RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy

RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of controlled release Ročník 342; s. 228 - 240
Hlavní autoři: Yoon, Jinho, Shin, Minkyu, Lee, Ji-Young, Lee, Sang-Nam, Choi, Jin-Ha, Choi, Jeong-Woo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Netherlands Elsevier B.V 01.02.2022
Témata:
ISSN:0168-3659, 1873-4995, 1873-4995
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer. RNA interference (RNAi) is a potential strategy for cancer diagnosis and treatment. Especially, plasmonic nanomaterial-based RNAi delivery systems have various advantages using its plasmonic property, such as optical imaging and photothermal effect. In this review, recently announced microRNA detection using plasmonic nanomaterials and small interfering RNA (siRNA)-based treatment techniques are briefly described for cancer therapy. [Display omitted]
AbstractList RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.
RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.
RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer. RNA interference (RNAi) is a potential strategy for cancer diagnosis and treatment. Especially, plasmonic nanomaterial-based RNAi delivery systems have various advantages using its plasmonic property, such as optical imaging and photothermal effect. In this review, recently announced microRNA detection using plasmonic nanomaterials and small interfering RNA (siRNA)-based treatment techniques are briefly described for cancer therapy. [Display omitted]
Author Shin, Minkyu
Yoon, Jinho
Lee, Sang-Nam
Choi, Jeong-Woo
Choi, Jin-Ha
Lee, Ji-Young
Author_xml – sequence: 1
  givenname: Jinho
  surname: Yoon
  fullname: Yoon, Jinho
  organization: Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
– sequence: 2
  givenname: Minkyu
  surname: Shin
  fullname: Shin, Minkyu
  organization: Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
– sequence: 3
  givenname: Ji-Young
  surname: Lee
  fullname: Lee, Ji-Young
  organization: Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
– sequence: 4
  givenname: Sang-Nam
  surname: Lee
  fullname: Lee, Sang-Nam
  organization: Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
– sequence: 5
  givenname: Jin-Ha
  surname: Choi
  fullname: Choi, Jin-Ha
  email: jhchoi@jbnu.ac.kr
  organization: School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
– sequence: 6
  givenname: Jeong-Woo
  surname: Choi
  fullname: Choi, Jeong-Woo
  email: jwchoi@sogang.ac.kr
  organization: Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35016917$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1LJDEQhoMo66j7E5Qc9dCz-eh0d_CwiOwXiIK4ew3pSvVuhu5kNukR_PdmmPGyFxcKCqqetwre94QchhiQkHPOlpzx5tNquYIYEo5LwYRYMl5KHJAF71pZ1VqrQ7IoXFfJRuljcpLzijGmZN1-IMdSlZXm7YL8ery_oT7MmAZMGADpZZn4q6q3GR1djzZPMXigwYY42cJ5O2Y6xETBFjxR5-3vELPP1AZH5z-Y7PrljBwNhcOP-35Kfn798nT7vbp7-Pbj9uauAqm7uYJOD7xDyaDXnQbb9L3lQwNaCNb1Te0curptXau07R00wGTratcrBrYGjfKUXO7urlP8u8E8m8lnwHG0AeMmG9HIpq0V1-w_UK4F00rrgl7s0U0_oTPr5CebXsybbQW43gGQYs4JBwN-trOPYU7Wj4Yzsw3JrMw-JLMNyTBeShS1-kf99uA93eedDoujzx6TyeC3mTmfEGbjon_nwitHIa7x
CitedBy_id crossref_primary_10_1016_j_cej_2024_148616
crossref_primary_10_1021_acs_langmuir_5c02001
crossref_primary_10_1016_j_talanta_2023_124861
crossref_primary_10_1007_s13206_024_00183_x
crossref_primary_10_3390_molecules28227679
crossref_primary_10_3389_fonc_2024_1507958
crossref_primary_10_1016_j_cej_2023_143924
crossref_primary_10_3390_cancers14153597
crossref_primary_10_1039_D4MH00861H
crossref_primary_10_1016_j_jnca_2024_103828
crossref_primary_10_2147_IJN_S436038
crossref_primary_10_1016_j_phrs_2025_107903
crossref_primary_10_1186_s12951_024_02534_0
crossref_primary_10_1016_j_lfs_2024_122899
crossref_primary_10_3390_ijms25073896
crossref_primary_10_3390_jnt4020009
crossref_primary_10_1016_j_ijbiomac_2023_126912
crossref_primary_10_1016_j_cej_2025_166517
crossref_primary_10_1016_j_semcancer_2022_05_012
crossref_primary_10_1186_s12951_024_02883_w
crossref_primary_10_1186_s12951_025_03433_8
crossref_primary_10_1016_j_jconrel_2024_12_047
crossref_primary_10_26599_NR_2025_94907197
crossref_primary_10_1186_s12967_022_03740_w
crossref_primary_10_1007_s12013_024_01423_5
crossref_primary_10_1080_03639045_2024_2387166
crossref_primary_10_3389_fmed_2025_1550901
Cites_doi 10.1016/j.biotechadv.2019.107440
10.1021/acsnano.9b03161
10.1016/S2214-109X(19)30488-7
10.1039/D0NR08845E
10.1016/j.bios.2018.04.007
10.1021/acs.jpcc.9b01961
10.1080/05704928.2017.1312427
10.1016/j.jconrel.2017.12.022
10.1016/j.bios.2017.04.027
10.1016/j.biomaterials.2019.119463
10.1021/acs.analchem.1c01093
10.1021/acsnano.0c08790
10.1016/j.rinp.2017.07.009
10.1002/ange.202000474
10.1039/D1CC03047G
10.1016/j.biomaterials.2020.119976
10.1016/j.snb.2015.09.152
10.1021/acs.nanolett.0c03152
10.7150/thno.22435
10.1016/j.biomaterials.2019.119742
10.1021/acssensors.7b00322
10.1186/s40580-020-00225-8
10.1002/adfm.202005400
10.1039/D0BM00222D
10.1002/adfm.201501283
10.1016/j.bios.2013.11.073
10.1039/C9CC00175A
10.3390/ijms22020831
10.3390/nano10091749
10.1016/j.jconrel.2020.11.011
10.1021/acsami.8b20501
10.3389/fimmu.2020.00968
10.1016/j.bios.2019.111619
10.1021/acs.nanolett.8b00681
10.7150/thno.14361
10.1039/C5TB02135A
10.1039/D0AN00538J
10.1016/j.nantod.2015.07.005
10.1021/acsbiomaterials.8b00858
10.1002/jbio.201200015
10.1097/CM9.0000000000001474
10.1002/advs.201600430
10.1126/science.1187949
10.1021/acsnano.9b01875
10.1016/j.actbio.2020.03.001
10.1039/D1QM00630D
10.1126/science.1140735
10.1039/D0TB00240B
10.1016/j.bios.2020.112465
10.1126/sciadv.aaw6264
10.1186/s12943-017-0683-y
10.1039/D0QM00469C
10.1002/smll.202000460
10.1126/science.1152326
10.1016/j.drudis.2019.02.011
10.1016/j.actbio.2019.08.046
10.1021/acsami.8b18288
10.1002/advs.201900158
10.1021/acs.langmuir.8b01313
10.1016/j.biomaterials.2015.11.025
10.1007/s12274-017-1629-9
10.1038/sj.cgt.7700931
10.1002/smll.201802934
10.1016/j.addr.2020.07.022
10.1039/C9RA03608C
10.1016/j.cell.2009.02.024
10.1039/D0RA06000C
10.1002/smll.201802565
10.1039/C7NR01562C
10.1021/jacs.8b10021
10.1016/j.biomaterials.2020.119847
10.1016/j.bios.2021.113376
10.1021/acsbiomaterials.1c00765
10.1021/nn200088x
10.1016/j.snb.2021.130629
10.1021/acsami.8b05050
10.1073/pnas.0408319102
10.1016/0140-6736(90)90801-B
10.1063/1.1988980
10.1016/j.msec.2021.112122
10.1007/s10555-017-9717-6
10.1007/s11468-021-01381-1
10.1016/j.bios.2016.08.090
10.1021/acs.nanolett.8b04677
10.1021/acsami.9b21214
10.1126/science.aau0159
10.1002/smll.201904271
10.14202/vetworld.2016.1338-1342
10.1007/s00216-014-7647-5
10.1016/j.tibtech.2011.03.001
10.1021/ja0601179
10.1016/j.talanta.2020.121739
10.1039/C8AN01745J
10.1111/j.1349-7006.2006.00234.x
10.1021/acsnano.7b08777
10.1016/j.ejca.2017.06.023
10.1021/nn300470j
10.1002/adom.201500053
10.1016/j.biomaterials.2020.119760
10.1021/acsami.0c04533
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2022.01.012
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 240
ExternalDocumentID 35016917
10_1016_j_jconrel_2022_01_012
S0168365922000268
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29K
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATCM
AAXUO
AAYOK
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABXDB
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
C45
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPT
SSM
SSP
SSZ
T5K
TEORI
WUQ
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-c89f18e30cb989ca6bba1f6c92208b64dded477d759abdc6c037d4db50ca4c9e3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745675700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-3659
1873-4995
IngestDate Thu Oct 02 10:28:33 EDT 2025
Wed Oct 01 17:01:24 EDT 2025
Wed Feb 19 02:26:22 EST 2025
Sat Nov 29 07:27:41 EST 2025
Tue Nov 18 22:37:01 EST 2025
Fri Feb 23 02:40:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Photothermal therapy
RNA interference (RNAi)
microRNA (miRNA)
Nanobiosensor
Small interference RNA (siRNA)
Plasmonic nanoparticle
Theragnosis
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-c89f18e30cb989ca6bba1f6c92208b64dded477d759abdc6c037d4db50ca4c9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 35016917
PQID 2619209599
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2636745190
proquest_miscellaneous_2619209599
pubmed_primary_35016917
crossref_citationtrail_10_1016_j_jconrel_2022_01_012
crossref_primary_10_1016_j_jconrel_2022_01_012
elsevier_sciencedirect_doi_10_1016_j_jconrel_2022_01_012
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of controlled release
PublicationTitleAlternate J Control Release
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wu, Zhou, Chen, Chen, Hou, Qian, Zhang, Tang, Chen, Ping, Fang, Duan (bb0135) 2020; 238
Yaraki, Pan, Hu, Yu, Liu, Tan (bb0230) 2020; 4
Fan, Ding, Liu, Liang, Chen (bb0255) 2019; 13
Chen, Wu, Fu, Cao, Tan, Shi, Wu (bb0375) 2019; 143
Zhao, Li, Liu (bb0215) 2017; 9
Sriram, Manikandan, Chuang, Chueh (bb0245) 2020; 16
Ding, Gao, Huang, Ge, Xie, Qian, Song, Li, Zhu, Zhang (bb0505) 2020; 245
Huo, Gong, Jiang, Chen, Guo, Gan, Wang, Herrmann, Liang (bb0425) 2019; 5
Jia, Liu, Xu, Tian, Li, Han, Feng, Dong, Chen (bb0440) 2020; 132
Slabý, Bocková, Homola (bb0295) 2021; 347
Fan, Wu, Bao, Bao, Bardhan, Halas, Manoharan, Nordlander, Shvets, Capasso (bb0150) 2010; 328
Mariani, Minunni (bb0270) 2014; 406
Xi, Xie, Peng, Liu, Ding, Zhou (bb0495) 2021; 13
Shariati-Rad, Mozaffari (bb0220) 2020; 10
Boken, Khurana, Thatai, Kumar, Prasad (bb0140) 2017; 52
Mousazadeh, Pilehvar-Soltanahmadi, Dadashpour, Zarghami (bb0410) 2021; 330
Chen, Liu, Li, Su, Qiu, Zhong, Guo (bb0200) 2016; 6
Peng, Sun, Na, Ouyang (bb0340) 2020; 16
He, Yin, Wang, Xiong, Kwok, Gao, Zhao, Lam, Yong, Li (bb0510) 2019; 19
Halazonetis, Gorgoulis, Bartek (bb0030) 2008; 319
Dang, Gomez Casas, Day (bb0435) 2021; 21
Fernandes, Rodrigues, Moreira, Correia (bb0445) 2020; 8
Wang, Zhang, Xiao, Liang, Liang, Mi, Wang, Liu (bb0450) 2020; 107
Liu, Wang, Li, Yang, Wang, Nie (bb0305) 2017; 87
Lu, Tu, Liu, Zhou, Zheng, Chen (bb0330) 2018; 11
Chaney, Shanmukh, Dluhy, Zhao (bb0355) 2005; 87
Liu, Cao, Qiao, Yao, Pan, Wang, Yue, Ma, Liu, Cui (bb0480) 2019; 99
Wu, Li, Wang, Hammond (bb0395) 2018; 12
Duffy, Synnott, Crown (bb0050) 2017; 83
Luo, Solimini, Elledge (bb0025) 2009; 136
Sanchot, Baffou, Marty, Arbouet, Quidant, Girard, Dujardin (bb0160) 2012; 6
Miti, Thamm, Muller, Csaki, Fritzsche, Zuccheri (bb0290) 2020; 167
Min, Kim, Wang, Kim, Kim, Kim, Kim, Kwon, Kiesewetter, Chen (bb0485) 2017; 7
Stobiecka (bb0190) 2014; 55
Kim, Kumar, Park, Kim (bb0475) 2021; 5
Mu, Li, Yan, Zhang, Zhang, Zhang, Jiang (bb0490) 2018; 4
Li, Leustean, Inci, Zheng, Demirci, Wang (bb0180) 2019; 37
Jeong, Kook, Lee, Koh (bb0315) 2018; 111
Frimpong, Jang, Kim, Driskell (bb0185) 2021; 223
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal, Bray, Global Cancer Statistics (bb0005) 2020; 71
Xu, Wu, Liu, Saw, Tao, Li, Krygsman, Yegnasubramanian, De Marzo, Shi, Bieberich, Farokhzad (bb0100) 2018; 14
Badshah, Koh, Zia, Abbas, Zahra, Saleem (bb0320) 2020; 10
Xin, Huang, Guo, Huang, Zhang, Jiang (bb0095) 2017; 16
Riley, Day (bb0205) 2017; 9
Kumar, Diwan, Singh, Gulati, Choudhary, Mongia, Shukla, Gupta (bb0415) 2019; 9
Oliveira, Guidelli (bb0235) 2021; 126
Devi (bb0040) 2006; 13
Li, Saw, Lin, Nie, Tao, Farokhzad, Zhang, Xu (bb0115) 2020; 234
Della Ventura, Gelzo, Battista, Alabastri, Schirato, Castaldo, Corso, Gentile, Velotta (bb0310) 2019; 11
Barizuddin, Bok, Gangopadhyay (bb0170) 2016; 7
Chen, Mangala, Rodriguez-Aguayo, Kong, Lopez-Berestein, Sood (bb0065) 2018; 37
Sriram, Manikandan, Chuang, Chueh (bb0260) 2020; 16
Masterson, Liyanage, Berman, Kaimakliotis, Johnson, Sardar (bb0335) 2020; 145
Xue, Ding, Zhang, Guo, Gao, Feng, Zhu, Zhang (bb0400) 2019; 55
Liu, Saber, Haisma (bb0060) 2019; 24
Gong, Teng, Li, Liang (bb0055) 2019; 11
Buda, Shafie, Rashid, Jaafar, Sharif (bb0210) 2017; 7
Feng, Yu, Xu, Hu, Liu, Wang (bb0540) 2020; 12
Song, Zhang, Jiang, Gan, Zhu, Peng, Fang, Guo, Wang (bb0370) 2021; 190
Kim, Lee, Song, Kim, Choi, Sim (bb0380) 2019; 144
Cole, Yang, David (bb0515) 2011; 29
Dang, Ye, Li, Liang, Li, Yin (bb0460) 2019; 223
Riley, Dang, Billingsley, Abraham, Gundlach, Day (bb0430) 2018; 18
Zhao, Zhao, Cao, Sun, Zhou, Chen, Guo, Wang, Zhen, Liang, Zhang (bb0500) 2021; 15
Lee, Chen, Lee, Zhang, Lin, Fu, Chen, Ishikawa, Chiang, Katon (bb0045) 2019; 364
Ali, Wu, El-Sayed (bb0125) 2019; 123
Zhang, Wang, Zhang, Liu, Wu, Shen, Zhang, Hu, Fan, Huang, Wang (bb0300) 2017; 2
Kokkinos, Ignacio, Sharbeen, Boyer, Gonzales-Aloy, Goldstein, Australian Pancreatic Cancer Genome Initiative, McCarroll, Phillips (bb0085) 2020; 240
Hussein, El-Said, Abu-Zied, Choi (bb0365) 2020; 7
Rodriguez-Quijada, Hamad-Schifferli (bb0520) 2018
Lee, Choi, Chueng, Pongkulapa, Yang, Cho, Choi, Lee (bb0345) 2019; 13
Austin, Kang, El-Sayed (bb0145) 2015; 10
Guo (bb0265) 2012; 5
Takeshita, Ochiya (bb0070) 2006; 97
Yonezawa, Koide, Asai (bb0405) 2020; 154-155
Jackson, Halas (bb0155) 2004; 101
Cao, Chen, Yu, Li, Chen (bb0010) 2021; 134
Wang, Yu, Wang, Li, Li, Wang, Song, Chu, Li (bb0465) 2016; 78
Wang, Hasanzadeh Kafshgari, Meunier (bb0165) 2020; 30
de Aberasturi, Serrano-Montes, Liz-Marzán (bb0120) 2015; 3
Cao, Meng, Wang, Zhang, Dai, Dong, Zhang (bb0535) 2018; 10
Sahoo, Swain, Nayak, Bag, Mishra (bb0280) 2016; 9
Chang, Feng, Cheng, Zheng, Wu, Jian, Zhang, Tang, Wang, Hao (bb0525) 2019; 6
McConnell, Mabbott, Kanibolotsky, Skabara, Graham, Burley, Laurand (bb0225) 2018; 34
Li, Li, Chi, Shan, Zheng, Fang (bb0240) 2017; 4
Zhu, Chen, Liu (bb0250) 2011; 5
Mohammadniaei, Lee, Bharate, Yoon, Choi, Park, Kim, Kim, Choi (bb0530) 2018; 14
Bui, Ho, Ho, Ngo, Lim, Son, Noh, Joo (bb0455) 2021; 57
Khurana, Jaggi (bb0175) 2021; 16
Chang, Chou, Cheng, Hsu, Su, Ho (bb0275) 2021; 93
Miller, Siegel, Lin, Mariotto, Kramer, Rowland, Stein, Alteri, Jemal (bb0020) 2016; 66
Liang, Lan, Yin, Ge, Yu, Yan (bb0350) 2017; 95
Wang, Xie, Kilchrist, Li, Duvall, Oupicky (bb0110) 2020; 12
Scott, Keam (bb0080) 2021; 1
Wang, Liu, Yang, Wang, Zhu, He, Li (bb0285) 2016; 223
Guerrero-Florez, Mendez-Sanchez, Patron-Soberano, Rodriguez-Gonzalez, Blach, Martinez (bb0195) 2020; 8
Iggo, Gatter, Bartek, Lane, Harris (bb0035) 1990; 335
Li, Zhang, Hussain, Weng, Huang (bb0090) 2021; 7
Zhou, Zhang, Sun, Zhang, Liu, Gong, Xu, Du, Liu, Liu, Zhang (bb0130) 2021; 33
de Martel, Georges, Bray, Ferlay, Clifford (bb0015) 2020; 8
Makeyev, Maniatis (bb0075) 2008; 319
Shaabani, Sharifiaghdam, De Keersmaecker, De Rycke, De Smedt, Faridi-Majidi, Braeckmans, Fraire (bb0420) 2021; 22
Conde, Bao, Tan, Cui, Edelman, Azevedo, Byrne, Artzi, Tian (bb0105) 2015; 25
Dong, Yu, Ding, Laurini, Huang, Zhang, Weng, Lin, Chen, Marson, Jiang, Giorgio, Pricl, Liu, Rocchi, Peng (bb0390) 2018; 140
Alshaer, Hillaireau, Vergnaud, Mura, Delomenie, Sauvage, Ismail, Fattal (bb0385) 2018; 271
Aslan, Huang, Wilson, Geddes (bb0325) 2006; 128
Zhang, Feng, Huang, Wang, Qiu, Liu, Peng, Li, Kuang, Shi, Shi, Chen, Joshi, Wang, Yuan, Min (bb0470) 2020; 11
Chao, Cao, Su, Weng, Song, Fan, Wang (bb0360) 2016; 4
Luo (10.1016/j.jconrel.2022.01.012_bb0025) 2009; 136
Shaabani (10.1016/j.jconrel.2022.01.012_bb0420) 2021; 22
Wu (10.1016/j.jconrel.2022.01.012_bb0395) 2018; 12
Liang (10.1016/j.jconrel.2022.01.012_bb0350) 2017; 95
Dang (10.1016/j.jconrel.2022.01.012_bb0435) 2021; 21
Wang (10.1016/j.jconrel.2022.01.012_bb0465) 2016; 78
Jia (10.1016/j.jconrel.2022.01.012_bb0440) 2020; 132
Sriram (10.1016/j.jconrel.2022.01.012_bb0260) 2020; 16
Fan (10.1016/j.jconrel.2022.01.012_bb0150) 2010; 328
Peng (10.1016/j.jconrel.2022.01.012_bb0340) 2020; 16
Lee (10.1016/j.jconrel.2022.01.012_bb0345) 2019; 13
Xin (10.1016/j.jconrel.2022.01.012_bb0095) 2017; 16
Barizuddin (10.1016/j.jconrel.2022.01.012_bb0170) 2016; 7
Chang (10.1016/j.jconrel.2022.01.012_bb0275) 2021; 93
Li (10.1016/j.jconrel.2022.01.012_bb0180) 2019; 37
Slabý (10.1016/j.jconrel.2022.01.012_bb0295) 2021; 347
Khurana (10.1016/j.jconrel.2022.01.012_bb0175) 2021; 16
Oliveira (10.1016/j.jconrel.2022.01.012_bb0235) 2021; 126
Della Ventura (10.1016/j.jconrel.2022.01.012_bb0310) 2019; 11
Conde (10.1016/j.jconrel.2022.01.012_bb0105) 2015; 25
Sanchot (10.1016/j.jconrel.2022.01.012_bb0160) 2012; 6
Song (10.1016/j.jconrel.2022.01.012_bb0370) 2021; 190
Alshaer (10.1016/j.jconrel.2022.01.012_bb0385) 2018; 271
Kim (10.1016/j.jconrel.2022.01.012_bb0475) 2021; 5
Sriram (10.1016/j.jconrel.2022.01.012_bb0245) 2020; 16
Iggo (10.1016/j.jconrel.2022.01.012_bb0035) 1990; 335
Zhu (10.1016/j.jconrel.2022.01.012_bb0250) 2011; 5
Zhang (10.1016/j.jconrel.2022.01.012_bb0300) 2017; 2
Zhou (10.1016/j.jconrel.2022.01.012_bb0130) 2021; 33
Sahoo (10.1016/j.jconrel.2022.01.012_bb0280) 2016; 9
Halazonetis (10.1016/j.jconrel.2022.01.012_bb0030) 2008; 319
Duffy (10.1016/j.jconrel.2022.01.012_bb0050) 2017; 83
Buda (10.1016/j.jconrel.2022.01.012_bb0210) 2017; 7
Dong (10.1016/j.jconrel.2022.01.012_bb0390) 2018; 140
Lee (10.1016/j.jconrel.2022.01.012_bb0045) 2019; 364
Chen (10.1016/j.jconrel.2022.01.012_bb0200) 2016; 6
Wang (10.1016/j.jconrel.2022.01.012_bb0110) 2020; 12
Sung (10.1016/j.jconrel.2022.01.012_bb0005) 2020; 71
Liu (10.1016/j.jconrel.2022.01.012_bb0480) 2019; 99
de Martel (10.1016/j.jconrel.2022.01.012_bb0015) 2020; 8
Cole (10.1016/j.jconrel.2022.01.012_bb0515) 2011; 29
Miti (10.1016/j.jconrel.2022.01.012_bb0290) 2020; 167
Takeshita (10.1016/j.jconrel.2022.01.012_bb0070) 2006; 97
Cao (10.1016/j.jconrel.2022.01.012_bb0535) 2018; 10
Fan (10.1016/j.jconrel.2022.01.012_bb0255) 2019; 13
Scott (10.1016/j.jconrel.2022.01.012_bb0080) 2021; 1
Ding (10.1016/j.jconrel.2022.01.012_bb0505) 2020; 245
Makeyev (10.1016/j.jconrel.2022.01.012_bb0075) 2008; 319
Dang (10.1016/j.jconrel.2022.01.012_bb0460) 2019; 223
Xu (10.1016/j.jconrel.2022.01.012_bb0100) 2018; 14
McConnell (10.1016/j.jconrel.2022.01.012_bb0225) 2018; 34
Masterson (10.1016/j.jconrel.2022.01.012_bb0335) 2020; 145
Huo (10.1016/j.jconrel.2022.01.012_bb0425) 2019; 5
Shariati-Rad (10.1016/j.jconrel.2022.01.012_bb0220) 2020; 10
Guo (10.1016/j.jconrel.2022.01.012_bb0265) 2012; 5
Mu (10.1016/j.jconrel.2022.01.012_bb0490) 2018; 4
Cao (10.1016/j.jconrel.2022.01.012_bb0010) 2021; 134
Chen (10.1016/j.jconrel.2022.01.012_bb0375) 2019; 143
Wang (10.1016/j.jconrel.2022.01.012_bb0165) 2020; 30
Chang (10.1016/j.jconrel.2022.01.012_bb0525) 2019; 6
Feng (10.1016/j.jconrel.2022.01.012_bb0540) 2020; 12
Mohammadniaei (10.1016/j.jconrel.2022.01.012_bb0530) 2018; 14
Riley (10.1016/j.jconrel.2022.01.012_bb0205) 2017; 9
Chen (10.1016/j.jconrel.2022.01.012_bb0065) 2018; 37
Aslan (10.1016/j.jconrel.2022.01.012_bb0325) 2006; 128
Wu (10.1016/j.jconrel.2022.01.012_bb0135) 2020; 238
Guerrero-Florez (10.1016/j.jconrel.2022.01.012_bb0195) 2020; 8
Yaraki (10.1016/j.jconrel.2022.01.012_bb0230) 2020; 4
Ali (10.1016/j.jconrel.2022.01.012_bb0125) 2019; 123
Boken (10.1016/j.jconrel.2022.01.012_bb0140) 2017; 52
Wang (10.1016/j.jconrel.2022.01.012_bb0285) 2016; 223
Gong (10.1016/j.jconrel.2022.01.012_bb0055) 2019; 11
Li (10.1016/j.jconrel.2022.01.012_bb0090) 2021; 7
Zhang (10.1016/j.jconrel.2022.01.012_bb0470) 2020; 11
He (10.1016/j.jconrel.2022.01.012_bb0510) 2019; 19
Min (10.1016/j.jconrel.2022.01.012_bb0485) 2017; 7
Kokkinos (10.1016/j.jconrel.2022.01.012_bb0085) 2020; 240
Liu (10.1016/j.jconrel.2022.01.012_bb0305) 2017; 87
Liu (10.1016/j.jconrel.2022.01.012_bb0060) 2019; 24
Xue (10.1016/j.jconrel.2022.01.012_bb0400) 2019; 55
Hussein (10.1016/j.jconrel.2022.01.012_bb0365) 2020; 7
Austin (10.1016/j.jconrel.2022.01.012_bb0145) 2015; 10
Lu (10.1016/j.jconrel.2022.01.012_bb0330) 2018; 11
Bui (10.1016/j.jconrel.2022.01.012_bb0455) 2021; 57
Jeong (10.1016/j.jconrel.2022.01.012_bb0315) 2018; 111
Badshah (10.1016/j.jconrel.2022.01.012_bb0320) 2020; 10
Xi (10.1016/j.jconrel.2022.01.012_bb0495) 2021; 13
Li (10.1016/j.jconrel.2022.01.012_bb0115) 2020; 234
Kim (10.1016/j.jconrel.2022.01.012_bb0380) 2019; 144
Miller (10.1016/j.jconrel.2022.01.012_bb0020) 2016; 66
Stobiecka (10.1016/j.jconrel.2022.01.012_bb0190) 2014; 55
Frimpong (10.1016/j.jconrel.2022.01.012_bb0185) 2021; 223
Wang (10.1016/j.jconrel.2022.01.012_bb0450) 2020; 107
Yonezawa (10.1016/j.jconrel.2022.01.012_bb0405) 2020; 154-155
Li (10.1016/j.jconrel.2022.01.012_bb0240) 2017; 4
Rodriguez-Quijada (10.1016/j.jconrel.2022.01.012_bb0520) 2018
Chaney (10.1016/j.jconrel.2022.01.012_bb0355) 2005; 87
Zhao (10.1016/j.jconrel.2022.01.012_bb0215) 2017; 9
Jackson (10.1016/j.jconrel.2022.01.012_bb0155) 2004; 101
Zhao (10.1016/j.jconrel.2022.01.012_bb0500) 2021; 15
de Aberasturi (10.1016/j.jconrel.2022.01.012_bb0120) 2015; 3
Fernandes (10.1016/j.jconrel.2022.01.012_bb0445) 2020; 8
Devi (10.1016/j.jconrel.2022.01.012_bb0040) 2006; 13
Mariani (10.1016/j.jconrel.2022.01.012_bb0270) 2014; 406
Riley (10.1016/j.jconrel.2022.01.012_bb0430) 2018; 18
Mousazadeh (10.1016/j.jconrel.2022.01.012_bb0410) 2021; 330
Kumar (10.1016/j.jconrel.2022.01.012_bb0415) 2019; 9
Chao (10.1016/j.jconrel.2022.01.012_bb0360) 2016; 4
References_xml – volume: 335
  start-page: 675
  year: 1990
  end-page: 679
  ident: bb0035
  article-title: Increased expression of mutant forms of p53 oncogene in primary lung cancer
  publication-title: Lancet
– volume: 234
  year: 2020
  ident: bb0115
  article-title: Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy
  publication-title: Biomaterials
– volume: 145
  start-page: 4173
  year: 2020
  end-page: 4180
  ident: bb0335
  article-title: A novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses
  publication-title: Analyst
– volume: 347
  start-page: 130629
  year: 2021
  ident: bb0295
  article-title: Plasmonic biosensor based on a gold nanostripe array for detection of microRNA related to myelodysplastic syndromes
  publication-title: Sensor Actuat B-Chem.
– volume: 144
  start-page: 1768
  year: 2019
  end-page: 1776
  ident: bb0380
  article-title: A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar
  publication-title: Analyst
– volume: 111
  start-page: 102
  year: 2018
  end-page: 116
  ident: bb0315
  article-title: Metal enhanced fluorescence (MEF) for biosensors: general approaches and a review of recent developments
  publication-title: Biosens. Bioelectron.
– volume: 7
  start-page: 4240
  year: 2017
  end-page: 4254
  ident: bb0485
  article-title: Engineered Zn(II)-Dipicolylamine-gold nanorod provides effective prostate cancer treatment by combining siRNA delivery and photothermal therapy
  publication-title: Theranostics
– volume: 328
  start-page: 1135
  year: 2010
  end-page: 1138
  ident: bb0150
  article-title: Self-assembled plasmonic nanoparticle clusters
  publication-title: Science
– volume: 16
  start-page: 2000460
  year: 2020
  ident: bb0340
  article-title: Target-triggered assembly of nanogap antennas to enhance the fluorescence of single molecules and their application in MicroRNA detection
  publication-title: Small
– volume: 10
  start-page: 1749
  year: 2020
  ident: bb0320
  article-title: Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing
  publication-title: Nanomaterials (Basel)
– volume: 37
  start-page: 107
  year: 2018
  end-page: 124
  ident: bb0065
  article-title: RNA interference-based therapy and its delivery systems
  publication-title: Cancer Metastasis Rev.
– volume: 8
  start-page: 2862
  year: 2020
  end-page: 2875
  ident: bb0195
  article-title: Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: a comparative study for different particle sizes, shapes, and surface conjugations
  publication-title: J. Mater. Chem. B
– volume: 11
  start-page: 968
  year: 2020
  ident: bb0470
  article-title: Tumor-targeted gene silencing IDO synergizes PTT-induced apoptosis and enhances anti-tumor immunity
  publication-title: Front. Immunol.
– volume: 34
  start-page: 14766
  year: 2018
  end-page: 14773
  ident: bb0225
  article-title: Organic semiconductor laser platform for the detection of DNA by AgNP plasmonic enhancement
  publication-title: Langmuir
– volume: 406
  start-page: 2303
  year: 2014
  end-page: 2323
  ident: bb0270
  article-title: Surface plasmon resonance applications in clinical analysis
  publication-title: Anal. Bioanal. Chem.
– volume: 223
  start-page: 613
  year: 2016
  end-page: 620
  ident: bb0285
  article-title: Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich
  publication-title: Sensor Actuat B-Chem
– volume: 93
  start-page: 8002
  year: 2021
  end-page: 8009
  ident: bb0275
  article-title: Amplification-free detection of cytomegalovirus miRNA using a modification-free surface plasmon resonance biosensor
  publication-title: Anal. Chem.
– volume: 16
  start-page: 134
  year: 2017
  ident: bb0095
  article-title: Nano-based delivery of RNAi in cancer therapy
  publication-title: Mol. Cancer
– volume: 25
  start-page: 4183
  year: 2015
  end-page: 4194
  ident: bb0105
  article-title: Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 17732
  year: 2018
  end-page: 17741
  ident: bb0535
  article-title: Intelligent MnO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  year: 2018
  ident: bb0100
  article-title: Redox-responsive nanoparticle-mediated systemic RNAi for effective cancer therapy
  publication-title: Small
– volume: 8
  start-page: 2990
  year: 2020
  end-page: 3020
  ident: bb0445
  article-title: Overview of the application of inorganic nanomaterials in cancer photothermal therapy
  publication-title: Biomater. Sci.
– volume: 240
  start-page: 119742
  year: 2020
  ident: bb0085
  article-title: Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs
  publication-title: Biomaterials
– volume: 11
  start-page: 264
  year: 2018
  end-page: 273
  ident: bb0330
  article-title: Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes
  publication-title: Nano Res.
– volume: 2
  start-page: 1435
  year: 2017
  end-page: 1440
  ident: bb0300
  article-title: Individual Au-nanocube based plasmonic nanoprobe for cancer relevant MicroRNA biomarker detection
  publication-title: ACS Sens
– volume: 5
  start-page: eaaw6264
  year: 2019
  ident: bb0425
  article-title: Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation
  publication-title: Sci. Adv.
– volume: 123
  start-page: 15375
  year: 2019
  end-page: 15393
  ident: bb0125
  article-title: Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application
  publication-title: J. Phys. Chem. C
– volume: 55
  start-page: 4222
  year: 2019
  end-page: 4225
  ident: bb0400
  article-title: DNA tetrahedron-based nanogels for siRNA delivery and gene silencing
  publication-title: Chem. Commun. (Camb.)
– volume: 5
  start-page: 483
  year: 2012
  end-page: 501
  ident: bb0265
  article-title: Surface plasmon resonance based biosensor technique: a review
  publication-title: J. Biophotonics
– volume: 13
  start-page: 8124
  year: 2019
  end-page: 8134
  ident: bb0255
  article-title: Plasmonic Ti3C2T x MXene enables highly efficient photothermal conversion for healable and transparent wearable device
  publication-title: ACS Nano
– volume: 271
  start-page: 98
  year: 2018
  end-page: 106
  ident: bb0385
  article-title: Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model
  publication-title: J. Control. Release
– volume: 126
  year: 2021
  ident: bb0235
  article-title: Multitherapeutic nanoplatform based on scintillating anthracene, silver@anthracene, and gold@anthracene nanoparticles for combined radiation and photodynamic cancer therapies
  publication-title: Mat Sci. Eng. C-Mater.
– volume: 9
  start-page: 23894
  year: 2019
  end-page: 23907
  ident: bb0415
  article-title: Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment
  publication-title: RSC Adv.
– volume: 132
  start-page: 14551
  year: 2020
  end-page: 14556
  ident: bb0440
  article-title: Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II Window
  publication-title: Angew. Chem.
– volume: 134
  start-page: 783
  year: 2021
  end-page: 791
  ident: bb0010
  article-title: Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020
  publication-title: Chin. Med. J.
– volume: 15
  start-page: 6517
  year: 2021
  end-page: 6529
  ident: bb0500
  article-title: Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy
  publication-title: ACS Nano
– volume: 140
  start-page: 16264
  year: 2018
  end-page: 16274
  ident: bb0390
  article-title: A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy
  publication-title: J. Am. Chem. Soc.
– volume: 87
  start-page: 433
  year: 2017
  end-page: 438
  ident: bb0305
  article-title: Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy
  publication-title: Biosens. Bioelectron.
– volume: 57
  start-page: 8961
  year: 2021
  end-page: 8964
  ident: bb0455
  article-title: Plasmonic nanorod array for effective photothermal therapy in hyperthermia
  publication-title: Chem. Commun. (Camb.)
– volume: 71
  start-page: 209
  year: 2020
  end-page: 249
  ident: bb0005
  article-title: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
– volume: 5
  start-page: 6461
  year: 2021
  end-page: 6470
  ident: bb0475
  article-title: HSPA1A-siRNA nucleated gold nanorods for stimulated photothermal therapy through strategic heat shock to HSP70
  publication-title: Mater. Chem. Front.
– volume: 22
  start-page: 831
  year: 2021
  ident: bb0420
  article-title: Layer by layer assembled chitosan-coated gold nanoparticles for enhanced siRNA delivery and silencing
  publication-title: Int. J. Mol. Sci.
– volume: 95
  start-page: 181
  year: 2017
  end-page: 188
  ident: bb0350
  article-title: Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices
  publication-title: Biosens. Bioelectron.
– volume: 1
  year: 2021
  ident: bb0080
  article-title: Lumasiran: first approval
  publication-title: Drugs
– volume: 30
  start-page: 2005400
  year: 2020
  ident: bb0165
  article-title: Optical properties and applications of plasmonic-metal nanoparticles
  publication-title: Adv. Funct. Mater.
– volume: 37
  year: 2019
  ident: bb0180
  article-title: Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care
  publication-title: Biotechnol. Adv.
– volume: 87
  year: 2005
  ident: bb0355
  article-title: Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates
  publication-title: Appl. Phys. Lett.
– volume: 9
  start-page: 1338
  year: 2016
  end-page: 1342
  ident: bb0280
  article-title: Surface plasmon resonance based biosensor: a new platform for rapid diagnosis of livestock diseases
  publication-title: Vet World
– volume: 7
  start-page: 1000373
  year: 2016
  ident: bb0170
  article-title: Plasmonic sensors for disease detection-a review
  publication-title: J. Nanomed. Nanotechnol.
– volume: 16
  year: 2020
  ident: bb0260
  article-title: Hybridizing plasmonic materials with 2D-transition metal dichalcogenides toward functional applications
  publication-title: Small
– volume: 12
  start-page: 22613
  year: 2020
  end-page: 22623
  ident: bb0540
  article-title: Multifunctional siRNA-laden hybrid nanoplatform for noninvasive PA/IR dual-modal imaging-guided enhanced photogenetherapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 1802934
  year: 2018
  ident: bb0530
  article-title: Bifunctional Au@ Bi2Se3 core–shell nanoparticle for synergetic therapy by SERS-traceable AntagomiR delivery and photothermal treatment
  publication-title: Small
– volume: 8
  start-page: e180
  year: 2020
  end-page: e190
  ident: bb0015
  article-title: Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis
  publication-title: Lancet Glob. Health
– volume: 6
  start-page: 1096
  year: 2016
  end-page: 1104
  ident: bb0200
  article-title: Fabrication of graphene and AuNP Core polyaniline Shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy
  publication-title: Theranostics
– volume: 4
  start-page: 1600430
  year: 2017
  ident: bb0240
  article-title: Plasmnoinc of 2D nanomaterials:properties and application
  publication-title: Adv. Sci.
– volume: 18
  start-page: 3565
  year: 2018
  end-page: 3570
  ident: bb0430
  article-title: Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation
  publication-title: Nano Lett.
– volume: 101
  start-page: 17930
  year: 2004
  end-page: 17935
  ident: bb0155
  article-title: Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 136
  start-page: 823
  year: 2009
  end-page: 837
  ident: bb0025
  article-title: Principles of cancer therapy: oncogene and non-oncogene addiction
  publication-title: Cell
– volume: 154-155
  start-page: 64
  year: 2020
  end-page: 78
  ident: bb0405
  article-title: Recent advances in siRNA delivery mediated by lipid-based nanoparticles
  publication-title: Adv. Drug Deliv. Rev.
– volume: 245
  year: 2020
  ident: bb0505
  article-title: Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy
  publication-title: Biomaterials
– volume: 33
  year: 2021
  ident: bb0130
  article-title: Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy
  publication-title: Adv. Mater.
– volume: 9
  year: 2017
  ident: bb0205
  article-title: Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment, Wiley Interdiscip. Rev.: Nanomed
  publication-title: Nanobiotechnology
– volume: 19
  start-page: 2272
  year: 2019
  end-page: 2279
  ident: bb0510
  article-title: AIE featured inorganic–organic core@ shell nanoparticles for high-efficiency siRNA delivery and real-time monitoring
  publication-title: Nano Lett.
– volume: 7
  start-page: 2311
  year: 2017
  end-page: 2316
  ident: bb0210
  article-title: Enhanced visible light absorption and reduced charge recombination in AgNP plasmonic photoelectrochemical cell
  publication-title: Results Phys.
– volume: 5
  start-page: 4529
  year: 2011
  end-page: 4536
  ident: bb0250
  article-title: Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst
  publication-title: ACS Nano
– volume: 12
  start-page: 6504
  year: 2018
  end-page: 6514
  ident: bb0395
  article-title: Rationally designed Polycationic carriers for potent polymeric siRNA-mediated gene silencing
  publication-title: ACS Nano
– volume: 10
  start-page: 34459
  year: 2020
  end-page: 34465
  ident: bb0220
  article-title: Water discrimination based on the kinetic variations of AgNP spectrum
  publication-title: RSC Adv.
– volume: 4
  start-page: 1757
  year: 2016
  end-page: 1769
  ident: bb0360
  article-title: Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins
  publication-title: J. Mater. Chem. B
– volume: 107
  start-page: 260
  year: 2020
  end-page: 271
  ident: bb0450
  article-title: Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors
  publication-title: Acta Biomater.
– volume: 83
  start-page: 258
  year: 2017
  end-page: 265
  ident: bb0050
  article-title: Mutant p53 as a target for cancer treatment
  publication-title: Eur. J. Cancer
– volume: 16
  start-page: 981
  year: 2021
  end-page: 999
  ident: bb0175
  article-title: Localized surface plasmonic properties of Au and Ag nanoparticles for sensors: a review
  publication-title: Plasmonics
– volume: 13
  start-page: 5125
  year: 2021
  end-page: 5135
  ident: bb0495
  article-title: DNAzyme-adsorbed polydopamine@ MnO
  publication-title: Nanoscale
– volume: 7
  start-page: 1
  year: 2020
  end-page: 12
  ident: bb0365
  article-title: Nanosheet composed of gold nanoparticle/graphene/epoxy resin based on ultrasonic fabrication for flexible dopamine biosensor using surface-enhanced Raman spectroscopy
  publication-title: Nano Converg.
– volume: 7
  start-page: 4420
  year: 2021
  ident: bb0090
  article-title: Progress of photodynamic and RNAi combination therapy in Cancer treatment
  publication-title: ACS Biomater. Sci. Eng.
– volume: 4
  start-page: 3074
  year: 2020
  end-page: 3085
  ident: bb0230
  article-title: Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy
  publication-title: Mater. Chem. Front.
– volume: 128
  start-page: 4206
  year: 2006
  end-page: 4207
  ident: bb0325
  article-title: Metal-enhanced fluorescence-based RNA sensing
  publication-title: J. Am. Chem. Soc.
– volume: 190
  year: 2021
  ident: bb0370
  article-title: SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network
  publication-title: Biosens. Bioelectron.
– volume: 4
  start-page: 3895
  year: 2018
  end-page: 3905
  ident: bb0490
  article-title: siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy
  publication-title: ACS Biomater. Sci. Eng.
– volume: 13
  start-page: 819
  year: 2006
  end-page: 829
  ident: bb0040
  article-title: siRNA-based approaches in cancer therapy
  publication-title: Cancer Gene Ther.
– volume: 6
  start-page: 1900158
  year: 2019
  ident: bb0525
  article-title: Anisotropic plasmonic metal heterostructures as theranostic nanosystems for near infrared light-activated fluorescence amplification and phototherapy
  publication-title: Adv. Sci.
– volume: 11
  start-page: 37
  year: 2019
  end-page: 42
  ident: bb0055
  article-title: Antisense oligonucleotide-conjugated nanostructure-targeting lncRNA MALAT1 inhibits cancer metastasis
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 9841
  year: 2017
  end-page: 9847
  ident: bb0215
  article-title: Silver nanoparticle plasmonic enhanced forster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface
  publication-title: Nanoscale
– volume: 99
  start-page: 307
  year: 2019
  end-page: 319
  ident: bb0480
  article-title: Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer
  publication-title: Acta Biomater.
– volume: 97
  start-page: 689
  year: 2006
  end-page: 696
  ident: bb0070
  article-title: Therapeutic potential of RNA interference against cancer
  publication-title: Cancer Sci.
– volume: 223
  year: 2019
  ident: bb0460
  article-title: Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism
  publication-title: Biomaterials
– volume: 167
  year: 2020
  ident: bb0290
  article-title: A miRNA biosensor based on localized surface plasmon resonance enhanced by surface-bound hybridization chain reaction
  publication-title: Biosens. Bioelectron.
– volume: 78
  start-page: 27
  year: 2016
  end-page: 39
  ident: bb0465
  article-title: Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing
  publication-title: Biomaterials
– volume: 55
  start-page: 379
  year: 2014
  end-page: 385
  ident: bb0190
  article-title: Novel plasmonic field-enhanced nanoassay for trace detection of proteins
  publication-title: Biosens. Bioelectron.
– volume: 11
  start-page: 3753
  year: 2019
  end-page: 3762
  ident: bb0310
  article-title: Biosensor for point-of-care analysis of immunoglobulins in urine by metal enhanced fluorescence from gold nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
– volume: 66
  start-page: 271
  year: 2016
  end-page: 289
  ident: bb0020
  article-title: Cancer treatment and survivorship statistics
  publication-title: CA Cancer J. Clin.
– volume: 319
  start-page: 1352
  year: 2008
  end-page: 1355
  ident: bb0030
  article-title: An oncogene-induced DNA damage model for cancer development
  publication-title: Science
– start-page: 125
  year: 2018
  end-page: 142
  ident: bb0520
  article-title: Applications of plasmonic nanomaterials for phototriggered theranostics
  publication-title: Handbook of Nanomaterials for Cancer Theranostics
– volume: 12
  start-page: 4308
  year: 2020
  end-page: 4322
  ident: bb0110
  article-title: Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for siRNA/miRNA combination cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  start-page: 323
  year: 2011
  end-page: 332
  ident: bb0515
  article-title: Cancer theranostics: the rise of targeted magnetic nanoparticles
  publication-title: Trends Biotechnol.
– volume: 238
  year: 2020
  ident: bb0135
  article-title: Mesoporous polydopamine with built-in plasmonic core: traceable and NIR triggered delivery of functional proteins
  publication-title: Biomaterials
– volume: 10
  start-page: 542
  year: 2015
  end-page: 558
  ident: bb0145
  article-title: Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: a review
  publication-title: Nano Today
– volume: 319
  start-page: 1789
  year: 2008
  end-page: 1790
  ident: bb0075
  article-title: Multilevel regulation of gene expression by microRNAs
  publication-title: Science
– volume: 6
  start-page: 3434
  year: 2012
  end-page: 3440
  ident: bb0160
  article-title: Plasmonic nanoparticle networks for light and heat concentration
  publication-title: ACS Nano
– volume: 364
  year: 2019
  ident: bb0045
  article-title: Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway
  publication-title: Science
– volume: 21
  start-page: 68
  year: 2021
  end-page: 76
  ident: bb0435
  article-title: Photoresponsive miR-34a/nanoshell conjugates enable light-triggered gene regulation to impair the function of triple-negative breast cancer cells
  publication-title: Nano Lett.
– volume: 16
  start-page: 1904271
  year: 2020
  ident: bb0245
  article-title: Hybridizing plasmonic materials with 2D-transistion metal dichalcogenides toward functional application
  publication-title: Small
– volume: 13
  start-page: 8793
  year: 2019
  end-page: 8803
  ident: bb0345
  article-title: Nondestructive characterization of stem cell neurogenesis by a magneto-plasmonic nanomaterial-based exosomal miRNA detection
  publication-title: ACS Nano
– volume: 52
  start-page: 774
  year: 2017
  end-page: 820
  ident: bb0140
  article-title: Plasmonic nanoparticles and their analytical applications: a review
  publication-title: Appl. Spectrosc. Rev.
– volume: 223
  year: 2021
  ident: bb0185
  article-title: Rapid vertical flow immunoassay on AuNP plasmonic paper for SERS-based point of need diagnostics
  publication-title: Talanta
– volume: 24
  start-page: 955
  year: 2019
  end-page: 970
  ident: bb0060
  article-title: CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment
  publication-title: Drug Discov. Today
– volume: 3
  start-page: 602
  year: 2015
  end-page: 617
  ident: bb0120
  article-title: Modern applications of plasmonic nanoparticles: from energy to health, advanced
  publication-title: Opt. Mater.
– volume: 330
  start-page: 1046
  year: 2021
  end-page: 1070
  ident: bb0410
  article-title: Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy
  publication-title: J. Control. Release
– volume: 143
  year: 2019
  ident: bb0375
  article-title: Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly
  publication-title: Biosens. Bioelectron.
– volume: 37
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0180
  article-title: Plasmonic-based platforms for diagnosis of infectious diseases at the point-of-care
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2019.107440
– volume: 13
  start-page: 8124
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0255
  article-title: Plasmonic Ti3C2T x MXene enables highly efficient photothermal conversion for healable and transparent wearable device
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03161
– volume: 8
  start-page: e180
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0015
  article-title: Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(19)30488-7
– volume: 13
  start-page: 5125
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0495
  article-title: DNAzyme-adsorbed polydopamine@ MnO2 core–shell nanocomposites for enhanced photothermal therapy via the self-activated suppression of heat shock protein 70
  publication-title: Nanoscale
  doi: 10.1039/D0NR08845E
– volume: 111
  start-page: 102
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0315
  article-title: Metal enhanced fluorescence (MEF) for biosensors: general approaches and a review of recent developments
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2018.04.007
– volume: 123
  start-page: 15375
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0125
  article-title: Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b01961
– volume: 52
  start-page: 774
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0140
  article-title: Plasmonic nanoparticles and their analytical applications: a review
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2017.1312427
– volume: 271
  start-page: 98
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0385
  article-title: Aptamer-guided siRNA-loaded nanomedicines for systemic gene silencing in CD-44 expressing murine triple-negative breast cancer model
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.12.022
– volume: 95
  start-page: 181
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0350
  article-title: Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.04.027
– volume: 223
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0460
  article-title: Multivalency-assisted membrane-penetrating siRNA delivery sensitizes photothermal ablation via inhibition of tumor glycolysis metabolism
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119463
– volume: 93
  start-page: 8002
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0275
  article-title: Amplification-free detection of cytomegalovirus miRNA using a modification-free surface plasmon resonance biosensor
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.1c01093
– volume: 15
  start-page: 6517
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0500
  article-title: Temperature-sensitive lipid-coated carbon nanotubes for synergistic photothermal therapy and gene therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c08790
– volume: 7
  start-page: 2311
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0210
  article-title: Enhanced visible light absorption and reduced charge recombination in AgNP plasmonic photoelectrochemical cell
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2017.07.009
– volume: 132
  start-page: 14551
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0440
  article-title: Fine-tuning the homometallic interface of Au-on-Au nanorods and their photothermal therapy in the NIR-II Window
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202000474
– volume: 57
  start-page: 8961
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0455
  article-title: Plasmonic nanorod array for effective photothermal therapy in hyperthermia
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/D1CC03047G
– volume: 245
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0505
  article-title: Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119976
– volume: 223
  start-page: 613
  year: 2016
  ident: 10.1016/j.jconrel.2022.01.012_bb0285
  article-title: Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich
  publication-title: Sensor Actuat B-Chem
  doi: 10.1016/j.snb.2015.09.152
– volume: 7
  start-page: 1000373
  year: 2016
  ident: 10.1016/j.jconrel.2022.01.012_bb0170
  article-title: Plasmonic sensors for disease detection-a review
  publication-title: J. Nanomed. Nanotechnol.
– volume: 21
  start-page: 68
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0435
  article-title: Photoresponsive miR-34a/nanoshell conjugates enable light-triggered gene regulation to impair the function of triple-negative breast cancer cells
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c03152
– volume: 7
  start-page: 4240
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0485
  article-title: Engineered Zn(II)-Dipicolylamine-gold nanorod provides effective prostate cancer treatment by combining siRNA delivery and photothermal therapy
  publication-title: Theranostics
  doi: 10.7150/thno.22435
– volume: 240
  start-page: 119742
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0085
  article-title: Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119742
– volume: 2
  start-page: 1435
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0300
  article-title: Individual Au-nanocube based plasmonic nanoprobe for cancer relevant MicroRNA biomarker detection
  publication-title: ACS Sens
  doi: 10.1021/acssensors.7b00322
– volume: 7
  start-page: 1
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0365
  article-title: Nanosheet composed of gold nanoparticle/graphene/epoxy resin based on ultrasonic fabrication for flexible dopamine biosensor using surface-enhanced Raman spectroscopy
  publication-title: Nano Converg.
  doi: 10.1186/s40580-020-00225-8
– volume: 30
  start-page: 2005400
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0165
  article-title: Optical properties and applications of plasmonic-metal nanoparticles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202005400
– volume: 8
  start-page: 2990
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0445
  article-title: Overview of the application of inorganic nanomaterials in cancer photothermal therapy
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM00222D
– volume: 25
  start-page: 4183
  year: 2015
  ident: 10.1016/j.jconrel.2022.01.012_bb0105
  article-title: Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501283
– volume: 55
  start-page: 379
  year: 2014
  ident: 10.1016/j.jconrel.2022.01.012_bb0190
  article-title: Novel plasmonic field-enhanced nanoassay for trace detection of proteins
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.11.073
– volume: 55
  start-page: 4222
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0400
  article-title: DNA tetrahedron-based nanogels for siRNA delivery and gene silencing
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/C9CC00175A
– volume: 22
  start-page: 831
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0420
  article-title: Layer by layer assembled chitosan-coated gold nanoparticles for enhanced siRNA delivery and silencing
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22020831
– volume: 10
  start-page: 1749
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0320
  article-title: Recent developments in plasmonic nanostructures for metal enhanced fluorescence-based biosensing
  publication-title: Nanomaterials (Basel)
  doi: 10.3390/nano10091749
– volume: 330
  start-page: 1046
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0410
  article-title: Cyclodextrin based natural nanostructured carbohydrate polymers as effective non-viral siRNA delivery systems for cancer gene therapy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.11.011
– volume: 11
  start-page: 3753
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0310
  article-title: Biosensor for point-of-care analysis of immunoglobulins in urine by metal enhanced fluorescence from gold nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20501
– volume: 11
  start-page: 968
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0470
  article-title: Tumor-targeted gene silencing IDO synergizes PTT-induced apoptosis and enhances anti-tumor immunity
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00968
– volume: 143
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0375
  article-title: Ratiometric SERS biosensor for sensitive and reproducible detection of microRNA based on mismatched catalytic hairpin assembly
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2019.111619
– volume: 18
  start-page: 3565
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0430
  article-title: Evaluating the mechanisms of light-triggered siRNA release from nanoshells for temporal control over gene regulation
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b00681
– volume: 6
  start-page: 1096
  year: 2016
  ident: 10.1016/j.jconrel.2022.01.012_bb0200
  article-title: Fabrication of graphene and AuNP Core polyaniline Shell nanocomposites as multifunctional theranostic platforms for SERS real-time monitoring and chemo-photothermal therapy
  publication-title: Theranostics
  doi: 10.7150/thno.14361
– volume: 71
  start-page: 209
  issue: 2021
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0005
  article-title: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
– volume: 4
  start-page: 1757
  year: 2016
  ident: 10.1016/j.jconrel.2022.01.012_bb0360
  article-title: Nanostructure-based surface-enhanced Raman scattering biosensors for nucleic acids and proteins
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB02135A
– volume: 145
  start-page: 4173
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0335
  article-title: A novel liquid biopsy-based approach for highly specific cancer diagnostics: mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses
  publication-title: Analyst
  doi: 10.1039/D0AN00538J
– volume: 10
  start-page: 542
  year: 2015
  ident: 10.1016/j.jconrel.2022.01.012_bb0145
  article-title: Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: a review
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.07.005
– volume: 4
  start-page: 3895
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0490
  article-title: siRNA delivery with stem cell membrane-coated magnetic nanoparticles for imaging-guided photothermal therapy and gene therapy
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00858
– volume: 5
  start-page: 483
  year: 2012
  ident: 10.1016/j.jconrel.2022.01.012_bb0265
  article-title: Surface plasmon resonance based biosensor technique: a review
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201200015
– volume: 134
  start-page: 783
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0010
  article-title: Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020
  publication-title: Chin. Med. J.
  doi: 10.1097/CM9.0000000000001474
– volume: 4
  start-page: 1600430
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0240
  article-title: Plasmnoinc of 2D nanomaterials:properties and application
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600430
– volume: 328
  start-page: 1135
  year: 2010
  ident: 10.1016/j.jconrel.2022.01.012_bb0150
  article-title: Self-assembled plasmonic nanoparticle clusters
  publication-title: Science
  doi: 10.1126/science.1187949
– volume: 13
  start-page: 8793
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0345
  article-title: Nondestructive characterization of stem cell neurogenesis by a magneto-plasmonic nanomaterial-based exosomal miRNA detection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01875
– volume: 107
  start-page: 260
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0450
  article-title: Gold nanobipyramid-loaded black phosphorus nanosheets for plasmon-enhanced photodynamic and photothermal therapy of deep-seated orthotopic lung tumors
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.03.001
– volume: 5
  start-page: 6461
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0475
  article-title: HSPA1A-siRNA nucleated gold nanorods for stimulated photothermal therapy through strategic heat shock to HSP70
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D1QM00630D
– volume: 319
  start-page: 1352
  year: 2008
  ident: 10.1016/j.jconrel.2022.01.012_bb0030
  article-title: An oncogene-induced DNA damage model for cancer development
  publication-title: Science
  doi: 10.1126/science.1140735
– volume: 8
  start-page: 2862
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0195
  article-title: Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: a comparative study for different particle sizes, shapes, and surface conjugations
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00240B
– volume: 167
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0290
  article-title: A miRNA biosensor based on localized surface plasmon resonance enhanced by surface-bound hybridization chain reaction
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2020.112465
– volume: 5
  start-page: eaaw6264
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0425
  article-title: Gold-DNA nanosunflowers for efficient gene silencing with controllable transformation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw6264
– volume: 16
  start-page: 134
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0095
  article-title: Nano-based delivery of RNAi in cancer therapy
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-017-0683-y
– volume: 4
  start-page: 3074
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0230
  article-title: Nanosilver-enhanced AIE photosensitizer for simultaneous bioimaging and photodynamic therapy
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D0QM00469C
– volume: 16
  start-page: 2000460
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0340
  article-title: Target-triggered assembly of nanogap antennas to enhance the fluorescence of single molecules and their application in MicroRNA detection
  publication-title: Small
  doi: 10.1002/smll.202000460
– volume: 319
  start-page: 1789
  year: 2008
  ident: 10.1016/j.jconrel.2022.01.012_bb0075
  article-title: Multilevel regulation of gene expression by microRNAs
  publication-title: Science
  doi: 10.1126/science.1152326
– volume: 24
  start-page: 955
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0060
  article-title: CRISPR/Cas9: a powerful tool for identification of new targets for cancer treatment
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2019.02.011
– volume: 99
  start-page: 307
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0480
  article-title: Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.08.046
– volume: 11
  start-page: 37
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0055
  article-title: Antisense oligonucleotide-conjugated nanostructure-targeting lncRNA MALAT1 inhibits cancer metastasis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b18288
– volume: 6
  start-page: 1900158
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0525
  article-title: Anisotropic plasmonic metal heterostructures as theranostic nanosystems for near infrared light-activated fluorescence amplification and phototherapy
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900158
– volume: 34
  start-page: 14766
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0225
  article-title: Organic semiconductor laser platform for the detection of DNA by AgNP plasmonic enhancement
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01313
– volume: 78
  start-page: 27
  year: 2016
  ident: 10.1016/j.jconrel.2022.01.012_bb0465
  article-title: Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.11.025
– volume: 11
  start-page: 264
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0330
  article-title: Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1629-9
– start-page: 125
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0520
  article-title: Applications of plasmonic nanomaterials for phototriggered theranostics
– volume: 13
  start-page: 819
  year: 2006
  ident: 10.1016/j.jconrel.2022.01.012_bb0040
  article-title: siRNA-based approaches in cancer therapy
  publication-title: Cancer Gene Ther.
  doi: 10.1038/sj.cgt.7700931
– volume: 14
  start-page: 1802934
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0530
  article-title: Bifunctional Au@ Bi2Se3 core–shell nanoparticle for synergetic therapy by SERS-traceable AntagomiR delivery and photothermal treatment
  publication-title: Small
  doi: 10.1002/smll.201802934
– volume: 154-155
  start-page: 64
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0405
  article-title: Recent advances in siRNA delivery mediated by lipid-based nanoparticles
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.07.022
– volume: 9
  start-page: 23894
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0415
  article-title: Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment
  publication-title: RSC Adv.
  doi: 10.1039/C9RA03608C
– volume: 136
  start-page: 823
  year: 2009
  ident: 10.1016/j.jconrel.2022.01.012_bb0025
  article-title: Principles of cancer therapy: oncogene and non-oncogene addiction
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.024
– volume: 10
  start-page: 34459
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0220
  article-title: Water discrimination based on the kinetic variations of AgNP spectrum
  publication-title: RSC Adv.
  doi: 10.1039/D0RA06000C
– volume: 14
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0100
  article-title: Redox-responsive nanoparticle-mediated systemic RNAi for effective cancer therapy
  publication-title: Small
  doi: 10.1002/smll.201802565
– volume: 1
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0080
  article-title: Lumasiran: first approval
  publication-title: Drugs
– volume: 9
  start-page: 9841
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0215
  article-title: Silver nanoparticle plasmonic enhanced forster resonance energy transfer (FRET) imaging of protein-specific sialylation on the cell surface
  publication-title: Nanoscale
  doi: 10.1039/C7NR01562C
– volume: 140
  start-page: 16264
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0390
  article-title: A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10021
– volume: 238
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0135
  article-title: Mesoporous polydopamine with built-in plasmonic core: traceable and NIR triggered delivery of functional proteins
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119847
– volume: 190
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0370
  article-title: SPR/SERS dual-mode plasmonic biosensor via catalytic hairpin assembly-induced AuNP network
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2021.113376
– volume: 7
  start-page: 4420
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0090
  article-title: Progress of photodynamic and RNAi combination therapy in Cancer treatment
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.1c00765
– volume: 5
  start-page: 4529
  year: 2011
  ident: 10.1016/j.jconrel.2022.01.012_bb0250
  article-title: Graphene oxide enwrapped Ag/AgX (X= Br, Cl) nanocomposite as a highly efficient visible-light plasmonic photocatalyst
  publication-title: ACS Nano
  doi: 10.1021/nn200088x
– volume: 66
  start-page: 271
  issue: 2016
  year: 2016
  ident: 10.1016/j.jconrel.2022.01.012_bb0020
  article-title: Cancer treatment and survivorship statistics
  publication-title: CA Cancer J. Clin.
– volume: 347
  start-page: 130629
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0295
  article-title: Plasmonic biosensor based on a gold nanostripe array for detection of microRNA related to myelodysplastic syndromes
  publication-title: Sensor Actuat B-Chem.
  doi: 10.1016/j.snb.2021.130629
– volume: 10
  start-page: 17732
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0535
  article-title: Intelligent MnO2/Cu2–xS for multimode imaging diagnostic and advanced single-laser irradiated photothermal/photodynamic therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b05050
– volume: 101
  start-page: 17930
  year: 2004
  ident: 10.1016/j.jconrel.2022.01.012_bb0155
  article-title: Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0408319102
– volume: 335
  start-page: 675
  year: 1990
  ident: 10.1016/j.jconrel.2022.01.012_bb0035
  article-title: Increased expression of mutant forms of p53 oncogene in primary lung cancer
  publication-title: Lancet
  doi: 10.1016/0140-6736(90)90801-B
– volume: 87
  year: 2005
  ident: 10.1016/j.jconrel.2022.01.012_bb0355
  article-title: Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1988980
– volume: 126
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0235
  article-title: Multitherapeutic nanoplatform based on scintillating anthracene, silver@anthracene, and gold@anthracene nanoparticles for combined radiation and photodynamic cancer therapies
  publication-title: Mat Sci. Eng. C-Mater.
  doi: 10.1016/j.msec.2021.112122
– volume: 37
  start-page: 107
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0065
  article-title: RNA interference-based therapy and its delivery systems
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-017-9717-6
– volume: 16
  start-page: 981
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0175
  article-title: Localized surface plasmonic properties of Au and Ag nanoparticles for sensors: a review
  publication-title: Plasmonics
  doi: 10.1007/s11468-021-01381-1
– volume: 87
  start-page: 433
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0305
  article-title: Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.08.090
– volume: 19
  start-page: 2272
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0510
  article-title: AIE featured inorganic–organic core@ shell nanoparticles for high-efficiency siRNA delivery and real-time monitoring
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04677
– volume: 12
  start-page: 4308
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0110
  article-title: Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for siRNA/miRNA combination cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b21214
– volume: 33
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0130
  article-title: Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy
  publication-title: Adv. Mater.
– volume: 364
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0045
  article-title: Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway
  publication-title: Science
  doi: 10.1126/science.aau0159
– volume: 16
  start-page: 1904271
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0245
  article-title: Hybridizing plasmonic materials with 2D-transistion metal dichalcogenides toward functional application
  publication-title: Small
  doi: 10.1002/smll.201904271
– volume: 9
  start-page: 1338
  year: 2016
  ident: 10.1016/j.jconrel.2022.01.012_bb0280
  article-title: Surface plasmon resonance based biosensor: a new platform for rapid diagnosis of livestock diseases
  publication-title: Vet World
  doi: 10.14202/vetworld.2016.1338-1342
– volume: 406
  start-page: 2303
  year: 2014
  ident: 10.1016/j.jconrel.2022.01.012_bb0270
  article-title: Surface plasmon resonance applications in clinical analysis
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-014-7647-5
– volume: 16
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0260
  article-title: Hybridizing plasmonic materials with 2D-transition metal dichalcogenides toward functional applications
  publication-title: Small
– volume: 29
  start-page: 323
  year: 2011
  ident: 10.1016/j.jconrel.2022.01.012_bb0515
  article-title: Cancer theranostics: the rise of targeted magnetic nanoparticles
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2011.03.001
– volume: 128
  start-page: 4206
  year: 2006
  ident: 10.1016/j.jconrel.2022.01.012_bb0325
  article-title: Metal-enhanced fluorescence-based RNA sensing
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0601179
– volume: 223
  year: 2021
  ident: 10.1016/j.jconrel.2022.01.012_bb0185
  article-title: Rapid vertical flow immunoassay on AuNP plasmonic paper for SERS-based point of need diagnostics
  publication-title: Talanta
  doi: 10.1016/j.talanta.2020.121739
– volume: 9
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0205
  article-title: Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment, Wiley Interdiscip. Rev.: Nanomed
  publication-title: Nanobiotechnology
– volume: 144
  start-page: 1768
  year: 2019
  ident: 10.1016/j.jconrel.2022.01.012_bb0380
  article-title: A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar
  publication-title: Analyst
  doi: 10.1039/C8AN01745J
– volume: 97
  start-page: 689
  year: 2006
  ident: 10.1016/j.jconrel.2022.01.012_bb0070
  article-title: Therapeutic potential of RNA interference against cancer
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2006.00234.x
– volume: 12
  start-page: 6504
  year: 2018
  ident: 10.1016/j.jconrel.2022.01.012_bb0395
  article-title: Rationally designed Polycationic carriers for potent polymeric siRNA-mediated gene silencing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08777
– volume: 83
  start-page: 258
  year: 2017
  ident: 10.1016/j.jconrel.2022.01.012_bb0050
  article-title: Mutant p53 as a target for cancer treatment
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2017.06.023
– volume: 6
  start-page: 3434
  year: 2012
  ident: 10.1016/j.jconrel.2022.01.012_bb0160
  article-title: Plasmonic nanoparticle networks for light and heat concentration
  publication-title: ACS Nano
  doi: 10.1021/nn300470j
– volume: 3
  start-page: 602
  year: 2015
  ident: 10.1016/j.jconrel.2022.01.012_bb0120
  article-title: Modern applications of plasmonic nanoparticles: from energy to health, advanced
  publication-title: Opt. Mater.
  doi: 10.1002/adom.201500053
– volume: 234
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0115
  article-title: Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.119760
– volume: 12
  start-page: 22613
  year: 2020
  ident: 10.1016/j.jconrel.2022.01.012_bb0540
  article-title: Multifunctional siRNA-laden hybrid nanoplatform for noninvasive PA/IR dual-modal imaging-guided enhanced photogenetherapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c04533
SSID ssj0005347
Score 2.5415964
SecondaryResourceType review_article
Snippet RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 228
SubjectTerms cancer therapy
early diagnosis
microRNA
microRNA (miRNA)
Nanobiosensor
Photothermal therapy
Plasmonic nanoparticle
RNA interference
RNA interference (RNAi)
Small interference RNA (siRNA)
Theragnosis
Title RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy
URI https://dx.doi.org/10.1016/j.jconrel.2022.01.012
https://www.ncbi.nlm.nih.gov/pubmed/35016917
https://www.proquest.com/docview/2619209599
https://www.proquest.com/docview/2636745190
Volume 342
WOSCitedRecordID wos000745675700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4995
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005347
  issn: 0168-3659
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6jgdeEHc6YDISqkBbuiTOfHmsUCeYplJBh8qT5Tgpa-nSrpdpfeC_cxw7abcxNh6Qqqhy4sTJ-XLOybki9Jb2mU40DTwa-twDeQyvlE64x0F0-iTmWqc6bzbB2m3e64lOpfKryIU5H7Es4xcXYvJfSQ1jQGyTOvsP5C5PCgPwH4gOWyA7bO9E-C_tZl4EYlpUkDVGgnYTzig8I7MS0zl6dpp3vslUNgaV1S4rjzjUBgVTY5I1EXiDWRFhWZYeuK7Iumj3UZrkHVjW3D3fx9anfzjITsalLedk4AL2s5_LxdWAoMFOzn-uDH9V2Q8QBKfrNgr4vPXLeA9ntqTcI9TV_nZ8l0ThzqQRhtx4eNZ5qMsWt-LY7bvG6a3RYdgYwk3CzTXMZfMCrC4q-1Jl7fZneXB8dCS7rV63PjnzTNMx45x3HVg20GbI9gWvos3mp1bvcBUjRCKbb--Wv0oB2_vjlW9Sbm76eMmVmO5D9MARDTctah6hSpo9RvWOLV--3MXdVTbebBfXcWdV2Hz5BH0DGOF1aOF3BljvLaxwCSt8CVYYYIUtrHAJKwywwg5WT9HxQav74aPn-nJ4mgg-9zQX_YCnxNex4EIrGscq6FMtQnjfYxqBxEwixhJ4pCoGRqB9wpIoifd9rSItUvIMVbNxlr5AmKSB6hOd-CTVEWFKRYFKFBxLOGU01TUUFQ9Uale03vROGckiOnEoHR2koYP0A_iFNdQop01s1ZbbJvCCWtKpnlallIC326a-KagrgTUbf5vK0vFiJnPjhLGzi78dQygzJZ78GnpuoVGu2Pj8qQjY1h1mv0T3Vy_eK1SdTxfpa3RPn88Hs-k22mA9vu3Q_RsBVsd0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+interference+%28RNAi%29-based+plasmonic+nanomaterials+for+cancer+diagnosis+and+therapy&rft.jtitle=Journal+of+controlled+release&rft.au=Yoon%2C+Jinho&rft.au=Shin%2C+Minkyu&rft.au=Lee%2C+Ji+Young&rft.au=Lee%2C+Sang+Nam&rft.date=2022-02-01&rft.issn=0168-3659&rft.volume=342+p.228-240&rft.spage=228&rft.epage=240&rft_id=info:doi/10.1016%2Fj.jconrel.2022.01.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon