A Plug-and-Play Priors Approach for Solving Nonlinear Imaging Inverse Problems
In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such methods are traditionally formulated as optimization problems that are solved iteratively by simultaneously enforcing data consistency and incorp...
Uloženo v:
| Vydáno v: | IEEE signal processing letters Ročník 24; číslo 12; s. 1872 - 1876 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.12.2017
IEEE Signal Processing Society |
| Témata: | |
| ISSN: | 1070-9908, 1558-2361 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such methods are traditionally formulated as optimization problems that are solved iteratively by simultaneously enforcing data consistency and incorporating prior models. Recently, the Plug-and-Play Priors (PPP) framework suggested that by using more sophisticated denoisers, not necessarily corresponding to an optimization objective, it is possible to improve the quality of reconstructed images. In this letter, we show that the PPP approach is applicable beyond linear inverse problems. In particular, we develop the fast iterative shrinkage/thresholding algorithm variant of PPP for model-based nonlinear inverse scattering. The key advantage of the proposed formulation over the original ADMM-based one is that it does not need to perform an inversion on the forward model. We show that the proposed method produces high quality images using both simulated and experimentally measured data. |
|---|---|
| AbstractList | In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such methods are traditionally formulated as optimization problems that are solved iteratively by simultaneously enforcing data consistency and incorporating prior models. Recently, the Plug-and-Play Priors (PPP) framework suggested that by using more sophisticated denoisers, not necessarily corresponding to an optimization objective, it is possible to improve the quality of reconstructed images. In this letter, we show that the PPP approach is applicable beyond linear inverse problems. In particular, we develop the fast iterative shrinkage/thresholding algorithm variant of PPP for model-based nonlinear inverse scattering. The key advantage of the proposed formulation over the original ADMM-based one is that it does not need to perform an inversion on the forward model. We show that the proposed method produces high quality images using both simulated and experimentally measured data. In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such methods are traditionally formulated as optimization problems that are solved iteratively by simultaneously enforcing data consistency and incorporating prior models. Recently, the Plug-and-Play Priors (PPP) framework suggested that by using more sophisticated denoisers, not necessarily corresponding to an optimization objective, it is possible to improve the quality of reconstructed images. Here in this letter, we show that the PPP approach is applicable beyond linear inverse problems. In particular, we develop the fast iterative shrinkage/thresholding algorithm variant of PPP for model-based nonlinear inverse scattering. The key advantage of the proposed formulation over the original ADMM-based one is that it does not need to perform an inversion on the forward model. We show that the proposed method produces high quality images using both simulated and experimentally measured data. |
| Author | Mansour, Hassan Kamilov, Ulugbek S. Wohlberg, Brendt |
| Author_xml | – sequence: 1 givenname: Ulugbek S. surname: Kamilov fullname: Kamilov, Ulugbek S. email: kamilov@wustl.edu organization: Comput. Imaging Group, Washington Univ. in St. Louis, St. Louis, MO, USA – sequence: 2 givenname: Hassan surname: Mansour fullname: Mansour, Hassan email: mansour@merl.com organization: Mitsubishi Electr. Res. Labs., Cambridge, MA, USA – sequence: 3 givenname: Brendt surname: Wohlberg fullname: Wohlberg, Brendt email: brendt@lanl.gov organization: Theor. Div., Los Alamos Nat. Lab., Los Alamos, NM, USA |
| BackLink | https://www.osti.gov/servlets/purl/1469540$$D View this record in Osti.gov |
| BookMark | eNp9kD1rwzAQhkVJoUnavdDFdLcrWZYsjyH0IxBSQ9pZyPI5UXGkILmB_PsqJHTo0OXuOJ7n4N4JGllnAaF7gjNCcPW0XNdZjkmZ5SWnTNArNCaMiTSnnIzijEucVhUWN2gSwhfGWBDBxmg1S-r-e5Mq26Z1r45J7Y3zIZnt994pvU0655O16w_GbpKVs72xoHyy2KnNabOwB_ABouWaHnbhFl13qg9wd-lT9Pny_DF_S5fvr4v5bJlqWokh1YQz0UILIETHGkZ4AXGDafygKUiXU6i4agpQsUayI3krQJAqZ6ABKzpFj-e7LgxGBm0G0FvtrAU9SFLwihU4QvwMae9C8NDJyKnBODt4ZXpJsDxFJ2N08hSdvEQXRfxH3HuzU_74n_JwVgwA_OICc5Hzkv4A7Qd7Lw |
| CODEN | ISPLEM |
| CitedBy_id | crossref_primary_10_1364_AO_477284 crossref_primary_10_1109_ACCESS_2020_2979809 crossref_primary_10_1109_TCI_2024_3477312 crossref_primary_10_1137_17M1122451 crossref_primary_10_1137_21M140225X crossref_primary_10_1137_21M1406349 crossref_primary_10_1016_j_jcp_2025_113809 crossref_primary_10_1007_s10851_025_01263_9 crossref_primary_10_1016_j_sigpro_2019_107350 crossref_primary_10_1109_TCI_2022_3209939 crossref_primary_10_1126_sciadv_adr5912 crossref_primary_10_1109_TCI_2019_2914773 crossref_primary_10_1109_ACCESS_2018_2884795 crossref_primary_10_1109_LSP_2020_3006390 crossref_primary_10_1109_TCI_2024_3485467 crossref_primary_10_1109_TCI_2023_3241551 crossref_primary_10_1016_j_sigpro_2022_108738 crossref_primary_10_1088_1361_6560_ad69f7 crossref_primary_10_1109_LSP_2018_2833812 crossref_primary_10_1109_TCI_2020_3042948 crossref_primary_10_1088_2040_8986_ad08dc crossref_primary_10_1007_s11633_023_1466_0 crossref_primary_10_1016_j_optcom_2025_131960 crossref_primary_10_1109_TSP_2022_3180546 crossref_primary_10_1016_j_cageo_2023_105449 crossref_primary_10_1016_j_image_2022_116900 crossref_primary_10_1109_LSP_2019_2950611 crossref_primary_10_1007_s10851_025_01256_8 crossref_primary_10_1016_j_amc_2022_126967 crossref_primary_10_1016_j_sigpro_2019_04_013 crossref_primary_10_3390_photonics8090376 crossref_primary_10_1109_TCI_2024_3449114 crossref_primary_10_1137_22M1510364 crossref_primary_10_1109_TCI_2021_3062986 crossref_primary_10_1109_TIP_2021_3075092 crossref_primary_10_1088_1361_6560_ad8545 crossref_primary_10_1109_TCI_2024_3458418 crossref_primary_10_1109_TPAMI_2021_3088914 crossref_primary_10_1109_TGRS_2024_3498442 crossref_primary_10_1109_TMI_2021_3054167 crossref_primary_10_1109_TCI_2019_2893568 crossref_primary_10_1121_10_0026125 crossref_primary_10_1137_20M1337168 crossref_primary_10_1109_TCI_2021_3124360 crossref_primary_10_1088_2632_2153_ac1d35 crossref_primary_10_1109_LSP_2020_2986643 crossref_primary_10_1109_TIP_2025_3564829 crossref_primary_10_1371_journal_pone_0227096 crossref_primary_10_1109_LSP_2023_3265174 crossref_primary_10_1109_TCI_2019_2892123 crossref_primary_10_1109_TGRS_2024_3503367 crossref_primary_10_1007_s10915_025_02992_0 crossref_primary_10_1109_LSP_2022_3160372 crossref_primary_10_3390_en14123457 crossref_primary_10_1016_j_optlaseng_2023_107496 crossref_primary_10_1109_TCI_2020_3032101 crossref_primary_10_1016_j_cviu_2020_103004 crossref_primary_10_1109_LSP_2025_3558458 crossref_primary_10_1109_TCI_2025_3577334 crossref_primary_10_1109_JSTSP_2020_2998402 crossref_primary_10_1109_TCI_2023_3282042 crossref_primary_10_1109_LSP_2021_3111594 crossref_primary_10_1137_23M1548025 crossref_primary_10_1002_mma_9710 crossref_primary_10_1186_s12938_018_0604_3 crossref_primary_10_1109_TCI_2022_3214757 crossref_primary_10_1016_j_sigpro_2018_11_009 crossref_primary_10_1109_TCI_2021_3125564 crossref_primary_10_1109_TCI_2018_2875375 crossref_primary_10_1109_TMI_2023_3300704 crossref_primary_10_1038_s41598_022_22778_w crossref_primary_10_1109_TIP_2018_2869727 crossref_primary_10_1109_TCI_2024_3458397 crossref_primary_10_1109_ACCESS_2020_3027313 crossref_primary_10_1109_JSTSP_2020_2999820 crossref_primary_10_1109_TAES_2023_3261862 crossref_primary_10_1109_TCI_2018_2880326 crossref_primary_10_1109_TCI_2021_3066053 crossref_primary_10_1109_TCI_2020_3047473 crossref_primary_10_1002_lpor_202000122 crossref_primary_10_1016_j_cmpb_2022_107181 crossref_primary_10_1109_LSP_2025_3562820 crossref_primary_10_1109_TIP_2020_2988779 crossref_primary_10_1109_TCI_2021_3085534 crossref_primary_10_1109_TCI_2021_3118944 crossref_primary_10_3390_jimaging9070133 crossref_primary_10_1137_23M1545859 crossref_primary_10_1109_TPAMI_2020_3012955 crossref_primary_10_1007_s00034_025_03090_0 crossref_primary_10_1109_TGRS_2025_3538950 crossref_primary_10_3390_app8101864 crossref_primary_10_1364_AO_566481 crossref_primary_10_1109_TCI_2020_2996385 crossref_primary_10_1109_JPROC_2023_3247480 crossref_primary_10_1109_TCI_2019_2956888 crossref_primary_10_1109_LSP_2024_3359569 crossref_primary_10_1109_TGRS_2024_3457819 crossref_primary_10_1109_TCI_2024_3377101 crossref_primary_10_1109_TIP_2022_3167915 crossref_primary_10_1137_19M1310013 crossref_primary_10_1109_ACCESS_2020_2991442 crossref_primary_10_1109_JPROC_2023_3338272 crossref_primary_10_1109_MSP_2019_2949470 crossref_primary_10_1016_j_optlaseng_2025_109048 crossref_primary_10_1016_j_cam_2021_113495 crossref_primary_10_1016_j_dsp_2023_104186 crossref_primary_10_1088_1361_6420_ad9774 crossref_primary_10_1109_TCI_2021_3094062 crossref_primary_10_1016_j_cageo_2024_105753 crossref_primary_10_1109_TGRS_2022_3151004 crossref_primary_10_1088_1361_6560_ac9662 crossref_primary_10_1109_ACCESS_2024_3355195 crossref_primary_10_1016_j_neucom_2020_09_070 crossref_primary_10_1109_TGRS_2025_3542150 crossref_primary_10_1109_TGRS_2023_3282730 crossref_primary_10_1137_23M157185X crossref_primary_10_3390_a17020071 crossref_primary_10_3390_jimaging10020050 crossref_primary_10_1007_s10851_022_01134_7 crossref_primary_10_1016_j_sigpro_2023_109226 crossref_primary_10_1109_TCI_2021_3074881 crossref_primary_10_1002_gamm_202470004 crossref_primary_10_3390_info15120770 crossref_primary_10_1109_TGRS_2023_3322964 crossref_primary_10_1109_LSP_2020_2977214 |
| Cites_doi | 10.1109/CoSeRa.2016.7745712 10.1137/130942954 10.1109/TCI.2017.2764461 10.1109/CVPR.2014.366 10.1109/TIT.2005.862083 10.1109/ICIP.2016.7532589 10.1109/TIP.2009.2028250 10.24033/bsmf.1625 10.1109/LSP.2016.2579647 10.1016/0030-4018(69)90052-2 10.1109/GlobalSIP.2013.6737048 10.1364/OE.17.013040 10.1016/0167-2789(92)90242-F 10.1109/ICIP.2016.7533014 10.1038/nmeth1078 10.1088/0266-5611/21/6/S09 10.1109/ICASSP.2017.7953313 10.1109/TIP.2007.901238 10.1364/AO.49.001549 10.1109/TCI.2016.2599778 10.1364/OPTICA.2.000517 10.1109/MSP.2008.923099 10.1109/TCI.2016.2629286 10.1109/TIT.2006.871582 10.1109/TIP.2010.2047910 10.1109/TCI.2016.2519261 |
| ContentType | Journal Article |
| CorporateAuthor | Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
| CorporateAuthor_xml | – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States) |
| DBID | 97E RIA RIE AAYXX CITATION OIOZB OTOTI |
| DOI | 10.1109/LSP.2017.2763583 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1558-2361 |
| EndPage | 1876 |
| ExternalDocumentID | 1469540 10_1109_LSP_2017_2763583 8068267 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 0ZS OIOZB OTOTI RIG |
| ID | FETCH-LOGICAL-c398t-c1658dedee88f5b5164e65803201b41f23e96ab4ea6ab58df12d8e81925ece0a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 190 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414429300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1070-9908 |
| IngestDate | Tue Nov 05 04:34:23 EST 2024 Sat Nov 29 01:48:49 EST 2025 Tue Nov 18 20:42:39 EST 2025 Tue Aug 26 16:59:19 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c398t-c1658dedee88f5b5164e65803201b41f23e96ab4ea6ab58df12d8e81925ece0a3 |
| Notes | LA-UR-17-26597 USDOE Laboratory Directed Research and Development (LDRD) Program AC52-06NA25396 |
| ORCID | 0000-0002-4767-1843 0000-0001-6770-3278 0000000247671843 0000000167703278 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1469540 |
| PageCount | 5 |
| ParticipantIDs | osti_scitechconnect_1469540 crossref_primary_10_1109_LSP_2017_2763583 ieee_primary_8068267 crossref_citationtrail_10_1109_LSP_2017_2763583 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Dec. 2017-12-00 2017-12-01 |
| PublicationDateYYYYMMDD | 2017-12-01 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-Dec. |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE signal processing letters |
| PublicationTitleAbbrev | LSP |
| PublicationYear | 2017 |
| Publisher | IEEE IEEE Signal Processing Society |
| Publisher_xml | – name: IEEE – name: IEEE Signal Processing Society |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 born (ref19) 2003 ref16 ref18 bauschke (ref5) 2010 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 nesterov (ref27) 1983; 269 ref29 ref8 ref7 ref9 ref4 ref3 ref6 |
| References_xml | – ident: ref18 doi: 10.1109/CoSeRa.2016.7745712 – ident: ref22 doi: 10.1137/130942954 – ident: ref21 doi: 10.1109/TCI.2017.2764461 – ident: ref23 doi: 10.1109/CVPR.2014.366 – year: 2010 ident: ref5 publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces – ident: ref3 doi: 10.1109/TIT.2005.862083 – ident: ref12 doi: 10.1109/ICIP.2016.7532589 – ident: ref6 doi: 10.1109/TIP.2009.2028250 – ident: ref24 doi: 10.24033/bsmf.1625 – ident: ref26 doi: 10.1109/LSP.2016.2579647 – start-page: 695 year: 2003 ident: ref19 article-title: Scattering from inhomogeneous media publication-title: Principles of Optical – ident: ref29 doi: 10.1016/0030-4018(69)90052-2 – ident: ref8 doi: 10.1109/GlobalSIP.2013.6737048 – ident: ref15 doi: 10.1364/OE.17.013040 – ident: ref2 doi: 10.1016/0167-2789(92)90242-F – ident: ref13 doi: 10.1109/ICIP.2016.7533014 – ident: ref14 doi: 10.1038/nmeth1078 – ident: ref28 doi: 10.1088/0266-5611/21/6/S09 – volume: 269 start-page: 543 year: 1983 ident: ref27 article-title: A method for solving the convex programming problem with convergence rate ${O}(1/k^2)$ publication-title: Dokl Akad Nauk SSSR – ident: ref20 doi: 10.1109/ICASSP.2017.7953313 – ident: ref9 doi: 10.1109/TIP.2007.901238 – ident: ref16 doi: 10.1364/AO.49.001549 – ident: ref10 doi: 10.1109/TCI.2016.2599778 – ident: ref17 doi: 10.1364/OPTICA.2.000517 – ident: ref1 doi: 10.1109/MSP.2008.923099 – ident: ref11 doi: 10.1109/TCI.2016.2629286 – ident: ref4 doi: 10.1109/TIT.2006.871582 – ident: ref7 doi: 10.1109/TIP.2010.2047910 – ident: ref25 doi: 10.1109/TCI.2016.2519261 |
| SSID | ssj0008185 |
| Score | 2.5921674 |
| SecondaryResourceType | review_article |
| Snippet | In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such... |
| SourceID | osti crossref ieee |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 1872 |
| SubjectTerms | Computational modeling Fast iterative shrinkage/thresholding algorithm (FISTA) image reconstruction Imaging Information Science Inverse problems inverse scattering Iterative methods Mathematical model Mathematics MATHEMATICS AND COMPUTING Noise measurement nonlinear inverse problems Optimization plug-and-play priors (PPP) Scattering |
| Title | A Plug-and-Play Priors Approach for Solving Nonlinear Imaging Inverse Problems |
| URI | https://ieeexplore.ieee.org/document/8068267 https://www.osti.gov/servlets/purl/1469540 |
| Volume | 24 |
| WOSCitedRecordID | wos000414429300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2361 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008185 issn: 1070-9908 databaseCode: RIE dateStart: 19940101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50-KAP_hbnVPLgi2C2_k76OERRkFFQwbeSplcZzFW6TfC_967thoIIvqSlJKVc0tx3yeX7AC6s9dwsy2nwBqqQ5CECmVG4LMPMyW3hFFGhbS02oUYj_fISJ2twtToLg4h18hn2-bbey89Lu-ClsoF2IkLDah3WlYqas1qrWZcdT5Nf6EiaYfVyS9KJBw-PCedwqb7H7Gva_-GCak0VupT0R33zLLc7__umXdhuEaQYNl2-B2s43Yetb7yCBzAaimSyeJVmmstkYj5FUo3LaiaGLYG4IKQqHssJLyaIUUOWYSpx_1ZLFgnm3qhmSK1qsZnZITzf3jxd38lWOEFaP9ZzaV3CFTnmiFoXYRZSSIT0hLXS3SxwC8_HODJZgIZKqlm4Xq6RqdFCtOgY_wg603KKxyDiKPNDVAzEMHC00cqEbm4KRYXvKduFwdKWqW1ZxVncYpLW0YUTp2T9lK2fttbvwuWqxXvDqPFH3QO2-Kpea-wu9Li7UgIJzHRrOSXIzjmKiQmAnvzeqAeb_OomFeUUOvNqgWewYT_m41l1Xg-mL5fNxnQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS-wwEB28KqgPfovr6jUPvly4cdOvbfq4iIvi3lJQwbeSplMR1q10dwX_vTNtXRREuC9pKQktkzRzJpmcA3BmretkWU6D1w8LSR7ClxmFyzLIVG4LVfQLbWuxiTCO9cNDlCzB38VZGESsk8_wnG_rvfy8tHNeKutp1Sc0HP6ClcD3XdWc1lrMu-x6mgxDJWmO1R-bkirqjW4TzuIKz13mX9PeFydUq6rQpaR_6pNvGW7931dtw2aLIcWg6fQdWMLJLmx8Yhbcg3ggkvH8UZpJLpOxeRNJ9VRWUzFoKcQFYVVxW455OUHEDV2GqcT1cy1aJJh9o5oitarlZqb7cD-8vLu4kq10grRepGfSOoQscswRtS6CLKCgCOkJq6U7me8UrodR32Q-GiqpZuG4uUYmRwvQojLeASxPygkegoj6mRdgyFAMfaWNDk3g5KYIqfDc0Hag92HL1La84ixvMU7r-EJFKVk_ZeunrfU78GfR4qXh1Pih7h5bfFGvNXYHutxdKcEE5rq1nBRkZxzHRARBj75vdAprV3f_RunoOr7pwjq_pklMOYblWTXHE1i1r7OnafW7HljvFsvJuw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Plug-and-Play+Priors+Approach+for+Solving+Nonlinear+Imaging+Inverse+Problems&rft.jtitle=IEEE+signal+processing+letters&rft.au=Kamilov%2C+Ulugbek+S.&rft.au=Mansour%2C+Hassan&rft.au=Wohlberg%2C+Brendt&rft.date=2017-12-01&rft.pub=IEEE+Signal+Processing+Society&rft.issn=1070-9908&rft.volume=24&rft.issue=12&rft_id=info:doi/10.1109%2Flsp.2017.2763583&rft.externalDocID=1469540 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |