication-title: Applied computing informatics
  doi: 10.1016/j.aci.2017.09.005
– volume: 88
  start-page: 243
  year: 2007
  ident: 10.1016/j.jenvman.2021.112015_bib23
  article-title: Boosted trees for ecological modeling and prediction
  publication-title: Ecology
  doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
– volume: 17
  start-page: 1
  year: 2010
  ident: 10.1016/j.jenvman.2021.112015_bib7
  article-title: Assessment of GIS and RS applications to estimate soil erosion and sediment loading by using RUSLE model (Case Study: upstream basin of Ilam dam)
  publication-title: J. Soil Water Conserv.
– volume: 4
  start-page: 711
  year: 2017
  ident: 10.1016/j.jenvman.2021.112015_bib50
  article-title: Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India
  publication-title: Environmental Processes
  doi: 10.1007/s40710-017-0248-5
– volume: 32
  start-page: 1607
  year: 2012
  ident: 10.1016/j.jenvman.2021.112015_bib22
  publication-title: Risk Anal.: Int. J.
  doi: 10.1111/j.1539-6924.2012.01792.x
– volume: 195
  start-page: 104777
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib16
  article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104777
– volume: 25
  start-page: 399
  year: 2017
  ident: 10.1016/j.jenvman.2021.112015_bib48
  article-title: Application of RUSLE model for soil loss estimation of Jaipanda watershed, West Bengal
  publication-title: Spatial Information Research
  doi: 10.1007/s41324-017-0107-5
– volume: 662
  start-page: 332
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib24
  article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.01.221
– start-page: 197
  year: 2010
  ident: 10.1016/j.jenvman.2021.112015_bib61
– volume: 12
  start-page: 113
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib41
  article-title: Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques
  publication-title: Water
  doi: 10.3390/w12010113
– volume: 104
  start-page: 1259
  year: 2020
  ident: 10.1016/j.jenvman.2021.112015_bib13
  article-title: Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-020-04213-3
– volume: 78
  start-page: 649
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib59
  article-title: Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-019-8658-5
– volume: 655
  start-page: 684
  year: 2019
  ident: 10.1016/j.jenvman.2021.112015_bib8
  article-title: Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.235
– volume: 153
  start-page: 473
  year: 2014
  ident: 10.1016/j.jenvman.2021.112015_bib43
  article-title: The use of generalized linear models and generalized estimating equations in bioarchaeological studies
  publication-title: Am. J. Phys. Anthropol.
  doi: 10.1002/ajpa.22448
SSID ssj0003217
Score 2.6259422
Snippet The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 112015
SubjectTerms altitude
Climatic factors
Conservation of Natural Resources
data collection
Deep Learning
environmental management
gully erosion
Gully head-cut erosion
Humans
Internet
inventories
Iran
issues and policy
land use
Machine Learning
morphometry
prediction
Predictive accuracy
regression analysis
Soil
Soil conservation
watersheds
Title Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility
URI https://dx.doi.org/10.1016/j.jenvman.2021.112015
https://www.ncbi.nlm.nih.gov/pubmed/33515838
https://www.proquest.com/docview/2483817962
https://www.proquest.com/docview/2524233814
Volume 284
WOSCitedRecordID wos000621652400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW2DsFeEAwG5WMyEm9VyhI7jf04TUWA0ITQgL5FieN0rdq0atqq_BV-Dr-M668kWymDB16iyI6dROfEPje-9xqh15JwX0hOvTTnqQczvvBS4IlH0x47TUQuenrnua8fo4sLNhjwT3t7P10szHoSFQXbbPj8v0INZQC2Cp39B7irTqEAzgF0OALscPwr4PtV_m4lBN0GKMsOyOlS-ziD4SqnKmBqqh0ppds5Ymi2xTFJm4vZWk46mZTzulqVV73kzqtLOyrCkJ55YrXsDMGk_d6RMPeqByhXpXab0R641xaQG0K4EWunQlm2_HHObQDJNzmq3Ye0E8JgVGyA3sMbPgpgUZitDj4n6ahoVBbZIgHNPDHuSOksu2r-9Ah8tX5jwj670gzUIA091rNrOnYkDxhtjMWgJE9Nm61pwvyxGHfH8IbwWl11i-729QDsfKppQgjoPmby0NzIz-2q9tFBEIWctdDB2fv-4EOlBwhYfXXs2Jvf3vUQ3XX97BJIuwwgLYQuH6D7Fjh8Zpj3EO3J4gjdcwHu5RE67jcBxXb2KB-hHzU18SzHFTWxIxV21MSWmthxDxtqYoAQa2piRc26WpVXvVTUxEBN7KiJNTWxpSa-Ts3H6Mvb_uX5O8_uDeIJwtnSEyznYQ7inESMEiqSIEiTUOZg_QuWpVFCQi4YoYyzQEaZnzMRZkT4UMMSIig5Rq1iVsinCKcJSGzqJ0EmQpVsiflUZFkKTUIRRLLXRtQBEgubOF_t3zKJnYfkOLaQxgrS2EDaRt2q2dxkjrmtAXNox1b-GlkbA21va_rKsSOG6UGt-SWFnK3KOKBM5eDkveAP14TKqILLaBs9MdSqntix8tnOmufosP5CX6DWcrGSL9EdsV6OysUJ2o8G7MR-Er8Arcb3ag
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+different+boosting+ensemble+machine+learning+models+and+novel+deep+learning+and+boosting+framework+for+head-cut+gully+erosion+susceptibility&rft.jtitle=Journal+of+environmental+management&rft.au=Chen%2C+Wei&rft.au=Lei%2C+Xinxiang&rft.au=Chakrabortty%2C+Rabin&rft.au=Chandra+Pal%2C+Subodh&rft.date=2021-04-15&rft.eissn=1095-8630&rft.volume=284&rft.spage=112015&rft_id=info:doi/10.1016%2Fj.jenvman.2021.112015&rft_id=info%3Apmid%2F33515838&rft.externalDocID=33515838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon