RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy
RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi...
Uloženo v:
| Vydáno v: | Journal of controlled release Ročník 342; s. 228 - 240 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Netherlands
Elsevier B.V
01.02.2022
|
| Témata: | |
| ISSN: | 0168-3659, 1873-4995, 1873-4995 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.
RNA interference (RNAi) is a potential strategy for cancer diagnosis and treatment. Especially, plasmonic nanomaterial-based RNAi delivery systems have various advantages using its plasmonic property, such as optical imaging and photothermal effect. In this review, recently announced microRNA detection using plasmonic nanomaterials and small interfering RNA (siRNA)-based treatment techniques are briefly described for cancer therapy. [Display omitted] |
|---|---|
| AbstractList | RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer. RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer. RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer. RNA interference (RNAi) is a potential strategy for cancer diagnosis and treatment. Especially, plasmonic nanomaterial-based RNAi delivery systems have various advantages using its plasmonic property, such as optical imaging and photothermal effect. In this review, recently announced microRNA detection using plasmonic nanomaterials and small interfering RNA (siRNA)-based treatment techniques are briefly described for cancer therapy. [Display omitted] |
| Author | Shin, Minkyu Yoon, Jinho Lee, Sang-Nam Choi, Jeong-Woo Choi, Jin-Ha Lee, Ji-Young |
| Author_xml | – sequence: 1 givenname: Jinho surname: Yoon fullname: Yoon, Jinho organization: Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea – sequence: 2 givenname: Minkyu surname: Shin fullname: Shin, Minkyu organization: Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea – sequence: 3 givenname: Ji-Young surname: Lee fullname: Lee, Ji-Young organization: Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea – sequence: 4 givenname: Sang-Nam surname: Lee fullname: Lee, Sang-Nam organization: Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea – sequence: 5 givenname: Jin-Ha surname: Choi fullname: Choi, Jin-Ha email: jhchoi@jbnu.ac.kr organization: School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea – sequence: 6 givenname: Jeong-Woo surname: Choi fullname: Choi, Jeong-Woo email: jwchoi@sogang.ac.kr organization: Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35016917$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkU1LJDEQhoMo66j7E5Qc9dCz-eh0d_CwiOwXiIK4ew3pSvVuhu5kNukR_PdmmPGyFxcKCqqetwre94QchhiQkHPOlpzx5tNquYIYEo5LwYRYMl5KHJAF71pZ1VqrQ7IoXFfJRuljcpLzijGmZN1-IMdSlZXm7YL8ery_oT7MmAZMGADpZZn4q6q3GR1djzZPMXigwYY42cJ5O2Y6xETBFjxR5-3vELPP1AZH5z-Y7PrljBwNhcOP-35Kfn798nT7vbp7-Pbj9uauAqm7uYJOD7xDyaDXnQbb9L3lQwNaCNb1Te0curptXau07R00wGTratcrBrYGjfKUXO7urlP8u8E8m8lnwHG0AeMmG9HIpq0V1-w_UK4F00rrgl7s0U0_oTPr5CebXsybbQW43gGQYs4JBwN-trOPYU7Wj4Yzsw3JrMw-JLMNyTBeShS1-kf99uA93eedDoujzx6TyeC3mTmfEGbjon_nwitHIa7x |
| CitedBy_id | crossref_primary_10_1016_j_cej_2024_148616 crossref_primary_10_1021_acs_langmuir_5c02001 crossref_primary_10_1016_j_talanta_2023_124861 crossref_primary_10_1007_s13206_024_00183_x crossref_primary_10_3390_molecules28227679 crossref_primary_10_3389_fonc_2024_1507958 crossref_primary_10_1016_j_cej_2023_143924 crossref_primary_10_3390_cancers14153597 crossref_primary_10_1039_D4MH00861H crossref_primary_10_1016_j_jnca_2024_103828 crossref_primary_10_2147_IJN_S436038 crossref_primary_10_1016_j_phrs_2025_107903 crossref_primary_10_1186_s12951_024_02534_0 crossref_primary_10_1016_j_lfs_2024_122899 crossref_primary_10_3390_ijms25073896 crossref_primary_10_3390_jnt4020009 crossref_primary_10_1016_j_ijbiomac_2023_126912 crossref_primary_10_1016_j_cej_2025_166517 crossref_primary_10_1016_j_semcancer_2022_05_012 crossref_primary_10_1186_s12951_024_02883_w crossref_primary_10_1186_s12951_025_03433_8 crossref_primary_10_1016_j_jconrel_2024_12_047 crossref_primary_10_26599_NR_2025_94907197 crossref_primary_10_1186_s12967_022_03740_w crossref_primary_10_1007_s12013_024_01423_5 crossref_primary_10_1080_03639045_2024_2387166 crossref_primary_10_3389_fmed_2025_1550901 |
| Cites_doi | 10.1016/j.biotechadv.2019.107440 10.1021/acsnano.9b03161 10.1016/S2214-109X(19)30488-7 10.1039/D0NR08845E 10.1016/j.bios.2018.04.007 10.1021/acs.jpcc.9b01961 10.1080/05704928.2017.1312427 10.1016/j.jconrel.2017.12.022 10.1016/j.bios.2017.04.027 10.1016/j.biomaterials.2019.119463 10.1021/acs.analchem.1c01093 10.1021/acsnano.0c08790 10.1016/j.rinp.2017.07.009 10.1002/ange.202000474 10.1039/D1CC03047G 10.1016/j.biomaterials.2020.119976 10.1016/j.snb.2015.09.152 10.1021/acs.nanolett.0c03152 10.7150/thno.22435 10.1016/j.biomaterials.2019.119742 10.1021/acssensors.7b00322 10.1186/s40580-020-00225-8 10.1002/adfm.202005400 10.1039/D0BM00222D 10.1002/adfm.201501283 10.1016/j.bios.2013.11.073 10.1039/C9CC00175A 10.3390/ijms22020831 10.3390/nano10091749 10.1016/j.jconrel.2020.11.011 10.1021/acsami.8b20501 10.3389/fimmu.2020.00968 10.1016/j.bios.2019.111619 10.1021/acs.nanolett.8b00681 10.7150/thno.14361 10.1039/C5TB02135A 10.1039/D0AN00538J 10.1016/j.nantod.2015.07.005 10.1021/acsbiomaterials.8b00858 10.1002/jbio.201200015 10.1097/CM9.0000000000001474 10.1002/advs.201600430 10.1126/science.1187949 10.1021/acsnano.9b01875 10.1016/j.actbio.2020.03.001 10.1039/D1QM00630D 10.1126/science.1140735 10.1039/D0TB00240B 10.1016/j.bios.2020.112465 10.1126/sciadv.aaw6264 10.1186/s12943-017-0683-y 10.1039/D0QM00469C 10.1002/smll.202000460 10.1126/science.1152326 10.1016/j.drudis.2019.02.011 10.1016/j.actbio.2019.08.046 10.1021/acsami.8b18288 10.1002/advs.201900158 10.1021/acs.langmuir.8b01313 10.1016/j.biomaterials.2015.11.025 10.1007/s12274-017-1629-9 10.1038/sj.cgt.7700931 10.1002/smll.201802934 10.1016/j.addr.2020.07.022 10.1039/C9RA03608C 10.1016/j.cell.2009.02.024 10.1039/D0RA06000C 10.1002/smll.201802565 10.1039/C7NR01562C 10.1021/jacs.8b10021 10.1016/j.biomaterials.2020.119847 10.1016/j.bios.2021.113376 10.1021/acsbiomaterials.1c00765 10.1021/nn200088x 10.1016/j.snb.2021.130629 10.1021/acsami.8b05050 10.1073/pnas.0408319102 10.1016/0140-6736(90)90801-B 10.1063/1.1988980 10.1016/j.msec.2021.112122 10.1007/s10555-017-9717-6 10.1007/s11468-021-01381-1 10.1016/j.bios.2016.08.090 10.1021/acs.nanolett.8b04677 10.1021/acsami.9b21214 10.1126/science.aau0159 10.1002/smll.201904271 10.14202/vetworld.2016.1338-1342 10.1007/s00216-014-7647-5 10.1016/j.tibtech.2011.03.001 10.1021/ja0601179 10.1016/j.talanta.2020.121739 10.1039/C8AN01745J 10.1111/j.1349-7006.2006.00234.x 10.1021/acsnano.7b08777 10.1016/j.ejca.2017.06.023 10.1021/nn300470j 10.1002/adom.201500053 10.1016/j.biomaterials.2020.119760 10.1021/acsami.0c04533 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jconrel.2022.01.012 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| EISSN | 1873-4995 |
| EndPage | 240 |
| ExternalDocumentID | 35016917 10_1016_j_jconrel_2022_01_012 S0168365922000268 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29K 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATCM AAXUO AAYOK ABFNM ABFRF ABJNI ABMAC ABOCM ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC C45 CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMT HVGLF HZ~ IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SPT SSM SSP SSZ T5K TEORI WUQ ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c398t-c89f18e30cb989ca6bba1f6c92208b64dded477d759abdc6c037d4db50ca4c9e3 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745675700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-3659 1873-4995 |
| IngestDate | Thu Oct 02 10:28:33 EDT 2025 Wed Oct 01 17:01:24 EDT 2025 Wed Feb 19 02:26:22 EST 2025 Sat Nov 29 07:27:41 EST 2025 Tue Nov 18 22:37:01 EST 2025 Fri Feb 23 02:40:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Photothermal therapy RNA interference (RNAi) microRNA (miRNA) Nanobiosensor Small interference RNA (siRNA) Plasmonic nanoparticle Theragnosis |
| Language | English |
| License | Copyright © 2022 Elsevier B.V. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c398t-c89f18e30cb989ca6bba1f6c92208b64dded477d759abdc6c037d4db50ca4c9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 35016917 |
| PQID | 2619209599 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2636745190 proquest_miscellaneous_2619209599 pubmed_primary_35016917 crossref_citationtrail_10_1016_j_jconrel_2022_01_012 crossref_primary_10_1016_j_jconrel_2022_01_012 elsevier_sciencedirect_doi_10_1016_j_jconrel_2022_01_012 |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Journal of controlled release |
| PublicationTitleAlternate | J Control Release |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Wu, Zhou, Chen, Chen, Hou, Qian, Zhang, Tang, Chen, Ping, Fang, Duan (bb0135) 2020; 238 Yaraki, Pan, Hu, Yu, Liu, Tan (bb0230) 2020; 4 Fan, Ding, Liu, Liang, Chen (bb0255) 2019; 13 Chen, Wu, Fu, Cao, Tan, Shi, Wu (bb0375) 2019; 143 Zhao, Li, Liu (bb0215) 2017; 9 Sriram, Manikandan, Chuang, Chueh (bb0245) 2020; 16 Ding, Gao, Huang, Ge, Xie, Qian, Song, Li, Zhu, Zhang (bb0505) 2020; 245 Huo, Gong, Jiang, Chen, Guo, Gan, Wang, Herrmann, Liang (bb0425) 2019; 5 Jia, Liu, Xu, Tian, Li, Han, Feng, Dong, Chen (bb0440) 2020; 132 Slabý, Bocková, Homola (bb0295) 2021; 347 Fan, Wu, Bao, Bao, Bardhan, Halas, Manoharan, Nordlander, Shvets, Capasso (bb0150) 2010; 328 Mariani, Minunni (bb0270) 2014; 406 Xi, Xie, Peng, Liu, Ding, Zhou (bb0495) 2021; 13 Shariati-Rad, Mozaffari (bb0220) 2020; 10 Boken, Khurana, Thatai, Kumar, Prasad (bb0140) 2017; 52 Mousazadeh, Pilehvar-Soltanahmadi, Dadashpour, Zarghami (bb0410) 2021; 330 Chen, Liu, Li, Su, Qiu, Zhong, Guo (bb0200) 2016; 6 Peng, Sun, Na, Ouyang (bb0340) 2020; 16 He, Yin, Wang, Xiong, Kwok, Gao, Zhao, Lam, Yong, Li (bb0510) 2019; 19 Halazonetis, Gorgoulis, Bartek (bb0030) 2008; 319 Dang, Gomez Casas, Day (bb0435) 2021; 21 Fernandes, Rodrigues, Moreira, Correia (bb0445) 2020; 8 Wang, Zhang, Xiao, Liang, Liang, Mi, Wang, Liu (bb0450) 2020; 107 Liu, Wang, Li, Yang, Wang, Nie (bb0305) 2017; 87 Lu, Tu, Liu, Zhou, Zheng, Chen (bb0330) 2018; 11 Chaney, Shanmukh, Dluhy, Zhao (bb0355) 2005; 87 Liu, Cao, Qiao, Yao, Pan, Wang, Yue, Ma, Liu, Cui (bb0480) 2019; 99 Wu, Li, Wang, Hammond (bb0395) 2018; 12 Duffy, Synnott, Crown (bb0050) 2017; 83 Luo, Solimini, Elledge (bb0025) 2009; 136 Sanchot, Baffou, Marty, Arbouet, Quidant, Girard, Dujardin (bb0160) 2012; 6 Miti, Thamm, Muller, Csaki, Fritzsche, Zuccheri (bb0290) 2020; 167 Min, Kim, Wang, Kim, Kim, Kim, Kim, Kwon, Kiesewetter, Chen (bb0485) 2017; 7 Stobiecka (bb0190) 2014; 55 Kim, Kumar, Park, Kim (bb0475) 2021; 5 Mu, Li, Yan, Zhang, Zhang, Zhang, Jiang (bb0490) 2018; 4 Li, Leustean, Inci, Zheng, Demirci, Wang (bb0180) 2019; 37 Jeong, Kook, Lee, Koh (bb0315) 2018; 111 Frimpong, Jang, Kim, Driskell (bb0185) 2021; 223 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray, Global Cancer Statistics (bb0005) 2020; 71 Xu, Wu, Liu, Saw, Tao, Li, Krygsman, Yegnasubramanian, De Marzo, Shi, Bieberich, Farokhzad (bb0100) 2018; 14 Badshah, Koh, Zia, Abbas, Zahra, Saleem (bb0320) 2020; 10 Xin, Huang, Guo, Huang, Zhang, Jiang (bb0095) 2017; 16 Riley, Day (bb0205) 2017; 9 Kumar, Diwan, Singh, Gulati, Choudhary, Mongia, Shukla, Gupta (bb0415) 2019; 9 Oliveira, Guidelli (bb0235) 2021; 126 Devi (bb0040) 2006; 13 Li, Saw, Lin, Nie, Tao, Farokhzad, Zhang, Xu (bb0115) 2020; 234 Della Ventura, Gelzo, Battista, Alabastri, Schirato, Castaldo, Corso, Gentile, Velotta (bb0310) 2019; 11 Barizuddin, Bok, Gangopadhyay (bb0170) 2016; 7 Chen, Mangala, Rodriguez-Aguayo, Kong, Lopez-Berestein, Sood (bb0065) 2018; 37 Sriram, Manikandan, Chuang, Chueh (bb0260) 2020; 16 Masterson, Liyanage, Berman, Kaimakliotis, Johnson, Sardar (bb0335) 2020; 145 Xue, Ding, Zhang, Guo, Gao, Feng, Zhu, Zhang (bb0400) 2019; 55 Liu, Saber, Haisma (bb0060) 2019; 24 Gong, Teng, Li, Liang (bb0055) 2019; 11 Buda, Shafie, Rashid, Jaafar, Sharif (bb0210) 2017; 7 Feng, Yu, Xu, Hu, Liu, Wang (bb0540) 2020; 12 Song, Zhang, Jiang, Gan, Zhu, Peng, Fang, Guo, Wang (bb0370) 2021; 190 Kim, Lee, Song, Kim, Choi, Sim (bb0380) 2019; 144 Cole, Yang, David (bb0515) 2011; 29 Dang, Ye, Li, Liang, Li, Yin (bb0460) 2019; 223 Riley, Dang, Billingsley, Abraham, Gundlach, Day (bb0430) 2018; 18 Zhao, Zhao, Cao, Sun, Zhou, Chen, Guo, Wang, Zhen, Liang, Zhang (bb0500) 2021; 15 Lee, Chen, Lee, Zhang, Lin, Fu, Chen, Ishikawa, Chiang, Katon (bb0045) 2019; 364 Ali, Wu, El-Sayed (bb0125) 2019; 123 Zhang, Wang, Zhang, Liu, Wu, Shen, Zhang, Hu, Fan, Huang, Wang (bb0300) 2017; 2 Kokkinos, Ignacio, Sharbeen, Boyer, Gonzales-Aloy, Goldstein, Australian Pancreatic Cancer Genome Initiative, McCarroll, Phillips (bb0085) 2020; 240 Hussein, El-Said, Abu-Zied, Choi (bb0365) 2020; 7 Rodriguez-Quijada, Hamad-Schifferli (bb0520) 2018 Lee, Choi, Chueng, Pongkulapa, Yang, Cho, Choi, Lee (bb0345) 2019; 13 Austin, Kang, El-Sayed (bb0145) 2015; 10 Guo (bb0265) 2012; 5 Takeshita, Ochiya (bb0070) 2006; 97 Yonezawa, Koide, Asai (bb0405) 2020; 154-155 Jackson, Halas (bb0155) 2004; 101 Cao, Chen, Yu, Li, Chen (bb0010) 2021; 134 Wang, Yu, Wang, Li, Li, Wang, Song, Chu, Li (bb0465) 2016; 78 Wang, Hasanzadeh Kafshgari, Meunier (bb0165) 2020; 30 de Aberasturi, Serrano-Montes, Liz-Marzán (bb0120) 2015; 3 Cao, Meng, Wang, Zhang, Dai, Dong, Zhang (bb0535) 2018; 10 Sahoo, Swain, Nayak, Bag, Mishra (bb0280) 2016; 9 Chang, Feng, Cheng, Zheng, Wu, Jian, Zhang, Tang, Wang, Hao (bb0525) 2019; 6 McConnell, Mabbott, Kanibolotsky, Skabara, Graham, Burley, Laurand (bb0225) 2018; 34 Li, Li, Chi, Shan, Zheng, Fang (bb0240) 2017; 4 Zhu, Chen, Liu (bb0250) 2011; 5 Mohammadniaei, Lee, Bharate, Yoon, Choi, Park, Kim, Kim, Choi (bb0530) 2018; 14 Bui, Ho, Ho, Ngo, Lim, Son, Noh, Joo (bb0455) 2021; 57 Khurana, Jaggi (bb0175) 2021; 16 Chang, Chou, Cheng, Hsu, Su, Ho (bb0275) 2021; 93 Miller, Siegel, Lin, Mariotto, Kramer, Rowland, Stein, Alteri, Jemal (bb0020) 2016; 66 Liang, Lan, Yin, Ge, Yu, Yan (bb0350) 2017; 95 Wang, Xie, Kilchrist, Li, Duvall, Oupicky (bb0110) 2020; 12 Scott, Keam (bb0080) 2021; 1 Wang, Liu, Yang, Wang, Zhu, He, Li (bb0285) 2016; 223 Guerrero-Florez, Mendez-Sanchez, Patron-Soberano, Rodriguez-Gonzalez, Blach, Martinez (bb0195) 2020; 8 Iggo, Gatter, Bartek, Lane, Harris (bb0035) 1990; 335 Li, Zhang, Hussain, Weng, Huang (bb0090) 2021; 7 Zhou, Zhang, Sun, Zhang, Liu, Gong, Xu, Du, Liu, Liu, Zhang (bb0130) 2021; 33 de Martel, Georges, Bray, Ferlay, Clifford (bb0015) 2020; 8 Makeyev, Maniatis (bb0075) 2008; 319 Shaabani, Sharifiaghdam, De Keersmaecker, De Rycke, De Smedt, Faridi-Majidi, Braeckmans, Fraire (bb0420) 2021; 22 Conde, Bao, Tan, Cui, Edelman, Azevedo, Byrne, Artzi, Tian (bb0105) 2015; 25 Dong, Yu, Ding, Laurini, Huang, Zhang, Weng, Lin, Chen, Marson, Jiang, Giorgio, Pricl, Liu, Rocchi, Peng (bb0390) 2018; 140 Alshaer, Hillaireau, Vergnaud, Mura, Delomenie, Sauvage, Ismail, Fattal (bb0385) 2018; 271 Aslan, Huang, Wilson, Geddes (bb0325) 2006; 128 Zhang, Feng, Huang, Wang, Qiu, Liu, Peng, Li, Kuang, Shi, Shi, Chen, Joshi, Wang, Yuan, Min (bb0470) 2020; 11 Chao, Cao, Su, Weng, Song, Fan, Wang (bb0360) 2016; 4 Luo (10.1016/j.jconrel.2022.01.012_bb0025) 2009; 136 Shaabani (10.1016/j.jconrel.2022.01.012_bb0420) 2021; 22 Wu (10.1016/j.jconrel.2022.01.012_bb0395) 2018; 12 Liang (10.1016/j.jconrel.2022.01.012_bb0350) 2017; 95 Dang (10.1016/j.jconrel.2022.01.012_bb0435) 2021; 21 Wang (10.1016/j.jconrel.2022.01.012_bb0465) 2016; 78 Jia (10.1016/j.jconrel.2022.01.012_bb0440) 2020; 132 Sriram (10.1016/j.jconrel.2022.01.012_bb0260) 2020; 16 Fan (10.1016/j.jconrel.2022.01.012_bb0150) 2010; 328 Peng (10.1016/j.jconrel.2022.01.012_bb0340) 2020; 16 Lee (10.1016/j.jconrel.2022.01.012_bb0345) 2019; 13 Xin (10.1016/j.jconrel.2022.01.012_bb0095) 2017; 16 Barizuddin (10.1016/j.jconrel.2022.01.012_bb0170) 2016; 7 Chang (10.1016/j.jconrel.2022.01.012_bb0275) 2021; 93 Li (10.1016/j.jconrel.2022.01.012_bb0180) 2019; 37 Slabý (10.1016/j.jconrel.2022.01.012_bb0295) 2021; 347 Khurana (10.1016/j.jconrel.2022.01.012_bb0175) 2021; 16 Oliveira (10.1016/j.jconrel.2022.01.012_bb0235) 2021; 126 Della Ventura (10.1016/j.jconrel.2022.01.012_bb0310) 2019; 11 Conde (10.1016/j.jconrel.2022.01.012_bb0105) 2015; 25 Sanchot (10.1016/j.jconrel.2022.01.012_bb0160) 2012; 6 Song (10.1016/j.jconrel.2022.01.012_bb0370) 2021; 190 Alshaer (10.1016/j.jconrel.2022.01.012_bb0385) 2018; 271 Kim (10.1016/j.jconrel.2022.01.012_bb0475) 2021; 5 Sriram (10.1016/j.jconrel.2022.01.012_bb0245) 2020; 16 Iggo (10.1016/j.jconrel.2022.01.012_bb0035) 1990; 335 Zhu (10.1016/j.jconrel.2022.01.012_bb0250) 2011; 5 Zhang (10.1016/j.jconrel.2022.01.012_bb0300) 2017; 2 Zhou (10.1016/j.jconrel.2022.01.012_bb0130) 2021; 33 Sahoo (10.1016/j.jconrel.2022.01.012_bb0280) 2016; 9 Halazonetis (10.1016/j.jconrel.2022.01.012_bb0030) 2008; 319 Duffy (10.1016/j.jconrel.2022.01.012_bb0050) 2017; 83 Buda (10.1016/j.jconrel.2022.01.012_bb0210) 2017; 7 Dong (10.1016/j.jconrel.2022.01.012_bb0390) 2018; 140 Lee (10.1016/j.jconrel.2022.01.012_bb0045) 2019; 364 Chen (10.1016/j.jconrel.2022.01.012_bb0200) 2016; 6 Wang (10.1016/j.jconrel.2022.01.012_bb0110) 2020; 12 Sung (10.1016/j.jconrel.2022.01.012_bb0005) 2020; 71 Liu (10.1016/j.jconrel.2022.01.012_bb0480) 2019; 99 de Martel (10.1016/j.jconrel.2022.01.012_bb0015) 2020; 8 Cole (10.1016/j.jconrel.2022.01.012_bb0515) 2011; 29 Miti (10.1016/j.jconrel.2022.01.012_bb0290) 2020; 167 Takeshita (10.1016/j.jconrel.2022.01.012_bb0070) 2006; 97 Cao (10.1016/j.jconrel.2022.01.012_bb0535) 2018; 10 Fan (10.1016/j.jconrel.2022.01.012_bb0255) 2019; 13 Scott (10.1016/j.jconrel.2022.01.012_bb0080) 2021; 1 Ding (10.1016/j.jconrel.2022.01.012_bb0505) 2020; 245 Makeyev (10.1016/j.jconrel.2022.01.012_bb0075) 2008; 319 Dang (10.1016/j.jconrel.2022.01.012_bb0460) 2019; 223 Xu (10.1016/j.jconrel.2022.01.012_bb0100) 2018; 14 McConnell (10.1016/j.jconrel.2022.01.012_bb0225) 2018; 34 Masterson (10.1016/j.jconrel.2022.01.012_bb0335) 2020; 145 Huo (10.1016/j.jconrel.2022.01.012_bb0425) 2019; 5 Shariati-Rad (10.1016/j.jconrel.2022.01.012_bb0220) 2020; 10 Guo (10.1016/j.jconrel.2022.01.012_bb0265) 2012; 5 Mu (10.1016/j.jconrel.2022.01.012_bb0490) 2018; 4 Cao (10.1016/j.jconrel.2022.01.012_bb0010) 2021; 134 Chen (10.1016/j.jconrel.2022.01.012_bb0375) 2019; 143 Wang (10.1016/j.jconrel.2022.01.012_bb0165) 2020; 30 Chang (10.1016/j.jconrel.2022.01.012_bb0525) 2019; 6 Feng (10.1016/j.jconrel.2022.01.012_bb0540) 2020; 12 Mohammadniaei (10.1016/j.jconrel.2022.01.012_bb0530) 2018; 14 Riley (10.1016/j.jconrel.2022.01.012_bb0205) 2017; 9 Chen (10.1016/j.jconrel.2022.01.012_bb0065) 2018; 37 Aslan (10.1016/j.jconrel.2022.01.012_bb0325) 2006; 128 Wu (10.1016/j.jconrel.2022.01.012_bb0135) 2020; 238 Guerrero-Florez (10.1016/j.jconrel.2022.01.012_bb0195) 2020; 8 Yaraki (10.1016/j.jconrel.2022.01.012_bb0230) 2020; 4 Ali (10.1016/j.jconrel.2022.01.012_bb0125) 2019; 123 Boken (10.1016/j.jconrel.2022.01.012_bb0140) 2017; 52 Wang (10.1016/j.jconrel.2022.01.012_bb0285) 2016; 223 Gong (10.1016/j.jconrel.2022.01.012_bb0055) 2019; 11 Li (10.1016/j.jconrel.2022.01.012_bb0090) 2021; 7 Zhang (10.1016/j.jconrel.2022.01.012_bb0470) 2020; 11 He (10.1016/j.jconrel.2022.01.012_bb0510) 2019; 19 Min (10.1016/j.jconrel.2022.01.012_bb0485) 2017; 7 Kokkinos (10.1016/j.jconrel.2022.01.012_bb0085) 2020; 240 Liu (10.1016/j.jconrel.2022.01.012_bb0305) 2017; 87 Liu (10.1016/j.jconrel.2022.01.012_bb0060) 2019; 24 Xue (10.1016/j.jconrel.2022.01.012_bb0400) 2019; 55 Hussein (10.1016/j.jconrel.2022.01.012_bb0365) 2020; 7 Austin (10.1016/j.jconrel.2022.01.012_bb0145) 2015; 10 Lu (10.1016/j.jconrel.2022.01.012_bb0330) 2018; 11 Bui (10.1016/j.jconrel.2022.01.012_bb0455) 2021; 57 Jeong (10.1016/j.jconrel.2022.01.012_bb0315) 2018; 111 Badshah (10.1016/j.jconrel.2022.01.012_bb0320) 2020; 10 Xi (10.1016/j.jconrel.2022.01.012_bb0495) 2021; 13 Li (10.1016/j.jconrel.2022.01.012_bb0115) 2020; 234 Kim (10.1016/j.jconrel.2022.01.012_bb0380) 2019; 144 Miller (10.1016/j.jconrel.2022.01.012_bb0020) 2016; 66 Stobiecka (10.1016/j.jconrel.2022.01.012_bb0190) 2014; 55 Frimpong (10.1016/j.jconrel.2022.01.012_bb0185) 2021; 223 Wang (10.1016/j.jconrel.2022.01.012_bb0450) 2020; 107 Yonezawa (10.1016/j.jconrel.2022.01.012_bb0405) 2020; 154-155 Li (10.1016/j.jconrel.2022.01.012_bb0240) 2017; 4 Rodriguez-Quijada (10.1016/j.jconrel.2022.01.012_bb0520) 2018 Chaney (10.1016/j.jconrel.2022.01.012_bb0355) 2005; 87 Zhao (10.1016/j.jconrel.2022.01.012_bb0215) 2017; 9 Jackson (10.1016/j.jconrel.2022.01.012_bb0155) 2004; 101 Zhao (10.1016/j.jconrel.2022.01.012_bb0500) 2021; 15 de Aberasturi (10.1016/j.jconrel.2022.01.012_bb0120) 2015; 3 Fernandes (10.1016/j.jconrel.2022.01.012_bb0445) 2020; 8 Devi (10.1016/j.jconrel.2022.01.012_bb0040) 2006; 13 Mariani (10.1016/j.jconrel.2022.01.012_bb0270) 2014; 406 Riley (10.1016/j.jconrel.2022.01.012_bb0430) 2018; 18 Mousazadeh (10.1016/j.jconrel.2022.01.012_bb0410) 2021; 330 Kumar (10.1016/j.jconrel.2022.01.012_bb0415) 2019; 9 Chao (10.1016/j.jconrel.2022.01.012_bb0360) 2016; 4 |
| References_xml | – volume: 335 start-page: 675 year: 1990 end-page: 679 ident: bb0035 article-title: Increased expression of mutant forms of p53 oncogene in primary lung cancer publication-title: Lancet – volume: 234 year: 2020 ident: bb0115 article-title: Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy publication-title: Biomaterials – volume: 145 start-page: 4173 year: 2020 end-page: 4180 ident: bb0335 article-title: A novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses publication-title: Analyst – volume: 347 start-page: 130629 year: 2021 ident: bb0295 article-title: Plasmonic biosensor based on a gold nanostripe array for detection of microRNA related to myelodysplastic syndromes publication-title: Sensor Actuat B-Chem. – volume: 144 start-page: 1768 year: 2019 end-page: 1776 ident: bb0380 article-title: A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar publication-title: Analyst – volume: 111 start-page: 102 year: 2018 end-page: 116 ident: bb0315 article-title: Metal enhanced fluorescence (MEF) for biosensors: general approaches and a review of recent developments publication-title: Biosens. Bioelectron. – volume: 7 start-page: 4240 year: 2017 end-page: 4254 ident: bb0485 article-title: Engineered Zn(II)-Dipicolylamine-gold nanorod provides effective prostate cancer treatment by combining siRNA delivery and photothermal therapy publication-title: Theranostics – volume: 328 start-page: 1135 year: 2010 end-page: 1138 ident: bb0150 article-title: Self-assembled plasmonic nanoparticle clusters publication-title: Science – volume: 16 start-page: 2000460 year: 2020 ident: bb0340 article-title: Target-triggered assembly of nanogap antennas to enhance the fluorescence of single molecules and their application in MicroRNA detection publication-title: Small – volume: 10 start-page: 1749 year: 2020 ident: bb0320 article-title: Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing publication-title: Nanomaterials (Basel) – volume: 37 start-page: 107 year: 2018 end-page: 124 ident: bb0065 article-title: RNA interference-based therapy and its delivery systems publication-title: Cancer Metastasis Rev. – volume: 8 start-page: 2862 year: 2020 end-page: 2875 ident: bb0195 article-title: Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: a comparative study for different particle sizes, shapes, and surface conjugations publication-title: J. Mater. Chem. B – volume: 11 start-page: 968 year: 2020 ident: bb0470 article-title: Tumor-targeted gene silencing IDO synergizes PTT-induced apoptosis and enhances anti-tumor immunity publication-title: Front. Immunol. – volume: 34 start-page: 14766 year: 2018 end-page: 14773 ident: bb0225 article-title: Organic semiconductor laser platform for the detection of DNA by AgNP plasmonic enhancement publication-title: Langmuir – volume: 406 start-page: 2303 year: 2014 end-page: 2323 ident: bb0270 article-title: Surface plasmon resonance applications in clinical analysis publication-title: Anal. Bioanal. Chem. – volume: 223 start-page: 613 year: 2016 end-page: 620 ident: bb0285 article-title: Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich publication-title: Sensor Actuat B-Chem – volume: 93 start-page: 8002 year: 2021 end-page: 8009 ident: bb0275 article-title: Amplification-free detection of cytomegalovirus miRNA using a modification-free surface plasmon resonance biosensor publication-title: Anal. Chem. – volume: 16 start-page: 134 year: 2017 ident: bb0095 article-title: Nano-based delivery of RNAi in cancer therapy publication-title: Mol. Cancer – volume: 25 start-page: 4183 year: 2015 end-page: 4194 ident: bb0105 article-title: Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells publication-title: Adv. Funct. Mater. – volume: 10 start-page: 17732 year: 2018 end-page: 17741 ident: bb0535 article-title: Intelligent MnO publication-title: ACS Appl. Mater. Interfaces – volume: 14 year: 2018 ident: bb0100 article-title: Redox-responsive nanoparticle-mediated systemic RNAi for effective cancer therapy publication-title: Small – volume: 8 start-page: 2990 year: 2020 end-page: 3020 ident: bb0445 article-title: Overview of the application of inorganic nanomaterials in cancer photothermal therapy publication-title: Biomater. Sci. – volume: 240 start-page: 119742 year: 2020 ident: bb0085 article-title: Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs publication-title: Biomaterials – volume: 11 start-page: 264 year: 2018 end-page: 273 ident: bb0330 article-title: Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes publication-title: Nano Res. – volume: 2 start-page: 1435 year: 2017 end-page: 1440 ident: bb0300 article-title: Individual Au-nanocube based plasmonic nanoprobe for cancer relevant MicroRNA biomarker detection publication-title: ACS Sens – volume: 5 start-page: eaaw6264 year: 2019 ident: bb0425 article-title: Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation publication-title: Sci. Adv. – volume: 123 start-page: 15375 year: 2019 end-page: 15393 ident: bb0125 article-title: Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application publication-title: J. Phys. Chem. C – volume: 55 start-page: 4222 year: 2019 end-page: 4225 ident: bb0400 article-title: DNA tetrahedron-based nanogels for siRNA delivery and gene silencing publication-title: Chem. Commun. (Camb.) – volume: 5 start-page: 483 year: 2012 end-page: 501 ident: bb0265 article-title: Surface plasmon resonance based biosensor technique: a review publication-title: J. Biophotonics – volume: 13 start-page: 8124 year: 2019 end-page: 8134 ident: bb0255 article-title: Plasmonic Ti3C2T x MXene enables highly efficient photothermal conversion for healable and transparent wearable device publication-title: ACS Nano – volume: 271 start-page: 98 year: 2018 end-page: 106 ident: bb0385 article-title: Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model publication-title: J. Control. Release – volume: 126 year: 2021 ident: bb0235 article-title: Multitherapeutic nanoplatform based on scintillating anthracene, silver@anthracene, and gold@anthracene nanoparticles for combined radiation and photodynamic cancer therapies publication-title: Mat Sci. Eng. C-Mater. – volume: 9 start-page: 23894 year: 2019 end-page: 23907 ident: bb0415 article-title: Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment publication-title: RSC Adv. – volume: 132 start-page: 14551 year: 2020 end-page: 14556 ident: bb0440 article-title: Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II Window publication-title: Angew. Chem. – volume: 134 start-page: 783 year: 2021 end-page: 791 ident: bb0010 article-title: Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020 publication-title: Chin. Med. J. – volume: 15 start-page: 6517 year: 2021 end-page: 6529 ident: bb0500 article-title: Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy publication-title: ACS Nano – volume: 140 start-page: 16264 year: 2018 end-page: 16274 ident: bb0390 article-title: A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy publication-title: J. Am. Chem. Soc. – volume: 87 start-page: 433 year: 2017 end-page: 438 ident: bb0305 article-title: Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy publication-title: Biosens. Bioelectron. – volume: 57 start-page: 8961 year: 2021 end-page: 8964 ident: bb0455 article-title: Plasmonic nanorod array for effective photothermal therapy in hyperthermia publication-title: Chem. Commun. (Camb.) – volume: 71 start-page: 209 year: 2020 end-page: 249 ident: bb0005 article-title: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. – volume: 5 start-page: 6461 year: 2021 end-page: 6470 ident: bb0475 article-title: HSPA1A-siRNA nucleated gold nanorods for stimulated photothermal therapy through strategic heat shock to HSP70 publication-title: Mater. Chem. Front. – volume: 22 start-page: 831 year: 2021 ident: bb0420 article-title: Layer by layer assembled chitosan-coated gold nanoparticles for enhanced siRNA delivery and silencing publication-title: Int. J. Mol. Sci. – volume: 95 start-page: 181 year: 2017 end-page: 188 ident: bb0350 article-title: Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices publication-title: Biosens. Bioelectron. – volume: 1 year: 2021 ident: bb0080 article-title: Lumasiran: first approval publication-title: Drugs – volume: 30 start-page: 2005400 year: 2020 ident: bb0165 article-title: Optical properties and applications of plasmonic-metal nanoparticles publication-title: Adv. Funct. Mater. – volume: 37 year: 2019 ident: bb0180 article-title: Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care publication-title: Biotechnol. Adv. – volume: 87 year: 2005 ident: bb0355 article-title: Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates publication-title: Appl. Phys. Lett. – volume: 9 start-page: 1338 year: 2016 end-page: 1342 ident: bb0280 article-title: Surface plasmon resonance based biosensor: a new platform for rapid diagnosis of livestock diseases publication-title: Vet World – volume: 7 start-page: 1000373 year: 2016 ident: bb0170 article-title: Plasmonic sensors for disease detection-a review publication-title: J. Nanomed. Nanotechnol. – volume: 16 year: 2020 ident: bb0260 article-title: Hybridizing plasmonic materials with 2D-transition metal dichalcogenides toward functional applications publication-title: Small – volume: 12 start-page: 22613 year: 2020 end-page: 22623 ident: bb0540 article-title: Multifunctional siRNA-laden hybrid nanoplatform for noninvasive PA/IR dual-modal imaging-guided enhanced photogenetherapy publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 1802934 year: 2018 ident: bb0530 article-title: Bifunctional Au@ Bi2Se3 core–shell nanoparticle for synergetic therapy by SERS-traceable AntagomiR delivery and photothermal treatment publication-title: Small – volume: 8 start-page: e180 year: 2020 end-page: e190 ident: bb0015 article-title: Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis publication-title: Lancet Glob. Health – volume: 6 start-page: 1096 year: 2016 end-page: 1104 ident: bb0200 article-title: Fabrication of graphene and AuNP Core polyaniline Shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy publication-title: Theranostics – volume: 4 start-page: 1600430 year: 2017 ident: bb0240 article-title: Plasmnoinc of 2D nanomaterials:properties and application publication-title: Adv. Sci. – volume: 18 start-page: 3565 year: 2018 end-page: 3570 ident: bb0430 article-title: Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation publication-title: Nano Lett. – volume: 101 start-page: 17930 year: 2004 end-page: 17935 ident: bb0155 article-title: Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 136 start-page: 823 year: 2009 end-page: 837 ident: bb0025 article-title: Principles of cancer therapy: oncogene and non-oncogene addiction publication-title: Cell – volume: 154-155 start-page: 64 year: 2020 end-page: 78 ident: bb0405 article-title: Recent advances in siRNA delivery mediated by lipid-based nanoparticles publication-title: Adv. Drug Deliv. Rev. – volume: 245 year: 2020 ident: bb0505 article-title: Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy publication-title: Biomaterials – volume: 33 year: 2021 ident: bb0130 article-title: Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy publication-title: Adv. Mater. – volume: 9 year: 2017 ident: bb0205 article-title: Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment, Wiley Interdiscip. Rev.: Nanomed publication-title: Nanobiotechnology – volume: 19 start-page: 2272 year: 2019 end-page: 2279 ident: bb0510 article-title: AIE featured inorganic–organic core@ shell nanoparticles for high-efficiency siRNA delivery and real-time monitoring publication-title: Nano Lett. – volume: 7 start-page: 2311 year: 2017 end-page: 2316 ident: bb0210 article-title: Enhanced visible light absorption and reduced charge recombination in AgNP plasmonic photoelectrochemical cell publication-title: Results Phys. – volume: 5 start-page: 4529 year: 2011 end-page: 4536 ident: bb0250 article-title: Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst publication-title: ACS Nano – volume: 12 start-page: 6504 year: 2018 end-page: 6514 ident: bb0395 article-title: Rationally designed Polycationic carriers for potent polymeric siRNA-mediated gene silencing publication-title: ACS Nano – volume: 10 start-page: 34459 year: 2020 end-page: 34465 ident: bb0220 article-title: Water discrimination based on the kinetic variations of AgNP spectrum publication-title: RSC Adv. – volume: 4 start-page: 1757 year: 2016 end-page: 1769 ident: bb0360 article-title: Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins publication-title: J. Mater. Chem. B – volume: 107 start-page: 260 year: 2020 end-page: 271 ident: bb0450 article-title: Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors publication-title: Acta Biomater. – volume: 83 start-page: 258 year: 2017 end-page: 265 ident: bb0050 article-title: Mutant p53 as a target for cancer treatment publication-title: Eur. J. Cancer – volume: 16 start-page: 981 year: 2021 end-page: 999 ident: bb0175 article-title: Localized surface plasmonic properties of Au and Ag nanoparticles for sensors: a review publication-title: Plasmonics – volume: 13 start-page: 5125 year: 2021 end-page: 5135 ident: bb0495 article-title: DNAzyme-adsorbed polydopamine@ MnO publication-title: Nanoscale – volume: 7 start-page: 1 year: 2020 end-page: 12 ident: bb0365 article-title: Nanosheet composed of gold nanoparticle/graphene/epoxy resin based on ultrasonic fabrication for flexible dopamine biosensor using surface-enhanced Raman spectroscopy publication-title: Nano Converg. – volume: 7 start-page: 4420 year: 2021 ident: bb0090 article-title: Progress of photodynamic and RNAi combination therapy in Cancer treatment publication-title: ACS Biomater. Sci. Eng. – volume: 4 start-page: 3074 year: 2020 end-page: 3085 ident: bb0230 article-title: Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy publication-title: Mater. Chem. Front. – volume: 128 start-page: 4206 year: 2006 end-page: 4207 ident: bb0325 article-title: Metal-enhanced fluorescence-based RNA sensing publication-title: J. Am. Chem. Soc. – volume: 190 year: 2021 ident: bb0370 article-title: SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network publication-title: Biosens. Bioelectron. – volume: 4 start-page: 3895 year: 2018 end-page: 3905 ident: bb0490 article-title: siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy publication-title: ACS Biomater. Sci. Eng. – volume: 13 start-page: 819 year: 2006 end-page: 829 ident: bb0040 article-title: siRNA-based approaches in cancer therapy publication-title: Cancer Gene Ther. – volume: 6 start-page: 1900158 year: 2019 ident: bb0525 article-title: Anisotropic plasmonic metal heterostructures as theranostic nanosystems for near infrared light-activated fluorescence amplification and phototherapy publication-title: Adv. Sci. – volume: 11 start-page: 37 year: 2019 end-page: 42 ident: bb0055 article-title: Antisense oligonucleotide-conjugated nanostructure-targeting lncRNA MALAT1 inhibits cancer metastasis publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 9841 year: 2017 end-page: 9847 ident: bb0215 article-title: Silver nanoparticle plasmonic enhanced forster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface publication-title: Nanoscale – volume: 99 start-page: 307 year: 2019 end-page: 319 ident: bb0480 article-title: Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer publication-title: Acta Biomater. – volume: 97 start-page: 689 year: 2006 end-page: 696 ident: bb0070 article-title: Therapeutic potential of RNA interference against cancer publication-title: Cancer Sci. – volume: 223 year: 2019 ident: bb0460 article-title: Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism publication-title: Biomaterials – volume: 167 year: 2020 ident: bb0290 article-title: A miRNA biosensor based on localized surface plasmon resonance enhanced by surface-bound hybridization chain reaction publication-title: Biosens. Bioelectron. – volume: 78 start-page: 27 year: 2016 end-page: 39 ident: bb0465 article-title: Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing publication-title: Biomaterials – volume: 55 start-page: 379 year: 2014 end-page: 385 ident: bb0190 article-title: Novel plasmonic field-enhanced nanoassay for trace detection of proteins publication-title: Biosens. Bioelectron. – volume: 11 start-page: 3753 year: 2019 end-page: 3762 ident: bb0310 article-title: Biosensor for point-of-care analysis of immunoglobulins in urine by metal enhanced fluorescence from gold nanoparticles publication-title: ACS Appl. Mater. Interfaces – volume: 66 start-page: 271 year: 2016 end-page: 289 ident: bb0020 article-title: Cancer treatment and survivorship statistics publication-title: CA Cancer J. Clin. – volume: 319 start-page: 1352 year: 2008 end-page: 1355 ident: bb0030 article-title: An oncogene-induced DNA damage model for cancer development publication-title: Science – start-page: 125 year: 2018 end-page: 142 ident: bb0520 article-title: Applications of plasmonic nanomaterials for phototriggered theranostics publication-title: Handbook of Nanomaterials for Cancer Theranostics – volume: 12 start-page: 4308 year: 2020 end-page: 4322 ident: bb0110 article-title: Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for siRNA/miRNA combination cancer therapy publication-title: ACS Appl. Mater. Interfaces – volume: 29 start-page: 323 year: 2011 end-page: 332 ident: bb0515 article-title: Cancer theranostics: the rise of targeted magnetic nanoparticles publication-title: Trends Biotechnol. – volume: 238 year: 2020 ident: bb0135 article-title: Mesoporous polydopamine with built-in plasmonic core: traceable and NIR triggered delivery of functional proteins publication-title: Biomaterials – volume: 10 start-page: 542 year: 2015 end-page: 558 ident: bb0145 article-title: Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: a review publication-title: Nano Today – volume: 319 start-page: 1789 year: 2008 end-page: 1790 ident: bb0075 article-title: Multilevel regulation of gene expression by microRNAs publication-title: Science – volume: 6 start-page: 3434 year: 2012 end-page: 3440 ident: bb0160 article-title: Plasmonic nanoparticle networks for light and heat concentration publication-title: ACS Nano – volume: 364 year: 2019 ident: bb0045 article-title: Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway publication-title: Science – volume: 21 start-page: 68 year: 2021 end-page: 76 ident: bb0435 article-title: Photoresponsive miR-34a/nanoshell conjugates enable light-triggered gene regulation to impair the function of triple-negative breast cancer cells publication-title: Nano Lett. – volume: 16 start-page: 1904271 year: 2020 ident: bb0245 article-title: Hybridizing plasmonic materials with 2D-transistion metal dichalcogenides toward functional application publication-title: Small – volume: 13 start-page: 8793 year: 2019 end-page: 8803 ident: bb0345 article-title: Nondestructive characterization of stem cell neurogenesis by a magneto-plasmonic nanomaterial-based exosomal miRNA detection publication-title: ACS Nano – volume: 52 start-page: 774 year: 2017 end-page: 820 ident: bb0140 article-title: Plasmonic nanoparticles and their analytical applications: a review publication-title: Appl. Spectrosc. Rev. – volume: 223 year: 2021 ident: bb0185 article-title: Rapid vertical flow immunoassay on AuNP plasmonic paper for SERS-based point of need diagnostics publication-title: Talanta – volume: 24 start-page: 955 year: 2019 end-page: 970 ident: bb0060 article-title: CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment publication-title: Drug Discov. Today – volume: 3 start-page: 602 year: 2015 end-page: 617 ident: bb0120 article-title: Modern applications of plasmonic nanoparticles: from energy to health, advanced publication-title: Opt. Mater. – volume: 330 start-page: 1046 year: 2021 end-page: 1070 ident: bb0410 article-title: Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy publication-title: J. Control. Release – volume: 143 year: 2019 ident: bb0375 article-title: Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly publication-title: Biosens. Bioelectron. – volume: 37 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0180 article-title: Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2019.107440 – volume: 13 start-page: 8124 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0255 article-title: Plasmonic Ti3C2T x MXene enables highly efficient photothermal conversion for healable and transparent wearable device publication-title: ACS Nano doi: 10.1021/acsnano.9b03161 – volume: 8 start-page: e180 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0015 article-title: Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis publication-title: Lancet Glob. Health doi: 10.1016/S2214-109X(19)30488-7 – volume: 13 start-page: 5125 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0495 article-title: DNAzyme-adsorbed polydopamine@ MnO2 core–shell nanocomposites for enhanced photothermal therapy via the self-activated suppression of heat shock protein 70 publication-title: Nanoscale doi: 10.1039/D0NR08845E – volume: 111 start-page: 102 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0315 article-title: Metal enhanced fluorescence (MEF) for biosensors: general approaches and a review of recent developments publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.04.007 – volume: 123 start-page: 15375 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0125 article-title: Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b01961 – volume: 52 start-page: 774 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0140 article-title: Plasmonic nanoparticles and their analytical applications: a review publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2017.1312427 – volume: 271 start-page: 98 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0385 article-title: Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.12.022 – volume: 95 start-page: 181 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0350 article-title: Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.04.027 – volume: 223 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0460 article-title: Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119463 – volume: 93 start-page: 8002 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0275 article-title: Amplification-free detection of cytomegalovirus miRNA using a modification-free surface plasmon resonance biosensor publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01093 – volume: 15 start-page: 6517 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0500 article-title: Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy publication-title: ACS Nano doi: 10.1021/acsnano.0c08790 – volume: 7 start-page: 2311 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0210 article-title: Enhanced visible light absorption and reduced charge recombination in AgNP plasmonic photoelectrochemical cell publication-title: Results Phys. doi: 10.1016/j.rinp.2017.07.009 – volume: 132 start-page: 14551 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0440 article-title: Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II Window publication-title: Angew. Chem. doi: 10.1002/ange.202000474 – volume: 57 start-page: 8961 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0455 article-title: Plasmonic nanorod array for effective photothermal therapy in hyperthermia publication-title: Chem. Commun. (Camb.) doi: 10.1039/D1CC03047G – volume: 245 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0505 article-title: Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119976 – volume: 223 start-page: 613 year: 2016 ident: 10.1016/j.jconrel.2022.01.012_bb0285 article-title: Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich publication-title: Sensor Actuat B-Chem doi: 10.1016/j.snb.2015.09.152 – volume: 7 start-page: 1000373 year: 2016 ident: 10.1016/j.jconrel.2022.01.012_bb0170 article-title: Plasmonic sensors for disease detection-a review publication-title: J. Nanomed. Nanotechnol. – volume: 21 start-page: 68 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0435 article-title: Photoresponsive miR-34a/nanoshell conjugates enable light-triggered gene regulation to impair the function of triple-negative breast cancer cells publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03152 – volume: 7 start-page: 4240 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0485 article-title: Engineered Zn(II)-Dipicolylamine-gold nanorod provides effective prostate cancer treatment by combining siRNA delivery and photothermal therapy publication-title: Theranostics doi: 10.7150/thno.22435 – volume: 240 start-page: 119742 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0085 article-title: Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119742 – volume: 2 start-page: 1435 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0300 article-title: Individual Au-nanocube based plasmonic nanoprobe for cancer relevant MicroRNA biomarker detection publication-title: ACS Sens doi: 10.1021/acssensors.7b00322 – volume: 7 start-page: 1 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0365 article-title: Nanosheet composed of gold nanoparticle/graphene/epoxy resin based on ultrasonic fabrication for flexible dopamine biosensor using surface-enhanced Raman spectroscopy publication-title: Nano Converg. doi: 10.1186/s40580-020-00225-8 – volume: 30 start-page: 2005400 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0165 article-title: Optical properties and applications of plasmonic-metal nanoparticles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202005400 – volume: 8 start-page: 2990 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0445 article-title: Overview of the application of inorganic nanomaterials in cancer photothermal therapy publication-title: Biomater. Sci. doi: 10.1039/D0BM00222D – volume: 25 start-page: 4183 year: 2015 ident: 10.1016/j.jconrel.2022.01.012_bb0105 article-title: Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501283 – volume: 55 start-page: 379 year: 2014 ident: 10.1016/j.jconrel.2022.01.012_bb0190 article-title: Novel plasmonic field-enhanced nanoassay for trace detection of proteins publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.11.073 – volume: 55 start-page: 4222 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0400 article-title: DNA tetrahedron-based nanogels for siRNA delivery and gene silencing publication-title: Chem. Commun. (Camb.) doi: 10.1039/C9CC00175A – volume: 22 start-page: 831 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0420 article-title: Layer by layer assembled chitosan-coated gold nanoparticles for enhanced siRNA delivery and silencing publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22020831 – volume: 10 start-page: 1749 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0320 article-title: Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing publication-title: Nanomaterials (Basel) doi: 10.3390/nano10091749 – volume: 330 start-page: 1046 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0410 article-title: Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.11.011 – volume: 11 start-page: 3753 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0310 article-title: Biosensor for point-of-care analysis of immunoglobulins in urine by metal enhanced fluorescence from gold nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20501 – volume: 11 start-page: 968 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0470 article-title: Tumor-targeted gene silencing IDO synergizes PTT-induced apoptosis and enhances anti-tumor immunity publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00968 – volume: 143 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0375 article-title: Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111619 – volume: 18 start-page: 3565 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0430 article-title: Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00681 – volume: 6 start-page: 1096 year: 2016 ident: 10.1016/j.jconrel.2022.01.012_bb0200 article-title: Fabrication of graphene and AuNP Core polyaniline Shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy publication-title: Theranostics doi: 10.7150/thno.14361 – volume: 71 start-page: 209 issue: 2021 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0005 article-title: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. – volume: 4 start-page: 1757 year: 2016 ident: 10.1016/j.jconrel.2022.01.012_bb0360 article-title: Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins publication-title: J. Mater. Chem. B doi: 10.1039/C5TB02135A – volume: 145 start-page: 4173 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0335 article-title: A novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses publication-title: Analyst doi: 10.1039/D0AN00538J – volume: 10 start-page: 542 year: 2015 ident: 10.1016/j.jconrel.2022.01.012_bb0145 article-title: Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: a review publication-title: Nano Today doi: 10.1016/j.nantod.2015.07.005 – volume: 4 start-page: 3895 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0490 article-title: siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00858 – volume: 5 start-page: 483 year: 2012 ident: 10.1016/j.jconrel.2022.01.012_bb0265 article-title: Surface plasmon resonance based biosensor technique: a review publication-title: J. Biophotonics doi: 10.1002/jbio.201200015 – volume: 134 start-page: 783 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0010 article-title: Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020 publication-title: Chin. Med. J. doi: 10.1097/CM9.0000000000001474 – volume: 4 start-page: 1600430 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0240 article-title: Plasmnoinc of 2D nanomaterials:properties and application publication-title: Adv. Sci. doi: 10.1002/advs.201600430 – volume: 328 start-page: 1135 year: 2010 ident: 10.1016/j.jconrel.2022.01.012_bb0150 article-title: Self-assembled plasmonic nanoparticle clusters publication-title: Science doi: 10.1126/science.1187949 – volume: 13 start-page: 8793 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0345 article-title: Nondestructive characterization of stem cell neurogenesis by a magneto-plasmonic nanomaterial-based exosomal miRNA detection publication-title: ACS Nano doi: 10.1021/acsnano.9b01875 – volume: 107 start-page: 260 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0450 article-title: Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.03.001 – volume: 5 start-page: 6461 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0475 article-title: HSPA1A-siRNA nucleated gold nanorods for stimulated photothermal therapy through strategic heat shock to HSP70 publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00630D – volume: 319 start-page: 1352 year: 2008 ident: 10.1016/j.jconrel.2022.01.012_bb0030 article-title: An oncogene-induced DNA damage model for cancer development publication-title: Science doi: 10.1126/science.1140735 – volume: 8 start-page: 2862 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0195 article-title: Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: a comparative study for different particle sizes, shapes, and surface conjugations publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00240B – volume: 167 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0290 article-title: A miRNA biosensor based on localized surface plasmon resonance enhanced by surface-bound hybridization chain reaction publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2020.112465 – volume: 5 start-page: eaaw6264 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0425 article-title: Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw6264 – volume: 16 start-page: 134 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0095 article-title: Nano-based delivery of RNAi in cancer therapy publication-title: Mol. Cancer doi: 10.1186/s12943-017-0683-y – volume: 4 start-page: 3074 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0230 article-title: Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy publication-title: Mater. Chem. Front. doi: 10.1039/D0QM00469C – volume: 16 start-page: 2000460 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0340 article-title: Target-triggered assembly of nanogap antennas to enhance the fluorescence of single molecules and their application in MicroRNA detection publication-title: Small doi: 10.1002/smll.202000460 – volume: 319 start-page: 1789 year: 2008 ident: 10.1016/j.jconrel.2022.01.012_bb0075 article-title: Multilevel regulation of gene expression by microRNAs publication-title: Science doi: 10.1126/science.1152326 – volume: 24 start-page: 955 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0060 article-title: CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2019.02.011 – volume: 99 start-page: 307 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0480 article-title: Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.08.046 – volume: 11 start-page: 37 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0055 article-title: Antisense oligonucleotide-conjugated nanostructure-targeting lncRNA MALAT1 inhibits cancer metastasis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b18288 – volume: 6 start-page: 1900158 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0525 article-title: Anisotropic plasmonic metal heterostructures as theranostic nanosystems for near infrared light-activated fluorescence amplification and phototherapy publication-title: Adv. Sci. doi: 10.1002/advs.201900158 – volume: 34 start-page: 14766 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0225 article-title: Organic semiconductor laser platform for the detection of DNA by AgNP plasmonic enhancement publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01313 – volume: 78 start-page: 27 year: 2016 ident: 10.1016/j.jconrel.2022.01.012_bb0465 article-title: Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.11.025 – volume: 11 start-page: 264 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0330 article-title: Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes publication-title: Nano Res. doi: 10.1007/s12274-017-1629-9 – start-page: 125 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0520 article-title: Applications of plasmonic nanomaterials for phototriggered theranostics – volume: 13 start-page: 819 year: 2006 ident: 10.1016/j.jconrel.2022.01.012_bb0040 article-title: siRNA-based approaches in cancer therapy publication-title: Cancer Gene Ther. doi: 10.1038/sj.cgt.7700931 – volume: 14 start-page: 1802934 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0530 article-title: Bifunctional Au@ Bi2Se3 core–shell nanoparticle for synergetic therapy by SERS-traceable AntagomiR delivery and photothermal treatment publication-title: Small doi: 10.1002/smll.201802934 – volume: 154-155 start-page: 64 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0405 article-title: Recent advances in siRNA delivery mediated by lipid-based nanoparticles publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.07.022 – volume: 9 start-page: 23894 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0415 article-title: Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment publication-title: RSC Adv. doi: 10.1039/C9RA03608C – volume: 136 start-page: 823 year: 2009 ident: 10.1016/j.jconrel.2022.01.012_bb0025 article-title: Principles of cancer therapy: oncogene and non-oncogene addiction publication-title: Cell doi: 10.1016/j.cell.2009.02.024 – volume: 10 start-page: 34459 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0220 article-title: Water discrimination based on the kinetic variations of AgNP spectrum publication-title: RSC Adv. doi: 10.1039/D0RA06000C – volume: 14 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0100 article-title: Redox-responsive nanoparticle-mediated systemic RNAi for effective cancer therapy publication-title: Small doi: 10.1002/smll.201802565 – volume: 1 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0080 article-title: Lumasiran: first approval publication-title: Drugs – volume: 9 start-page: 9841 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0215 article-title: Silver nanoparticle plasmonic enhanced forster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface publication-title: Nanoscale doi: 10.1039/C7NR01562C – volume: 140 start-page: 16264 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0390 article-title: A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10021 – volume: 238 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0135 article-title: Mesoporous polydopamine with built-in plasmonic core: traceable and NIR triggered delivery of functional proteins publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119847 – volume: 190 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0370 article-title: SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113376 – volume: 7 start-page: 4420 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0090 article-title: Progress of photodynamic and RNAi combination therapy in Cancer treatment publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.1c00765 – volume: 5 start-page: 4529 year: 2011 ident: 10.1016/j.jconrel.2022.01.012_bb0250 article-title: Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst publication-title: ACS Nano doi: 10.1021/nn200088x – volume: 66 start-page: 271 issue: 2016 year: 2016 ident: 10.1016/j.jconrel.2022.01.012_bb0020 article-title: Cancer treatment and survivorship statistics publication-title: CA Cancer J. Clin. – volume: 347 start-page: 130629 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0295 article-title: Plasmonic biosensor based on a gold nanostripe array for detection of microRNA related to myelodysplastic syndromes publication-title: Sensor Actuat B-Chem. doi: 10.1016/j.snb.2021.130629 – volume: 10 start-page: 17732 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0535 article-title: Intelligent MnO2/Cu2–xS for multimode imaging diagnostic and advanced single-laser irradiated photothermal/photodynamic therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b05050 – volume: 101 start-page: 17930 year: 2004 ident: 10.1016/j.jconrel.2022.01.012_bb0155 article-title: Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0408319102 – volume: 335 start-page: 675 year: 1990 ident: 10.1016/j.jconrel.2022.01.012_bb0035 article-title: Increased expression of mutant forms of p53 oncogene in primary lung cancer publication-title: Lancet doi: 10.1016/0140-6736(90)90801-B – volume: 87 year: 2005 ident: 10.1016/j.jconrel.2022.01.012_bb0355 article-title: Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.1988980 – volume: 126 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0235 article-title: Multitherapeutic nanoplatform based on scintillating anthracene, silver@anthracene, and gold@anthracene nanoparticles for combined radiation and photodynamic cancer therapies publication-title: Mat Sci. Eng. C-Mater. doi: 10.1016/j.msec.2021.112122 – volume: 37 start-page: 107 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0065 article-title: RNA interference-based therapy and its delivery systems publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-017-9717-6 – volume: 16 start-page: 981 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0175 article-title: Localized surface plasmonic properties of Au and Ag nanoparticles for sensors: a review publication-title: Plasmonics doi: 10.1007/s11468-021-01381-1 – volume: 87 start-page: 433 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0305 article-title: Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.08.090 – volume: 19 start-page: 2272 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0510 article-title: AIE featured inorganic–organic core@ shell nanoparticles for high-efficiency siRNA delivery and real-time monitoring publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04677 – volume: 12 start-page: 4308 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0110 article-title: Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for siRNA/miRNA combination cancer therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b21214 – volume: 33 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0130 article-title: Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy publication-title: Adv. Mater. – volume: 364 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0045 article-title: Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway publication-title: Science doi: 10.1126/science.aau0159 – volume: 16 start-page: 1904271 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0245 article-title: Hybridizing plasmonic materials with 2D-transistion metal dichalcogenides toward functional application publication-title: Small doi: 10.1002/smll.201904271 – volume: 9 start-page: 1338 year: 2016 ident: 10.1016/j.jconrel.2022.01.012_bb0280 article-title: Surface plasmon resonance based biosensor: a new platform for rapid diagnosis of livestock diseases publication-title: Vet World doi: 10.14202/vetworld.2016.1338-1342 – volume: 406 start-page: 2303 year: 2014 ident: 10.1016/j.jconrel.2022.01.012_bb0270 article-title: Surface plasmon resonance applications in clinical analysis publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-014-7647-5 – volume: 16 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0260 article-title: Hybridizing plasmonic materials with 2D-transition metal dichalcogenides toward functional applications publication-title: Small – volume: 29 start-page: 323 year: 2011 ident: 10.1016/j.jconrel.2022.01.012_bb0515 article-title: Cancer theranostics: the rise of targeted magnetic nanoparticles publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2011.03.001 – volume: 128 start-page: 4206 year: 2006 ident: 10.1016/j.jconrel.2022.01.012_bb0325 article-title: Metal-enhanced fluorescence-based RNA sensing publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0601179 – volume: 223 year: 2021 ident: 10.1016/j.jconrel.2022.01.012_bb0185 article-title: Rapid vertical flow immunoassay on AuNP plasmonic paper for SERS-based point of need diagnostics publication-title: Talanta doi: 10.1016/j.talanta.2020.121739 – volume: 9 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0205 article-title: Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment, Wiley Interdiscip. Rev.: Nanomed publication-title: Nanobiotechnology – volume: 144 start-page: 1768 year: 2019 ident: 10.1016/j.jconrel.2022.01.012_bb0380 article-title: A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar publication-title: Analyst doi: 10.1039/C8AN01745J – volume: 97 start-page: 689 year: 2006 ident: 10.1016/j.jconrel.2022.01.012_bb0070 article-title: Therapeutic potential of RNA interference against cancer publication-title: Cancer Sci. doi: 10.1111/j.1349-7006.2006.00234.x – volume: 12 start-page: 6504 year: 2018 ident: 10.1016/j.jconrel.2022.01.012_bb0395 article-title: Rationally designed Polycationic carriers for potent polymeric siRNA-mediated gene silencing publication-title: ACS Nano doi: 10.1021/acsnano.7b08777 – volume: 83 start-page: 258 year: 2017 ident: 10.1016/j.jconrel.2022.01.012_bb0050 article-title: Mutant p53 as a target for cancer treatment publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2017.06.023 – volume: 6 start-page: 3434 year: 2012 ident: 10.1016/j.jconrel.2022.01.012_bb0160 article-title: Plasmonic nanoparticle networks for light and heat concentration publication-title: ACS Nano doi: 10.1021/nn300470j – volume: 3 start-page: 602 year: 2015 ident: 10.1016/j.jconrel.2022.01.012_bb0120 article-title: Modern applications of plasmonic nanoparticles: from energy to health, advanced publication-title: Opt. Mater. doi: 10.1002/adom.201500053 – volume: 234 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0115 article-title: Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.119760 – volume: 12 start-page: 22613 year: 2020 ident: 10.1016/j.jconrel.2022.01.012_bb0540 article-title: Multifunctional siRNA-laden hybrid nanoplatform for noninvasive PA/IR dual-modal imaging-guided enhanced photogenetherapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c04533 |
| SSID | ssj0005347 |
| Score | 2.5415964 |
| SecondaryResourceType | review_article |
| Snippet | RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 228 |
| SubjectTerms | cancer therapy early diagnosis microRNA microRNA (miRNA) Nanobiosensor Photothermal therapy Plasmonic nanoparticle RNA interference RNA interference (RNAi) Small interference RNA (siRNA) Theragnosis |
| Title | RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy |
| URI | https://dx.doi.org/10.1016/j.jconrel.2022.01.012 https://www.ncbi.nlm.nih.gov/pubmed/35016917 https://www.proquest.com/docview/2619209599 https://www.proquest.com/docview/2636745190 |
| Volume | 342 |
| WOSCitedRecordID | wos000745675700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-4995 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005347 issn: 0168-3659 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jgde0Pgug8lIaAJpLkmcOPZjhYZgD1HFCipPUWKnrKVzp35M61_Bv8w5dtJ2ZQyQkKqosuLk6vvVPp_vfofQKxnlAzDrB4R6RURCykKSZYEkUvhK-BIW_MIri03EScL7fdFtNH5UuTCX41hrfnUlLv6rqqENlG1SZ_9C3fVDoQG-g9LhCmqH6x8p_lPSKUkgphWDrHESJB14oiBmzVKmcvTsvKx8ozM9AZPVilVGHEqDgqlxyZoIvOGsirCsqQe2DVkX7T4uVFmBZe245-vEnumfDPXZpPblnA1dwL7-vlxcDwgaknL-udZ8mulvJMnO130UsL31NuI9tpNnrC-TcUKZIwQv7PzLY0pgExatT9DU8m9VU6xLJrerdWDJnrYWAuuTGLVHMAbw29tGqpKf1QVtb3JsnxpZjCiByVwKGN9Bu0EcCd5Eu52Px_2TVdQQDW0GvpN9lRT29pcvu8ncuWk7U5o1vT10z6kRdyyO7qNGoR-gw64lNF8e4d4qP292hA9xd0V1vnyIvgCw8DrY8GsDtTcWaLgGGt4AGgagYQs0XAMNA9CwA9oj9Pn9ce_dB-IqdRBJBZ8TycXA5wX1ZC64kBnL88wfMGnGk-cshDVUhXGsYEizXEkmPRqrUOWRJ7NQioI-Rk090cVThBWD-0VOqc9UCFaBYHnoS7CgzNZAKNpCYTWgqXQ09qaayjit4hVHqdNDavSQej58ghZq190uLI_LbR14pa3UGaPWyEwBYrd1fVlpN4XJ2pzAZbqYLGZp6a4wnnfxu3soiw3pk9dCTyw0aolNFAATfvzs34XbR3dX_9DnqDmfLooX6I68nA9n0wO0E_f5gQP9TxE-0kg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+interference+%28RNAi%29-based+plasmonic+nanomaterials+for+cancer+diagnosis+and+therapy&rft.jtitle=Journal+of+controlled+release&rft.au=Yoon%2C+Jinho&rft.au=Shin%2C+Minkyu&rft.au=Lee%2C+Ji-Young&rft.au=Lee%2C+Sang-Nam&rft.date=2022-02-01&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=342&rft.spage=228&rft.epage=240&rft_id=info:doi/10.1016%2Fj.jconrel.2022.01.012&rft.externalDocID=S0168365922000268 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |