Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility
The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activit...
Uložené v:
| Vydané v: | Journal of environmental management Ročník 284; s. 112015 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
15.04.2021
|
| Predmet: | |
| ISSN: | 0301-4797, 1095-8630, 1095-8630 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities.
[Display omitted]
•The gully erosion susceptibility map created at a regional scale using GIS.•BT, BGLM, BRT, XGB, and DB models used for gully erosion modelling.•The proposed models present >90% prediction accuracy.•Predicted maps can be used by policy makers for in-situ soil conservation. |
|---|---|
| AbstractList | The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities. The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities. The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities. [Display omitted] •The gully erosion susceptibility map created at a regional scale using GIS.•BT, BGLM, BRT, XGB, and DB models used for gully erosion modelling.•The proposed models present >90% prediction accuracy.•Predicted maps can be used by policy makers for in-situ soil conservation. The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities.The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In recent years, this study area has been greatly influenced by several head-cut gullies due to unusual climatic factors and human induced activity. The present study is therefore intended to address this issue by developing head-cut gully erosion prediction maps using boosting ensemble machine learning algorithms, namely Boosted Tree (BT), Boosted Generalized Linear Models (BGLM), Boosted Regression Tree (BRT), Extreme Gradient Boosting (XGB), and Deep Boost (DB). Initially, we produced a gully erosion inventory map using a variety of resources, including published reports, Google Earth images, and field records of the Global Positioning System (GPS). Subsequently, we distributed this information randomly and choose 70% (102) of the test gullies and the remaining 30% (43) for validation. The methodology was designed using morphometric and thematic determinants, including 14 head-cut gully erosion conditioning features. We have also investigated the following: (a) Multi-collinearity analysis to determine the linearity of the independent variables, (b) Predictive capability of piping models using train and test dataset and (c) Variables importance affecting head-cut gully erosion. The study reveals that altitude, land use, distances from road and soil characteristics influenced the method with the greatest impact on head-cut gully erosion susceptibility. We presented five head-cut gully erosion susceptibility maps and investigated their predictive accuracy through area under curve (AUC). The AUC test reveals that the DB machine learning method demonstrated significantly higher accuracy (AUC = 0.95) than the BT (AUC = 0.93), BGLM (AUC = 0.91), BRT (AUC = 0.94) and XGB (AUC = 0.92) approaches. The predicted head-cut gully erosion susceptibility maps can be used by policy makers and local authorities for soil conservation and to prevent threats to human activities. |
| ArticleNumber | 112015 |
| Author | Chen, Wei Chakrabortty, Rabin Chandra Pal, Subodh Lei, Xinxiang Sahana, Mehebub Janizadeh, Saeid |
| Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei email: chenwei.0930@163.com organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China – sequence: 2 givenname: Xinxiang surname: Lei fullname: Lei, Xinxiang email: 19209071003@stu.xust.edu.cn organization: College of Geology & Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China – sequence: 3 givenname: Rabin surname: Chakrabortty fullname: Chakrabortty, Rabin email: rabingeo8@gmail.com organization: Department of Geography, The University of Burdwan, West Bengal, India – sequence: 4 givenname: Subodh orcidid: 0000-0003-0805-8007 surname: Chandra Pal fullname: Chandra Pal, Subodh email: geo.subodh@gmail.com, geo.subodh@gmail.com organization: Department of Geography, The University of Burdwan, West Bengal, India – sequence: 5 givenname: Mehebub surname: Sahana fullname: Sahana, Mehebub email: mehebubsahana@gmail.com organization: Research Associate, School of Environment, Education & Development, University of Manchester, UK – sequence: 6 givenname: Saeid surname: Janizadeh fullname: Janizadeh, Saeid email: Janizadeh.saeed@gmail.com organization: Department of Watershed Management Engineering and Sciences, Faculty in Natural Resources and Marine Science, Tarbiat Modares University, Tehran, 14115-111, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33515838$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1vFCEYx4mpsdvqR9Bw9DIrL8MOEw_GNPUlaeJFz4SBh5aVgRWYbfar-GmdcbeaeKknEv4vPDy_C3QWUwSEXlKypoRu3mzXW4j7Ucc1I4yuKWWEiidoRUkvGrnh5AytCCe0abu-O0cXpWwJIZzR7hk651xQIblcoZ_Xex0mXX2KODlsvXOQIVY8pFSqj7cYYoFxCIBHbe58BBxA57goY7IQCtbR4pj2ELAF2P2Vl_s_LS7rEe5T_o5dyvgOtG3MVPHtFMIBQ05lGaBMxcCu-sEHXw_P0VOnQ4EXp_MSfftw_fXqU3Pz5ePnq_c3jeG9rI2RrheOCco72fLWaMYGLcDRTWukHTrNRW8kb2UvGXSWOmmE5YbOitTctPwSvT727nL6MUGpavTzHCHoCGkqignWMs4l_Q9rOy-Vdv2GzdZXJ-s0jGDVLvtR54N6WP1seHs0mPn3JYNTxtffIGrWPihK1AJabdUJtFpAqyPoOS3-ST888Fju3TE3k4O9h6yK8RANWJ_BVGWTf6ThFwB1yHg |
| CitedBy_id | crossref_primary_10_1002_esp_5833 crossref_primary_10_1007_s11356_024_34245_2 crossref_primary_10_1109_JSEN_2021_3066037 crossref_primary_10_3390_su16156569 crossref_primary_10_1007_s12665_023_11190_w crossref_primary_10_1080_10106049_2021_1920635 crossref_primary_10_3390_bioengineering11010090 crossref_primary_10_1016_j_scitotenv_2023_165289 crossref_primary_10_2489_jswc_2023_00019 crossref_primary_10_1016_j_catena_2024_108186 crossref_primary_10_1016_j_compbiomed_2025_110104 crossref_primary_10_1016_j_jenvman_2024_124011 crossref_primary_10_1007_s10064_022_02806_9 crossref_primary_10_1016_j_geomorph_2021_108027 crossref_primary_10_1016_j_neucom_2024_129197 crossref_primary_10_1016_j_jhazmat_2021_127437 crossref_primary_10_1007_s00477_025_03042_9 crossref_primary_10_3390_soilsystems7020050 crossref_primary_10_1016_j_jclepro_2022_130407 crossref_primary_10_3390_rs16050921 crossref_primary_10_1016_j_geoderma_2024_117053 crossref_primary_10_1016_j_still_2025_106595 crossref_primary_10_1007_s10668_021_01576_w crossref_primary_10_1016_j_geoderma_2025_117396 crossref_primary_10_3390_computers13070157 crossref_primary_10_1007_s12665_021_10033_w crossref_primary_10_1016_j_catena_2023_107781 crossref_primary_10_3390_su16103917 crossref_primary_10_1016_j_geoderma_2021_115379 crossref_primary_10_1016_j_catena_2022_106798 crossref_primary_10_1080_10106049_2021_2005698 crossref_primary_10_1007_s42454_024_00053_9 crossref_primary_10_1007_s13762_022_04665_z crossref_primary_10_1016_j_asr_2025_07_073 crossref_primary_10_1007_s11069_023_06363_6 crossref_primary_10_3390_jcm12134375 crossref_primary_10_1038_s41598_023_30028_w crossref_primary_10_1007_s11069_022_05520_7 crossref_primary_10_1016_j_ecolind_2023_109904 crossref_primary_10_1016_j_rineng_2025_104307 crossref_primary_10_1371_journal_pone_0322442 crossref_primary_10_1007_s10115_024_02125_3 crossref_primary_10_15446_esrj_v25n4_95748 crossref_primary_10_1016_j_asr_2023_10_051 crossref_primary_10_1007_s11069_024_07026_w crossref_primary_10_1016_j_catena_2024_108590 crossref_primary_10_1016_j_geoderma_2024_117034 crossref_primary_10_3390_rs14112580 crossref_primary_10_3389_fenvs_2023_1187658 crossref_primary_10_3390_rs16244742 crossref_primary_10_1007_s12517_021_09005_y crossref_primary_10_1007_s12517_022_10566_9 crossref_primary_10_1016_j_catena_2023_106953 crossref_primary_10_1016_j_geomorph_2023_108671 crossref_primary_10_3390_app13053210 crossref_primary_10_54097_wd8c8r08 crossref_primary_10_1007_s11069_021_04971_8 crossref_primary_10_1177_10815589231171404 crossref_primary_10_1016_j_jenvman_2021_113551 crossref_primary_10_3390_su15021325 crossref_primary_10_1007_s11356_021_17265_0 crossref_primary_10_1016_j_catena_2023_107695 crossref_primary_10_1002_suco_202200850 crossref_primary_10_1016_j_techsoc_2023_102427 crossref_primary_10_1007_s40430_023_04344_1 crossref_primary_10_1016_j_asr_2022_02_027 crossref_primary_10_1016_j_jenvman_2022_115602 crossref_primary_10_1016_j_heliyon_2023_e14518 crossref_primary_10_1080_10106049_2022_2071473 crossref_primary_10_1016_j_jag_2024_104305 crossref_primary_10_1016_j_jenvman_2022_115181 crossref_primary_10_1111_jfr3_12905 crossref_primary_10_1007_s11069_021_04986_1 crossref_primary_10_1080_10106049_2022_2076924 crossref_primary_10_1080_10106049_2021_1996641 crossref_primary_10_1080_10106049_2021_1926558 crossref_primary_10_1016_j_scitotenv_2023_166960 crossref_primary_10_1007_s11069_021_04862_y crossref_primary_10_1016_j_jenvman_2024_121291 crossref_primary_10_1016_j_ecolind_2024_112348 crossref_primary_10_1080_10106049_2021_1939439 crossref_primary_10_1007_s12665_021_09889_9 crossref_primary_10_1016_j_jhydrol_2025_132840 crossref_primary_10_3390_su131810110 crossref_primary_10_1007_s12145_025_01995_7 crossref_primary_10_1016_j_brainres_2022_148131 crossref_primary_10_1080_10106049_2021_1953618 crossref_primary_10_3390_s25092881 crossref_primary_10_1016_j_asr_2024_12_021 crossref_primary_10_1007_s11042_023_16874_w crossref_primary_10_1002_ldr_4721 crossref_primary_10_3390_biomimetics9070440 crossref_primary_10_1007_s12210_025_01362_0 crossref_primary_10_3389_feart_2023_1187384 crossref_primary_10_1002_gj_4709 crossref_primary_10_1016_j_jclepro_2025_145645 crossref_primary_10_1080_10106049_2022_2035830 crossref_primary_10_3390_land11101711 crossref_primary_10_1016_j_ecoinf_2021_101422 crossref_primary_10_1080_10106049_2022_2043452 crossref_primary_10_1080_10106049_2022_2076909 crossref_primary_10_1016_j_jenvman_2022_114589 crossref_primary_10_1038_s41598_025_03176_4 crossref_primary_10_1016_j_catena_2021_105344 crossref_primary_10_1016_j_catena_2024_108275 crossref_primary_10_1007_s10706_024_03031_9 crossref_primary_10_1111_pce_15393 |
| Cites_doi | 10.1111/j.1365-2656.2008.01390.x 10.1016/j.scitotenv.2019.02.436 10.3390/app7101000 10.1006/jcss.1997.1504 10.1177/1536867X0500500304 10.1016/j.ecolmodel.2009.06.020 10.1016/j.gsf.2019.10.001 10.1111/j.1365-2656.2011.01803.x 10.3390/rs12111890 10.1007/s00180-012-0382-5 10.1002/mp.14068 10.1007/s40808-018-0540-z 10.1016/j.catena.2006.05.014 10.1016/j.geomorph.2013.08.021 10.1016/S0341-8162(02)00143-1 10.1016/j.jclepro.2020.122757 10.1007/s12303-018-0067-3 10.3390/ijgi9070443 10.1016/j.catena.2019.04.032 10.1080/19475705.2020.1753824 10.1016/j.jhydrol.2020.124602 10.1016/j.indcrop.2020.112515 10.1016/j.ejor.2016.10.031 10.1007/s42452-019-0422-7 10.1016/j.asr.2019.04.033 10.1007/s10346-015-0614-1 10.1016/j.scitotenv.2017.07.198 10.1002/sim.5753 10.1016/j.geoderma.2018.05.027 10.3390/rs11090999 10.1016/j.scitotenv.2019.06.205 10.3390/rs12142180 10.1007/s11069-016-2239-7 10.1002/esp.1501 10.3390/rs12152478 10.3390/sym12030325 10.3390/app10010016 10.1016/j.asr.2019.12.003 10.1016/j.aci.2017.09.005 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 10.1007/s40710-017-0248-5 10.1111/j.1539-6924.2012.01792.x 10.1016/j.catena.2020.104777 10.1007/s41324-017-0107-5 10.1016/j.scitotenv.2019.01.221 10.3390/w12010113 10.1007/s11069-020-04213-3 10.1007/s12665-019-8658-5 10.1016/j.scitotenv.2018.11.235 10.1002/ajpa.22448 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jenvman.2021.112015 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1095-8630 |
| ExternalDocumentID | 33515838 10_1016_j_jenvman_2021_112015 S0301479721000773 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AAEDT AAEDW AAFJI AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ACDAQ ACGFO ACGFS ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOMHK APXCP AVARZ AXJTR BELTK BKOJK BKOMP BLECG BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 ROL RPZ RXW SCC SDF SDG SDP SEN SES SPC SPCBC SSB SSH SSJ SSO SSR SSZ T5K TAE TWZ WH7 XSW Y6R YK3 ZCA ZU3 ~02 ~G- ~KM 29K 3EH 53G 9DU AAQXK AAYJJ AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ADFGL ADMUD ADNMO ADXHL AFJKZ AGQPQ AI. AIDBO ASPBG AVWKF AZFZN CAG CITATION COF D-I EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SEW UHS UQL VH1 WUQ XPP YV5 ZMT ZY4 ~HD AACTN AFKWA AJOXV AMFUW CGR CUY CVF ECM EIF NPM YIN 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c398t-c8f95f251378434ca22ba5ef164c8db7a359c8348982e7d1f8c5d3c1b7a8a3c43 |
| ISICitedReferencesCount | 123 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621652400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-4797 1095-8630 |
| IngestDate | Thu Oct 02 21:46:12 EDT 2025 Wed Oct 01 08:23:40 EDT 2025 Wed Feb 19 02:29:31 EST 2025 Tue Nov 18 22:31:00 EST 2025 Sat Nov 29 06:56:19 EST 2025 Sat Jun 21 16:53:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Climatic factors Predictive accuracy Gully head-cut erosion Soil conservation |
| Language | English |
| License | Copyright © 2021 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c398t-c8f95f251378434ca22ba5ef164c8db7a359c8348982e7d1f8c5d3c1b7a8a3c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0805-8007 |
| PMID | 33515838 |
| PQID | 2483817962 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2524233814 proquest_miscellaneous_2483817962 pubmed_primary_33515838 crossref_citationtrail_10_1016_j_jenvman_2021_112015 crossref_primary_10_1016_j_jenvman_2021_112015 elsevier_sciencedirect_doi_10_1016_j_jenvman_2021_112015 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-15 |
| PublicationDateYYYYMMDD | 2021-04-15 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of environmental management |
| PublicationTitleAlternate | J Environ Manage |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Lei, Chen, Shahabi, Shirzadi (bib63) 2020; 12 Schonlau (bib60) 2005; 5 Gheisarnejad, Farsizadeh, Tavana, Khooban (bib30) 2020 Azareh, Rahmati, Rafiei-Sardooi, Sankey, Lee, Shahabi (bib8) 2019; 655 Bunker, Thabtah (bib10) 2019; 15 Conoscenti, Angileri, Cappadonia, Rotigliano, Agnesi, rker (bib20) 2014; 204 Boinee (bib9) 2006 Chen, He, Benesty, Khotilovich, Tang, Cho (bib14) 2015 Lesschen, Kok, Verburg, Cammeraat (bib40) 2007; 71 Arabameri, Asadi Nalivan, Saha, Roy, Pradhan, Tiefenbacher (bib2) 2020; 12 Freund, Schapire (bib27) 1997; 55 McCaffrey, Griffin, Almirall, Slaughter, Ramchand, Burgette (bib42) 2013; 32 De'Ath (bib23) 2007; 88 Chen, Guestrin (bib15) 2016 Cherif, Kortebi (bib18) 2019 Razavi-Termeh, Sadeghi-Niaraki, Choi (bib55) 2020; 11 Pal, Chowdhuri (bib47) 2019; 1 Oh, Lee (bib44) 2017; 7 Garosi, Sheklabadi, Pourghasemi, Besalatpour, Conoscenti, Van Oost (bib28) 2018; 330 Rahmati, Haghizadeh, Pourghasemi, Noormohamadi (bib54) 2016; 82 Wang, Chen, Lu, Zhang, Pan, Bao, Su, Qian (bib62) 2020; 47 Cox (bib22) 2012; 32 Peng, Lin, Zhang, Xu (bib49) 2014 Roy, Chakrabortty, Chowdhuri, Malik, Das, Pal (bib57) 2020 Nikita (bib43) 2014; 153 Zhao, Chen (bib65) 2020; 10 Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (bib64) 2016; 13 Arabameri, Pradhan, Rezaei (bib3) 2019; 23 Pham, Khosravi, Prakash (bib50) 2017; 4 Pourghasemi, Yousefi, Kornejady, Cerd (bib53) 2017; 609 Kuznetsov, Mohri, Syed (bib37) 2014 Pal, Chakrabortty (bib46) 2019; 64 Chen, Zhao, Tsangaratos, Shahabi, Ilia, Xue (bib17) 2020; 583 Gumus, Kiran (bib31) 2017 Ridgeway (bib56) 1999 Chen, Li (bib16) 2020; 195 Roy, Pal, Chakrabortty, Chowdhuri, Malik, Das (bib58) 2020 Saha, Gayen, Pourghasemi, Tiefenbacher (bib59) 2019; 78 Achour, Pourghasemi (bib1) 2020; 11 Chakrabortty, Pal, Sahana, Mondal, Dou, Pham, Yunus (bib13) 2020; 104 Hofner, Mayr, Robinzonov, Schmid (bib34) 2014; 29 Chowdhuri, Pal, Chakrabortty (bib19) 2020; 65 Lei, Chen, Pham (bib39) 2020; 9 Gayen, Pourghasemi, Saha, Keesstra, Bai (bib29) 2019; 668 Friedman (bib26) 2001 Lei, Chen, Avand, Janizadeh, Kariminejad, Shahabi (bib38) 2020; 12 Arabameri, Pradhan, Rezaei, Conoscenti (bib4) 2019; 180 Gutiérrez, Schnabel, Contador (bib32) 2009; 220 Poesen (bib51) 1993 Zhao, Chen (bib66) 2020; 12 Tutz, Groll (bib61) 2010 Arekhi, Niazi (bib7) 2010; 17 Buston, Elith (bib11) 2011; 80 Pal, Shit (bib48) 2017; 25 Elith, Leathwick, Hastie (bib25) 2008; 77 Pal, Chakrabortty (bib45) 2019; 5 Kheir, Wilson, Deng (bib35) 2007; 32 Poesen, Nachtergaele, Verstraeten, Valentin (bib52) 2003; 50 Cortes, Mohri, Syed (bib21) 2014 Huang, Feng, Lin, Pu, Tan, Tu, Han, Hou, Zhang, Zhang (bib33) 2020; 152 Dou, Yunus, Bui, Merghadi, Sahana, Zhu (bib24) 2019; 662 Krauss, Do, Huck (bib36) 2017; 259 Chakrabortty, Pal, Chowdhuri, Malik, Das (bib12) 2020 Arabameri, Pradhan, Rezaei, Lee (bib5) 2019; 11 Li, Chen (bib41) 2020; 12 Arabameri, Yamani, Pradhan, Melesse, Shirani, Bui (bib6) 2019; 688 Buston (10.1016/j.jenvman.2021.112015_bib11) 2011; 80 Li (10.1016/j.jenvman.2021.112015_bib41) 2020; 12 Boinee (10.1016/j.jenvman.2021.112015_bib9) 2006 Chen (10.1016/j.jenvman.2021.112015_bib17) 2020; 583 Pal (10.1016/j.jenvman.2021.112015_bib45) 2019; 5 Roy (10.1016/j.jenvman.2021.112015_bib58) 2020 Zhao (10.1016/j.jenvman.2021.112015_bib66) 2020; 12 Azareh (10.1016/j.jenvman.2021.112015_bib8) 2019; 655 Freund (10.1016/j.jenvman.2021.112015_bib27) 1997; 55 McCaffrey (10.1016/j.jenvman.2021.112015_bib42) 2013; 32 Pal (10.1016/j.jenvman.2021.112015_bib48) 2017; 25 Arabameri (10.1016/j.jenvman.2021.112015_bib2) 2020; 12 Tutz (10.1016/j.jenvman.2021.112015_bib61) 2010 Lesschen (10.1016/j.jenvman.2021.112015_bib40) 2007; 71 Peng (10.1016/j.jenvman.2021.112015_bib49) 2014 Roy (10.1016/j.jenvman.2021.112015_bib57) 2020 Conoscenti (10.1016/j.jenvman.2021.112015_bib20) 2014; 204 Arabameri (10.1016/j.jenvman.2021.112015_bib4) 2019; 180 Cherif (10.1016/j.jenvman.2021.112015_bib18) 2019 Poesen (10.1016/j.jenvman.2021.112015_bib52) 2003; 50 Rahmati (10.1016/j.jenvman.2021.112015_bib54) 2016; 82 Wang (10.1016/j.jenvman.2021.112015_bib63) 2020; 12 Pourghasemi (10.1016/j.jenvman.2021.112015_bib53) 2017; 609 Cox (10.1016/j.jenvman.2021.112015_bib22) 2012; 32 Garosi (10.1016/j.jenvman.2021.112015_bib28) 2018; 330 Huang (10.1016/j.jenvman.2021.112015_bib33) 2020; 152 Pal (10.1016/j.jenvman.2021.112015_bib46) 2019; 64 Hofner (10.1016/j.jenvman.2021.112015_bib34) 2014; 29 Friedman (10.1016/j.jenvman.2021.112015_bib26) 2001 Elith (10.1016/j.jenvman.2021.112015_bib25) 2008; 77 Chen (10.1016/j.jenvman.2021.112015_bib14) 2015 Krauss (10.1016/j.jenvman.2021.112015_bib36) 2017; 259 Razavi-Termeh (10.1016/j.jenvman.2021.112015_bib55) 2020; 11 Chowdhuri (10.1016/j.jenvman.2021.112015_bib19) 2020; 65 Arekhi (10.1016/j.jenvman.2021.112015_bib7) 2010; 17 Lei (10.1016/j.jenvman.2021.112015_bib39) 2020; 9 Poesen (10.1016/j.jenvman.2021.112015_bib51) 1993 Youssef (10.1016/j.jenvman.2021.112015_bib64) 2016; 13 Zhao (10.1016/j.jenvman.2021.112015_bib65) 2020; 10 Saha (10.1016/j.jenvman.2021.112015_bib59) 2019; 78 Arabameri (10.1016/j.jenvman.2021.112015_bib3) 2019; 23 Ridgeway (10.1016/j.jenvman.2021.112015_bib56) 1999 Gumus (10.1016/j.jenvman.2021.112015_bib31) 2017 Arabameri (10.1016/j.jenvman.2021.112015_bib6) 2019; 688 Lei (10.1016/j.jenvman.2021.112015_bib38) 2020; 12 Chakrabortty (10.1016/j.jenvman.2021.112015_bib12) 2020 Oh (10.1016/j.jenvman.2021.112015_bib44) 2017; 7 Chen (10.1016/j.jenvman.2021.112015_bib15) 2016 Gheisarnejad (10.1016/j.jenvman.2021.112015_bib30) 2020 Achour (10.1016/j.jenvman.2021.112015_bib1) 2020; 11 Bunker (10.1016/j.jenvman.2021.112015_bib10) 2019; 15 Cortes (10.1016/j.jenvman.2021.112015_bib21) 2014 Kheir (10.1016/j.jenvman.2021.112015_bib35) 2007; 32 Chen (10.1016/j.jenvman.2021.112015_bib16) 2020; 195 Pham (10.1016/j.jenvman.2021.112015_bib50) 2017; 4 Dou (10.1016/j.jenvman.2021.112015_bib24) 2019; 662 De'Ath (10.1016/j.jenvman.2021.112015_bib23) 2007; 88 Kuznetsov (10.1016/j.jenvman.2021.112015_bib37) 2014 Schonlau (10.1016/j.jenvman.2021.112015_bib60) 2005; 5 Wang (10.1016/j.jenvman.2021.112015_bib62) 2020; 47 Chakrabortty (10.1016/j.jenvman.2021.112015_bib13) 2020; 104 Gutiérrez (10.1016/j.jenvman.2021.112015_bib32) 2009; 220 Pal (10.1016/j.jenvman.2021.112015_bib47) 2019; 1 Gayen (10.1016/j.jenvman.2021.112015_bib29) 2019; 668 Arabameri (10.1016/j.jenvman.2021.112015_bib5) 2019; 11 Nikita (10.1016/j.jenvman.2021.112015_bib43) 2014; 153 |
| References_xml | – volume: 32 start-page: 1770 year: 2007 end-page: 1782 ident: bib35 article-title: Use of terrain variables for mapping gully erosion susceptibility in Lebanon publication-title: Earth Surf. Process. Landforms: The Journal of the British Geomorphological Research Group – start-page: 785 year: 2016 end-page: 794 ident: bib15 article-title: Xgboost: a scalable tree boosting system publication-title: Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining – start-page: 1 year: 2020 end-page: 25 ident: bib12 article-title: Assessing the importance of static and dynamic causative factors on erosion potentiality using SWAT, EBF with uncertainty and plausibility, logistic regression and novel ensemble model in a sub-tropical environment publication-title: Journal of the Indian Society of Remote Sensing – volume: 88 start-page: 243 year: 2007 end-page: 251 ident: bib23 article-title: Boosted trees for ecological modeling and prediction publication-title: Ecology – start-page: 1 year: 2020 end-page: 26 ident: bib57 article-title: Development of different machine learning ensemble classifier for gully erosion susceptibility in gandheswari watershed of West Bengal, India publication-title: Machine Learning for Intelligent Decision Science, Algorithms for Intelligent Systems – start-page: 1100 year: 2017 end-page: 1103 ident: bib31 article-title: Crude oil price forecasting using XGBoost publication-title: International Conference on Computer Science and Engineering (UBMK) – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: bib27 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. – start-page: 122757 year: 2020 ident: bib58 article-title: Threats of climate and land use change on future flood susceptibility publication-title: J. Clean. Prod. – volume: 64 start-page: 352 year: 2019 end-page: 377 ident: bib46 article-title: Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model publication-title: Adv. Space Res. – volume: 583 start-page: 124602 year: 2020 ident: bib17 article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping publication-title: J. Hydrol. – volume: 104 start-page: 1259 year: 2020 end-page: 1294 ident: bib13 article-title: Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India publication-title: Nat. Hazards – volume: 668 start-page: 124 year: 2019 end-page: 138 ident: bib29 article-title: Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms publication-title: Sci. Total Environ. – volume: 152 start-page: 112515 year: 2020 ident: bib33 article-title: Significant boost in xylose yield and enhanced economic value with one-pot process using deep eutectic solvent for the pretreatment and saccharification of rice straw publication-title: Ind. Crop. Prod. – start-page: 197 year: 2010 end-page: 215 ident: bib61 article-title: Generalized Linear Mixed Models Based on Boosting. Statistical Modelling and Regression Structures – volume: 32 start-page: 1607 year: 2012 end-page: 1629 ident: bib22 article-title: Rationally, each latest model focuses its attention on more complicated findings to match up until now, because then and at end of the program we produce a good lesser biased learner. As base models for boosting, we have to choose the less complicated and less variance models with that may be associated with bias publication-title: Risk Anal.: Int. J. – year: 2015 ident: bib14 article-title: Xgboost: extreme Gradient Boosting – volume: 32 start-page: 3388 year: 2013 end-page: 3414 ident: bib42 article-title: A tutorial on propensity score estimation for multiple treatments using generalized boosted models publication-title: Stat. Med. – year: 2006 ident: bib9 article-title: Insights into Machine Learning: Data Clustering and Classification Algorithms for Astrophysical Experiments – start-page: 2501 year: 2014 end-page: 2509 ident: bib37 article-title: Multi-class deep boosting publication-title: Advances in Neural Information Processing Systems – volume: 12 start-page: 325 year: 2020 ident: bib63 article-title: Hybrid computational intelligence methods for landslide susceptibility mapping publication-title: Symmetry – volume: 7 start-page: 1000 year: 2017 ident: bib44 article-title: Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree publication-title: Appl. Sci. – volume: 12 start-page: 2478 year: 2020 ident: bib38 article-title: GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran publication-title: Rem. Sens. – volume: 204 start-page: 399 year: 2014 end-page: 411 ident: bib20 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy) publication-title: Geomorphology – volume: 5 start-page: 330 year: 2005 end-page: 354 ident: bib60 article-title: Boosted regression (boosting): an introductory tutorial and a Stata plugin publication-title: STATA J. – volume: 688 start-page: 903 year: 2019 end-page: 916 ident: bib6 article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility publication-title: Sci. Total Environ. – volume: 47 start-page: 1738 year: 2020 end-page: 1749 ident: bib62 article-title: Feature‐shared adaptive‐boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images publication-title: Med. Phys. – volume: 12 start-page: 1890 year: 2020 ident: bib2 article-title: Novel ensemble approaches of machine learning techniques in modeling the gully erosion susceptibility publication-title: Rem. Sens. – volume: 195 start-page: 104777 year: 2020 ident: bib16 article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models publication-title: Catena – volume: 50 start-page: 91 year: 2003 end-page: 133 ident: bib52 article-title: Gully erosion and environmental change: importance and research needs publication-title: Catena – volume: 15 start-page: 27 year: 2019 end-page: 33 ident: bib10 article-title: A machine learning framework for sport result prediction publication-title: Applied computing informatics – volume: 259 start-page: 689 year: 2017 end-page: 702 ident: bib36 article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: Eur. J. Oper. Res. – volume: 9 start-page: 443 year: 2020 ident: bib39 article-title: Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis publication-title: ISPRS Int. J. Geo-Inf. – volume: 23 start-page: 669 year: 2019 end-page: 686 ident: bib3 article-title: Spatial prediction of gully erosion using ALOS PALSAR data and ensemble bivariate and data mining models publication-title: Geosciences – volume: 80 start-page: 528 year: 2011 end-page: 538 ident: bib11 article-title: Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis publication-title: J. Anim. Ecol. – volume: 4 start-page: 711 year: 2017 end-page: 730 ident: bib50 article-title: Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India publication-title: Environmental Processes – volume: 153 start-page: 473 year: 2014 end-page: 483 ident: bib43 article-title: The use of generalized linear models and generalized estimating equations in bioarchaeological studies publication-title: Am. J. Phys. Anthropol. – start-page: 1 year: 2014 end-page: 6 ident: bib49 article-title: Deep boosting: layered feature mining for general image classification publication-title: IEEE International Conference on Multimedia and Expo (ICME) – volume: 10 start-page: 16 year: 2020 ident: bib65 article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques publication-title: Appl. Sci. – volume: 655 start-page: 684 year: 2019 end-page: 696 ident: bib8 article-title: Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models publication-title: Sci. Total Environ. – year: 2014 ident: bib21 article-title: Deep Boosting – volume: 1 start-page: 416 year: 2019 ident: bib47 article-title: GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India publication-title: SN Applied Sciences – volume: 330 start-page: 65 year: 2018 end-page: 78 ident: bib28 article-title: Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping publication-title: Geoderma – volume: 220 start-page: 3630 year: 2009 end-page: 3637 ident: bib32 article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies publication-title: Ecol. Model. – volume: 82 start-page: 1231 year: 2016 end-page: 1258 ident: bib54 article-title: Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison publication-title: Nat. Hazards – volume: 13 start-page: 839 year: 2016 end-page: 856 ident: bib64 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides – volume: 29 start-page: 3 year: 2014 end-page: 35 ident: bib34 article-title: Model-based boosting in R: a hands-on tutorial using the R package mboost publication-title: Comput. Stat. – start-page: 221 year: 1993 end-page: 239 ident: bib51 article-title: Gully typology and gully control measures in the European loess belt. Farm land erosion in temperate plains environments hills publication-title: Proceedings – volume: 25 start-page: 399 year: 2017 end-page: 409 ident: bib48 article-title: Application of RUSLE model for soil loss estimation of Jaipanda watershed, West Bengal publication-title: Spatial Information Research – volume: 11 start-page: 871 year: 2020 end-page: 883 ident: bib1 article-title: How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? publication-title: Geoscience Frontiers – volume: 12 start-page: 113 year: 2020 ident: bib41 article-title: Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques publication-title: Water – year: 1999 ident: bib56 article-title: Generalization of Boosting Algorithms and Applications of Bayesian Inference for Massive Datasets – start-page: 1 year: 2020 ident: bib30 article-title: A novel deep learning controller for DC/DC buck-boost converters in wireless power transfer feeding CPLs publication-title: IEEE Trans. Ind. Electron. – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: bib25 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – volume: 12 start-page: 2180 year: 2020 ident: bib66 article-title: Optimization of computational intelligence models for landslide susceptibility evaluation publication-title: Rem. Sens. – volume: 180 start-page: 282 year: 2019 end-page: 297 ident: bib4 article-title: Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques publication-title: Catena – volume: 609 start-page: 764 year: 2017 end-page: 775 ident: bib53 article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling publication-title: Sci. Total Environ. – volume: 17 start-page: 1 year: 2010 end-page: 27 ident: bib7 article-title: Assessment of GIS and RS applications to estimate soil erosion and sediment loading by using RUSLE model (Case Study: upstream basin of Ilam dam) publication-title: J. Soil Water Conserv. – volume: 65 start-page: 1466 year: 2020 end-page: 1489 ident: bib19 article-title: Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India publication-title: Adv. Space Res. – volume: 11 start-page: 999 year: 2019 ident: bib5 article-title: Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR-RF integrated model and multiresolution DEMs publication-title: Rem. Sens. – start-page: 1 year: 2019 end-page: 6 ident: bib18 article-title: On Using eXtreme Gradient Boosting (XGBoost) Machine Learning Algorithm for Home Network Traffic Classification – volume: 662 start-page: 332 year: 2019 end-page: 346 ident: bib24 article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan publication-title: Sci. Total Environ. – volume: 71 start-page: 110 year: 2007 end-page: 121 ident: bib40 article-title: Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain publication-title: Catena – volume: 11 start-page: 821 year: 2020 end-page: 845 ident: bib55 article-title: Gully erosion susceptibility mapping using artificial intelligence and statistical models publication-title: Geomatics, Nat. Hazards Risk – volume: 5 start-page: 369 year: 2019 end-page: 393 ident: bib45 article-title: Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India publication-title: Modeling Earth Systems Environmental Earth Sciences – start-page: 1189 year: 2001 end-page: 1232 ident: bib26 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – volume: 78 start-page: 649 year: 2019 ident: bib59 article-title: Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India publication-title: Environmental Earth Sciences – volume: 77 start-page: 802 year: 2008 ident: 10.1016/j.jenvman.2021.112015_bib25 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – start-page: 221 year: 1993 ident: 10.1016/j.jenvman.2021.112015_bib51 article-title: Gully typology and gully control measures in the European loess belt. Farm land erosion in temperate plains environments hills publication-title: Proceedings – volume: 668 start-page: 124 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib29 article-title: Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.436 – volume: 7 start-page: 1000 year: 2017 ident: 10.1016/j.jenvman.2021.112015_bib44 article-title: Shallow landslide susceptibility modeling using the data mining models artificial neural network and boosted tree publication-title: Appl. Sci. doi: 10.3390/app7101000 – volume: 55 start-page: 119 year: 1997 ident: 10.1016/j.jenvman.2021.112015_bib27 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1997.1504 – volume: 5 start-page: 330 year: 2005 ident: 10.1016/j.jenvman.2021.112015_bib60 article-title: Boosted regression (boosting): an introductory tutorial and a Stata plugin publication-title: STATA J. doi: 10.1177/1536867X0500500304 – volume: 220 start-page: 3630 year: 2009 ident: 10.1016/j.jenvman.2021.112015_bib32 article-title: Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2009.06.020 – volume: 11 start-page: 871 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib1 article-title: How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? publication-title: Geoscience Frontiers doi: 10.1016/j.gsf.2019.10.001 – volume: 80 start-page: 528 year: 2011 ident: 10.1016/j.jenvman.2021.112015_bib11 article-title: Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2011.01803.x – volume: 12 start-page: 1890 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib2 article-title: Novel ensemble approaches of machine learning techniques in modeling the gully erosion susceptibility publication-title: Rem. Sens. doi: 10.3390/rs12111890 – volume: 29 start-page: 3 year: 2014 ident: 10.1016/j.jenvman.2021.112015_bib34 article-title: Model-based boosting in R: a hands-on tutorial using the R package mboost publication-title: Comput. Stat. doi: 10.1007/s00180-012-0382-5 – volume: 47 start-page: 1738 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib62 article-title: Feature‐shared adaptive‐boost deep learning for invasiveness classification of pulmonary subsolid nodules in CT images publication-title: Med. Phys. doi: 10.1002/mp.14068 – start-page: 1 year: 2014 ident: 10.1016/j.jenvman.2021.112015_bib49 article-title: Deep boosting: layered feature mining for general image classification – volume: 5 start-page: 369 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib45 article-title: Modeling of water induced surface soil erosion and the potential risk zone prediction in a sub-tropical watershed of Eastern India publication-title: Modeling Earth Systems Environmental Earth Sciences doi: 10.1007/s40808-018-0540-z – volume: 71 start-page: 110 year: 2007 ident: 10.1016/j.jenvman.2021.112015_bib40 article-title: Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain publication-title: Catena doi: 10.1016/j.catena.2006.05.014 – volume: 204 start-page: 399 year: 2014 ident: 10.1016/j.jenvman.2021.112015_bib20 article-title: Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.08.021 – volume: 50 start-page: 91 year: 2003 ident: 10.1016/j.jenvman.2021.112015_bib52 article-title: Gully erosion and environmental change: importance and research needs publication-title: Catena doi: 10.1016/S0341-8162(02)00143-1 – start-page: 122757 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib58 article-title: Threats of climate and land use change on future flood susceptibility publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122757 – volume: 23 start-page: 669 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib3 article-title: Spatial prediction of gully erosion using ALOS PALSAR data and ensemble bivariate and data mining models publication-title: Geosciences doi: 10.1007/s12303-018-0067-3 – volume: 9 start-page: 443 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib39 article-title: Performance evaluation of GIS-based artificial intelligence approaches for landslide susceptibility modeling and spatial patterns analysis publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi9070443 – start-page: 1 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib30 article-title: A novel deep learning controller for DC/DC buck-boost converters in wireless power transfer feeding CPLs publication-title: IEEE Trans. Ind. Electron. – start-page: 2501 year: 2014 ident: 10.1016/j.jenvman.2021.112015_bib37 article-title: Multi-class deep boosting – volume: 180 start-page: 282 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib4 article-title: Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques publication-title: Catena doi: 10.1016/j.catena.2019.04.032 – start-page: 1 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib57 article-title: Development of different machine learning ensemble classifier for gully erosion susceptibility in gandheswari watershed of West Bengal, India – volume: 11 start-page: 821 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib55 article-title: Gully erosion susceptibility mapping using artificial intelligence and statistical models publication-title: Geomatics, Nat. Hazards Risk doi: 10.1080/19475705.2020.1753824 – start-page: 1189 year: 2001 ident: 10.1016/j.jenvman.2021.112015_bib26 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. – year: 2006 ident: 10.1016/j.jenvman.2021.112015_bib9 – volume: 583 start-page: 124602 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib17 article-title: Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124602 – volume: 152 start-page: 112515 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib33 article-title: Significant boost in xylose yield and enhanced economic value with one-pot process using deep eutectic solvent for the pretreatment and saccharification of rice straw publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2020.112515 – volume: 259 start-page: 689 year: 2017 ident: 10.1016/j.jenvman.2021.112015_bib36 article-title: Deep neural networks, gradient-boosted trees, random forests: statistical arbitrage on the S&P 500 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.10.031 – volume: 1 start-page: 416 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib47 article-title: GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India publication-title: SN Applied Sciences doi: 10.1007/s42452-019-0422-7 – year: 1999 ident: 10.1016/j.jenvman.2021.112015_bib56 – start-page: 1 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib18 – volume: 64 start-page: 352 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib46 article-title: Simulating the impact of climate change on soil erosion in sub-tropical monsoon dominated watershed based on RUSLE, SCS runoff and MIROC5 climatic model publication-title: Adv. Space Res. doi: 10.1016/j.asr.2019.04.033 – volume: 13 start-page: 839 year: 2016 ident: 10.1016/j.jenvman.2021.112015_bib64 article-title: Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0614-1 – year: 2015 ident: 10.1016/j.jenvman.2021.112015_bib14 – volume: 609 start-page: 764 year: 2017 ident: 10.1016/j.jenvman.2021.112015_bib53 article-title: Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.07.198 – volume: 32 start-page: 3388 year: 2013 ident: 10.1016/j.jenvman.2021.112015_bib42 article-title: A tutorial on propensity score estimation for multiple treatments using generalized boosted models publication-title: Stat. Med. doi: 10.1002/sim.5753 – start-page: 1 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib12 article-title: Assessing the importance of static and dynamic causative factors on erosion potentiality using SWAT, EBF with uncertainty and plausibility, logistic regression and novel ensemble model in a sub-tropical environment publication-title: Journal of the Indian Society of Remote Sensing – volume: 330 start-page: 65 year: 2018 ident: 10.1016/j.jenvman.2021.112015_bib28 article-title: Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2018.05.027 – start-page: 1100 year: 2017 ident: 10.1016/j.jenvman.2021.112015_bib31 article-title: Crude oil price forecasting using XGBoost – volume: 11 start-page: 999 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib5 article-title: Assessment of landslide susceptibility using statistical-and artificial intelligence-based FR-RF integrated model and multiresolution DEMs publication-title: Rem. Sens. doi: 10.3390/rs11090999 – year: 2014 ident: 10.1016/j.jenvman.2021.112015_bib21 – volume: 688 start-page: 903 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib6 article-title: Novel ensembles of COPRAS multi-criteria decision-making with logistic regression, boosted regression tree, and random forest for spatial prediction of gully erosion susceptibility publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.06.205 – volume: 12 start-page: 2180 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib66 article-title: Optimization of computational intelligence models for landslide susceptibility evaluation publication-title: Rem. Sens. doi: 10.3390/rs12142180 – volume: 82 start-page: 1231 year: 2016 ident: 10.1016/j.jenvman.2021.112015_bib54 article-title: Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison publication-title: Nat. Hazards doi: 10.1007/s11069-016-2239-7 – volume: 32 start-page: 1770 year: 2007 ident: 10.1016/j.jenvman.2021.112015_bib35 article-title: Use of terrain variables for mapping gully erosion susceptibility in Lebanon publication-title: Earth Surf. Process. Landforms: The Journal of the British Geomorphological Research Group doi: 10.1002/esp.1501 – volume: 12 start-page: 2478 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib38 article-title: GIS-based machine learning algorithms for gully erosion susceptibility mapping in a semi-arid region of Iran publication-title: Rem. Sens. doi: 10.3390/rs12152478 – volume: 12 start-page: 325 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib63 article-title: Hybrid computational intelligence methods for landslide susceptibility mapping publication-title: Symmetry doi: 10.3390/sym12030325 – volume: 10 start-page: 16 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib65 article-title: GIS-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques publication-title: Appl. Sci. doi: 10.3390/app10010016 – start-page: 785 year: 2016 ident: 10.1016/j.jenvman.2021.112015_bib15 article-title: Xgboost: a scalable tree boosting system – volume: 65 start-page: 1466 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib19 article-title: Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India publication-title: Adv. Space Res. doi: 10.1016/j.asr.2019.12.003 – volume: 15 start-page: 27 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib10 article-title: A machine learning framework for sport result prediction publication-title: Applied computing informatics doi: 10.1016/j.aci.2017.09.005 – volume: 88 start-page: 243 year: 2007 ident: 10.1016/j.jenvman.2021.112015_bib23 article-title: Boosted trees for ecological modeling and prediction publication-title: Ecology doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 – volume: 17 start-page: 1 year: 2010 ident: 10.1016/j.jenvman.2021.112015_bib7 article-title: Assessment of GIS and RS applications to estimate soil erosion and sediment loading by using RUSLE model (Case Study: upstream basin of Ilam dam) publication-title: J. Soil Water Conserv. – volume: 4 start-page: 711 year: 2017 ident: 10.1016/j.jenvman.2021.112015_bib50 article-title: Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India publication-title: Environmental Processes doi: 10.1007/s40710-017-0248-5 – volume: 32 start-page: 1607 year: 2012 ident: 10.1016/j.jenvman.2021.112015_bib22 publication-title: Risk Anal.: Int. J. doi: 10.1111/j.1539-6924.2012.01792.x – volume: 195 start-page: 104777 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib16 article-title: GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models publication-title: Catena doi: 10.1016/j.catena.2020.104777 – volume: 25 start-page: 399 year: 2017 ident: 10.1016/j.jenvman.2021.112015_bib48 article-title: Application of RUSLE model for soil loss estimation of Jaipanda watershed, West Bengal publication-title: Spatial Information Research doi: 10.1007/s41324-017-0107-5 – volume: 662 start-page: 332 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib24 article-title: Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.01.221 – start-page: 197 year: 2010 ident: 10.1016/j.jenvman.2021.112015_bib61 – volume: 12 start-page: 113 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib41 article-title: Landslide susceptibility evaluation using hybrid integration of evidential belief function and machine learning techniques publication-title: Water doi: 10.3390/w12010113 – volume: 104 start-page: 1259 year: 2020 ident: 10.1016/j.jenvman.2021.112015_bib13 article-title: Soil erosion potential hotspot zone identification using machine learning and statistical approaches in eastern India publication-title: Nat. Hazards doi: 10.1007/s11069-020-04213-3 – volume: 78 start-page: 649 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib59 article-title: Identification of soil erosion-susceptible areas using fuzzy logic and analytical hierarchy process modeling in an agricultural watershed of Burdwan district, India publication-title: Environmental Earth Sciences doi: 10.1007/s12665-019-8658-5 – volume: 655 start-page: 684 year: 2019 ident: 10.1016/j.jenvman.2021.112015_bib8 article-title: Modelling gully-erosion susceptibility in a semi-arid region, Iran: Investigation of applicability of certainty factor and maximum entropy models publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.235 – volume: 153 start-page: 473 year: 2014 ident: 10.1016/j.jenvman.2021.112015_bib43 article-title: The use of generalized linear models and generalized estimating equations in bioarchaeological studies publication-title: Am. J. Phys. Anthropol. doi: 10.1002/ajpa.22448 |
| SSID | ssj0003217 |
| Score | 2.6259947 |
| Snippet | The objective of this study is to assess the gully head-cut erosion susceptibility and identify gully erosion prone areas in the Meimand watershed, Iran. In... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 112015 |
| SubjectTerms | altitude Climatic factors Conservation of Natural Resources data collection Deep Learning environmental management gully erosion Gully head-cut erosion Humans Internet inventories Iran issues and policy land use Machine Learning morphometry prediction Predictive accuracy regression analysis Soil Soil conservation watersheds |
| Title | Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility |
| URI | https://dx.doi.org/10.1016/j.jenvman.2021.112015 https://www.ncbi.nlm.nih.gov/pubmed/33515838 https://www.proquest.com/docview/2483817962 https://www.proquest.com/docview/2524233814 |
| Volume | 284 |
| WOSCitedRecordID | wos000621652400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-8630 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLa6DgluEAwG5WcyEndVShI7s305TUWA0IRgiN5FieN0rbq0atqqvApPwSNybMdJyhgDJG6iyE5sR9-XnHOc84PQS5_mQSJ85aUgXz3KA-XxhGZ6S0CGAQiEPDUp89-zszM-GokPnc53FwuzmbGi4NutWPxXqKENwNahs38Bdz0oNMA5gA5HgB2OfwT8sM7frRVBVwBl1Qd1ujQ-zmC4qksdMHVpHCmVqxwxtmVxbNLmYr5Rs36m1KLp1u31KLnz6jKOivBJzzy5XvXHYNJ-7SuQvXoB5bo0bjPGA3fnB3JLEW7F2ulQliv-OKdVAMkXNWnch4wTwmhSbIHe4598FMCisKUOPibppGh1FtkyAZ15Zt2R0nl20d70CAP9_8aGfdqdOBeN07g-mQgwP9A7haz9dQ9tBborksJuWkwHU3hIeLKBnkXHU_nVNLtJuD8Z05PpVEdaq2JkD-2HLBK8i_ZP3g5H72rpT0JT5bleSxM19uqXk12nD11n7xi95_weulvhhE8s0e6jjioO0G0Xz14eoMNhGz9cCYvyAfrWMBHPc1wzETsOYcdEXDERO6phy0QMiGHDRKyZ2HTr9nqUmokYmIgdE7FhIq6YiHeZ-BB9fj08P33jVaVAPEkEX3mS5yLKQRcnjFNCZRKGaRKpHIx9ybOUJSQSkhPKBQ8Vy4KcyygjMoAenhBJySHqFvNCPUaYpVHiU6V44KeUZErkCQuUEmkuuX-sRA9RB0gsqzz5ulzLLHYOkdO4wjHWOMYWxx4a1LctbKKYm27gDu240natFhsDRW-69YVjRwzSQP_iSwo1X5dxSLlOuSmOw99cE2kbCi6jPfTIUqteMSFg38AQT_59cU_RneaNfYa6q-VaPUe35GY1KZdHaI-N-FH10vwAUlf-Dg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+different+boosting+ensemble+machine+learning+models+and+novel+deep+learning+and+boosting+framework+for+head-cut+gully+erosion+susceptibility&rft.jtitle=Journal+of+environmental+management&rft.au=Chen%2C+Wei&rft.au=Lei%2C+Xinxiang&rft.au=Chakrabortty%2C+Rabin&rft.au=Chandra+Pal%2C+Subodh&rft.date=2021-04-15&rft.pub=Elsevier+Ltd&rft.issn=0301-4797&rft.volume=284&rft_id=info:doi/10.1016%2Fj.jenvman.2021.112015&rft.externalDocID=S0301479721000773 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |