A Plug-and-Play Priors Approach for Solving Nonlinear Imaging Inverse Problems

In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such methods are traditionally formulated as optimization problems that are solved iteratively by simultaneously enforcing data consistency and incorp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE signal processing letters Ročník 24; číslo 12; s. 1872 - 1876
Hlavní autoři: Kamilov, Ulugbek S., Mansour, Hassan, Wohlberg, Brendt
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.12.2017
IEEE Signal Processing Society
Témata:
ISSN:1070-9908, 1558-2361
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such methods are traditionally formulated as optimization problems that are solved iteratively by simultaneously enforcing data consistency and incorporating prior models. Recently, the Plug-and-Play Priors (PPP) framework suggested that by using more sophisticated denoisers, not necessarily corresponding to an optimization objective, it is possible to improve the quality of reconstructed images. In this letter, we show that the PPP approach is applicable beyond linear inverse problems. In particular, we develop the fast iterative shrinkage/thresholding algorithm variant of PPP for model-based nonlinear inverse scattering. The key advantage of the proposed formulation over the original ADMM-based one is that it does not need to perform an inversion on the forward model. We show that the proposed method produces high quality images using both simulated and experimentally measured data.
AbstractList In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such methods are traditionally formulated as optimization problems that are solved iteratively by simultaneously enforcing data consistency and incorporating prior models. Recently, the Plug-and-Play Priors (PPP) framework suggested that by using more sophisticated denoisers, not necessarily corresponding to an optimization objective, it is possible to improve the quality of reconstructed images. In this letter, we show that the PPP approach is applicable beyond linear inverse problems. In particular, we develop the fast iterative shrinkage/thresholding algorithm variant of PPP for model-based nonlinear inverse scattering. The key advantage of the proposed formulation over the original ADMM-based one is that it does not need to perform an inversion on the forward model. We show that the proposed method produces high quality images using both simulated and experimentally measured data.
In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such methods are traditionally formulated as optimization problems that are solved iteratively by simultaneously enforcing data consistency and incorporating prior models. Recently, the Plug-and-Play Priors (PPP) framework suggested that by using more sophisticated denoisers, not necessarily corresponding to an optimization objective, it is possible to improve the quality of reconstructed images. Here in this letter, we show that the PPP approach is applicable beyond linear inverse problems. In particular, we develop the fast iterative shrinkage/thresholding algorithm variant of PPP for model-based nonlinear inverse scattering. The key advantage of the proposed formulation over the original ADMM-based one is that it does not need to perform an inversion on the forward model. We show that the proposed method produces high quality images using both simulated and experimentally measured data.
Author Mansour, Hassan
Kamilov, Ulugbek S.
Wohlberg, Brendt
Author_xml – sequence: 1
  givenname: Ulugbek S.
  surname: Kamilov
  fullname: Kamilov, Ulugbek S.
  email: kamilov@wustl.edu
  organization: Comput. Imaging Group, Washington Univ. in St. Louis, St. Louis, MO, USA
– sequence: 2
  givenname: Hassan
  surname: Mansour
  fullname: Mansour, Hassan
  email: mansour@merl.com
  organization: Mitsubishi Electr. Res. Labs., Cambridge, MA, USA
– sequence: 3
  givenname: Brendt
  surname: Wohlberg
  fullname: Wohlberg, Brendt
  email: brendt@lanl.gov
  organization: Theor. Div., Los Alamos Nat. Lab., Los Alamos, NM, USA
BackLink https://www.osti.gov/servlets/purl/1469540$$D View this record in Osti.gov
BookMark eNp9kD1rwzAQhkVJoUnavdDFdLcrWZYsjyH0IxBSQ9pZyPI5UXGkILmB_PsqJHTo0OXuOJ7n4N4JGllnAaF7gjNCcPW0XNdZjkmZ5SWnTNArNCaMiTSnnIzijEucVhUWN2gSwhfGWBDBxmg1S-r-e5Mq26Z1r45J7Y3zIZnt994pvU0655O16w_GbpKVs72xoHyy2KnNabOwB_ABouWaHnbhFl13qg9wd-lT9Pny_DF_S5fvr4v5bJlqWokh1YQz0UILIETHGkZ4AXGDafygKUiXU6i4agpQsUayI3krQJAqZ6ABKzpFj-e7LgxGBm0G0FvtrAU9SFLwihU4QvwMae9C8NDJyKnBODt4ZXpJsDxFJ2N08hSdvEQXRfxH3HuzU_74n_JwVgwA_OICc5Hzkv4A7Qd7Lw
CODEN ISPLEM
CitedBy_id crossref_primary_10_1364_AO_477284
crossref_primary_10_1109_ACCESS_2020_2979809
crossref_primary_10_1109_TCI_2024_3477312
crossref_primary_10_1137_17M1122451
crossref_primary_10_1137_21M140225X
crossref_primary_10_1137_21M1406349
crossref_primary_10_1016_j_jcp_2025_113809
crossref_primary_10_1007_s10851_025_01263_9
crossref_primary_10_1016_j_sigpro_2019_107350
crossref_primary_10_1109_TCI_2022_3209939
crossref_primary_10_1126_sciadv_adr5912
crossref_primary_10_1109_TCI_2019_2914773
crossref_primary_10_1109_ACCESS_2018_2884795
crossref_primary_10_1109_LSP_2020_3006390
crossref_primary_10_1109_TCI_2024_3485467
crossref_primary_10_1109_TCI_2023_3241551
crossref_primary_10_1016_j_sigpro_2022_108738
crossref_primary_10_1088_1361_6560_ad69f7
crossref_primary_10_1109_LSP_2018_2833812
crossref_primary_10_1109_TCI_2020_3042948
crossref_primary_10_1088_2040_8986_ad08dc
crossref_primary_10_1007_s11633_023_1466_0
crossref_primary_10_1016_j_optcom_2025_131960
crossref_primary_10_1109_TSP_2022_3180546
crossref_primary_10_1016_j_cageo_2023_105449
crossref_primary_10_1016_j_image_2022_116900
crossref_primary_10_1109_LSP_2019_2950611
crossref_primary_10_1007_s10851_025_01256_8
crossref_primary_10_1016_j_amc_2022_126967
crossref_primary_10_1016_j_sigpro_2019_04_013
crossref_primary_10_3390_photonics8090376
crossref_primary_10_1109_TCI_2024_3449114
crossref_primary_10_1137_22M1510364
crossref_primary_10_1109_TCI_2021_3062986
crossref_primary_10_1109_TIP_2021_3075092
crossref_primary_10_1088_1361_6560_ad8545
crossref_primary_10_1109_TCI_2024_3458418
crossref_primary_10_1109_TPAMI_2021_3088914
crossref_primary_10_1109_TGRS_2024_3498442
crossref_primary_10_1109_TMI_2021_3054167
crossref_primary_10_1109_TCI_2019_2893568
crossref_primary_10_1121_10_0026125
crossref_primary_10_1137_20M1337168
crossref_primary_10_1109_TCI_2021_3124360
crossref_primary_10_1088_2632_2153_ac1d35
crossref_primary_10_1109_LSP_2020_2986643
crossref_primary_10_1109_TIP_2025_3564829
crossref_primary_10_1371_journal_pone_0227096
crossref_primary_10_1109_LSP_2023_3265174
crossref_primary_10_1109_TCI_2019_2892123
crossref_primary_10_1109_TGRS_2024_3503367
crossref_primary_10_1007_s10915_025_02992_0
crossref_primary_10_1109_LSP_2022_3160372
crossref_primary_10_3390_en14123457
crossref_primary_10_1016_j_optlaseng_2023_107496
crossref_primary_10_1109_TCI_2020_3032101
crossref_primary_10_1016_j_cviu_2020_103004
crossref_primary_10_1109_LSP_2025_3558458
crossref_primary_10_1109_TCI_2025_3577334
crossref_primary_10_1109_JSTSP_2020_2998402
crossref_primary_10_1109_TCI_2023_3282042
crossref_primary_10_1109_LSP_2021_3111594
crossref_primary_10_1137_23M1548025
crossref_primary_10_1002_mma_9710
crossref_primary_10_1186_s12938_018_0604_3
crossref_primary_10_1109_TCI_2022_3214757
crossref_primary_10_1016_j_sigpro_2018_11_009
crossref_primary_10_1109_TCI_2021_3125564
crossref_primary_10_1109_TCI_2018_2875375
crossref_primary_10_1109_TMI_2023_3300704
crossref_primary_10_1038_s41598_022_22778_w
crossref_primary_10_1109_TIP_2018_2869727
crossref_primary_10_1109_TCI_2024_3458397
crossref_primary_10_1109_ACCESS_2020_3027313
crossref_primary_10_1109_JSTSP_2020_2999820
crossref_primary_10_1109_TAES_2023_3261862
crossref_primary_10_1109_TCI_2018_2880326
crossref_primary_10_1109_TCI_2021_3066053
crossref_primary_10_1109_TCI_2020_3047473
crossref_primary_10_1002_lpor_202000122
crossref_primary_10_1016_j_cmpb_2022_107181
crossref_primary_10_1109_LSP_2025_3562820
crossref_primary_10_1109_TIP_2020_2988779
crossref_primary_10_1109_TCI_2021_3085534
crossref_primary_10_1109_TCI_2021_3118944
crossref_primary_10_3390_jimaging9070133
crossref_primary_10_1137_23M1545859
crossref_primary_10_1109_TPAMI_2020_3012955
crossref_primary_10_1007_s00034_025_03090_0
crossref_primary_10_1109_TGRS_2025_3538950
crossref_primary_10_3390_app8101864
crossref_primary_10_1364_AO_566481
crossref_primary_10_1109_TCI_2020_2996385
crossref_primary_10_1109_JPROC_2023_3247480
crossref_primary_10_1109_TCI_2019_2956888
crossref_primary_10_1109_LSP_2024_3359569
crossref_primary_10_1109_TGRS_2024_3457819
crossref_primary_10_1109_TCI_2024_3377101
crossref_primary_10_1109_TIP_2022_3167915
crossref_primary_10_1137_19M1310013
crossref_primary_10_1109_ACCESS_2020_2991442
crossref_primary_10_1109_JPROC_2023_3338272
crossref_primary_10_1109_MSP_2019_2949470
crossref_primary_10_1016_j_optlaseng_2025_109048
crossref_primary_10_1016_j_cam_2021_113495
crossref_primary_10_1016_j_dsp_2023_104186
crossref_primary_10_1088_1361_6420_ad9774
crossref_primary_10_1109_TCI_2021_3094062
crossref_primary_10_1016_j_cageo_2024_105753
crossref_primary_10_1109_TGRS_2022_3151004
crossref_primary_10_1088_1361_6560_ac9662
crossref_primary_10_1109_ACCESS_2024_3355195
crossref_primary_10_1016_j_neucom_2020_09_070
crossref_primary_10_1109_TGRS_2025_3542150
crossref_primary_10_1109_TGRS_2023_3282730
crossref_primary_10_1137_23M157185X
crossref_primary_10_3390_a17020071
crossref_primary_10_3390_jimaging10020050
crossref_primary_10_1007_s10851_022_01134_7
crossref_primary_10_1016_j_sigpro_2023_109226
crossref_primary_10_1109_TCI_2021_3074881
crossref_primary_10_1002_gamm_202470004
crossref_primary_10_3390_info15120770
crossref_primary_10_1109_TGRS_2023_3322964
crossref_primary_10_1109_LSP_2020_2977214
Cites_doi 10.1109/CoSeRa.2016.7745712
10.1137/130942954
10.1109/TCI.2017.2764461
10.1109/CVPR.2014.366
10.1109/TIT.2005.862083
10.1109/ICIP.2016.7532589
10.1109/TIP.2009.2028250
10.24033/bsmf.1625
10.1109/LSP.2016.2579647
10.1016/0030-4018(69)90052-2
10.1109/GlobalSIP.2013.6737048
10.1364/OE.17.013040
10.1016/0167-2789(92)90242-F
10.1109/ICIP.2016.7533014
10.1038/nmeth1078
10.1088/0266-5611/21/6/S09
10.1109/ICASSP.2017.7953313
10.1109/TIP.2007.901238
10.1364/AO.49.001549
10.1109/TCI.2016.2599778
10.1364/OPTICA.2.000517
10.1109/MSP.2008.923099
10.1109/TCI.2016.2629286
10.1109/TIT.2006.871582
10.1109/TIP.2010.2047910
10.1109/TCI.2016.2519261
ContentType Journal Article
CorporateAuthor Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1109/LSP.2017.2763583
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1558-2361
EndPage 1876
ExternalDocumentID 1469540
10_1109_LSP_2017_2763583
8068267
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
0ZS
OIOZB
OTOTI
RIG
ID FETCH-LOGICAL-c398t-c1658dedee88f5b5164e65803201b41f23e96ab4ea6ab58df12d8e81925ece0a3
IEDL.DBID RIE
ISICitedReferencesCount 190
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000414429300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1070-9908
IngestDate Tue Nov 05 04:34:23 EST 2024
Sat Nov 29 01:48:49 EST 2025
Tue Nov 18 20:42:39 EST 2025
Tue Aug 26 16:59:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-c1658dedee88f5b5164e65803201b41f23e96ab4ea6ab58df12d8e81925ece0a3
Notes LA-UR-17-26597
USDOE Laboratory Directed Research and Development (LDRD) Program
AC52-06NA25396
ORCID 0000-0002-4767-1843
0000-0001-6770-3278
0000000247671843
0000000167703278
OpenAccessLink https://www.osti.gov/servlets/purl/1469540
PageCount 5
ParticipantIDs osti_scitechconnect_1469540
crossref_primary_10_1109_LSP_2017_2763583
ieee_primary_8068267
crossref_citationtrail_10_1109_LSP_2017_2763583
PublicationCentury 2000
PublicationDate 2017-Dec.
2017-12-00
2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2017
Publisher IEEE
IEEE Signal Processing Society
Publisher_xml – name: IEEE
– name: IEEE Signal Processing Society
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
born (ref19) 2003
ref16
ref18
bauschke (ref5) 2010
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
nesterov (ref27) 1983; 269
ref29
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref18
  doi: 10.1109/CoSeRa.2016.7745712
– ident: ref22
  doi: 10.1137/130942954
– ident: ref21
  doi: 10.1109/TCI.2017.2764461
– ident: ref23
  doi: 10.1109/CVPR.2014.366
– year: 2010
  ident: ref5
  publication-title: Convex Analysis and Monotone Operator Theory in Hilbert Spaces
– ident: ref3
  doi: 10.1109/TIT.2005.862083
– ident: ref12
  doi: 10.1109/ICIP.2016.7532589
– ident: ref6
  doi: 10.1109/TIP.2009.2028250
– ident: ref24
  doi: 10.24033/bsmf.1625
– ident: ref26
  doi: 10.1109/LSP.2016.2579647
– start-page: 695
  year: 2003
  ident: ref19
  article-title: Scattering from inhomogeneous media
  publication-title: Principles of Optical
– ident: ref29
  doi: 10.1016/0030-4018(69)90052-2
– ident: ref8
  doi: 10.1109/GlobalSIP.2013.6737048
– ident: ref15
  doi: 10.1364/OE.17.013040
– ident: ref2
  doi: 10.1016/0167-2789(92)90242-F
– ident: ref13
  doi: 10.1109/ICIP.2016.7533014
– ident: ref14
  doi: 10.1038/nmeth1078
– ident: ref28
  doi: 10.1088/0266-5611/21/6/S09
– volume: 269
  start-page: 543
  year: 1983
  ident: ref27
  article-title: A method for solving the convex programming problem with convergence rate ${O}(1/k^2)$
  publication-title: Dokl Akad Nauk SSSR
– ident: ref20
  doi: 10.1109/ICASSP.2017.7953313
– ident: ref9
  doi: 10.1109/TIP.2007.901238
– ident: ref16
  doi: 10.1364/AO.49.001549
– ident: ref10
  doi: 10.1109/TCI.2016.2599778
– ident: ref17
  doi: 10.1364/OPTICA.2.000517
– ident: ref1
  doi: 10.1109/MSP.2008.923099
– ident: ref11
  doi: 10.1109/TCI.2016.2629286
– ident: ref4
  doi: 10.1109/TIT.2006.871582
– ident: ref7
  doi: 10.1109/TIP.2010.2047910
– ident: ref25
  doi: 10.1109/TCI.2016.2519261
SSID ssj0008185
Score 2.5921674
SecondaryResourceType review_article
Snippet In the past two decades, nonlinear image reconstruction methods have led to substantial improvements in the capabilities of numerous imaging systems. Such...
SourceID osti
crossref
ieee
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1872
SubjectTerms Computational modeling
Fast iterative shrinkage/thresholding algorithm (FISTA)
image reconstruction
Imaging
Information Science
Inverse problems
inverse scattering
Iterative methods
Mathematical model
Mathematics
MATHEMATICS AND COMPUTING
Noise measurement
nonlinear inverse problems
Optimization
plug-and-play priors (PPP)
Scattering
Title A Plug-and-Play Priors Approach for Solving Nonlinear Imaging Inverse Problems
URI https://ieeexplore.ieee.org/document/8068267
https://www.osti.gov/servlets/purl/1469540
Volume 24
WOSCitedRecordID wos000414429300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50-KAP_hbnVPLgi2C2_k76OERRkFFQwbeSplcZzFW6TfC_967thoIIvqSlJKVc0tx3yeX7AC6s9dwsy2nwBqqQ5CECmVG4LMPMyW3hFFGhbS02oUYj_fISJ2twtToLg4h18hn2-bbey89Lu-ClsoF2IkLDah3WlYqas1qrWZcdT5Nf6EiaYfVyS9KJBw-PCedwqb7H7Gva_-GCak0VupT0R33zLLc7__umXdhuEaQYNl2-B2s43Yetb7yCBzAaimSyeJVmmstkYj5FUo3LaiaGLYG4IKQqHssJLyaIUUOWYSpx_1ZLFgnm3qhmSK1qsZnZITzf3jxd38lWOEFaP9ZzaV3CFTnmiFoXYRZSSIT0hLXS3SxwC8_HODJZgIZKqlm4Xq6RqdFCtOgY_wg603KKxyDiKPNDVAzEMHC00cqEbm4KRYXvKduFwdKWqW1ZxVncYpLW0YUTp2T9lK2fttbvwuWqxXvDqPFH3QO2-Kpea-wu9Li7UgIJzHRrOSXIzjmKiQmAnvzeqAeb_OomFeUUOvNqgWewYT_m41l1Xg-mL5fNxnQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS-wwEB28KqgPfovr6jUPvly4cdOvbfq4iIvi3lJQwbeSplMR1q10dwX_vTNtXRREuC9pKQktkzRzJpmcA3BmretkWU6D1w8LSR7ClxmFyzLIVG4LVfQLbWuxiTCO9cNDlCzB38VZGESsk8_wnG_rvfy8tHNeKutp1Sc0HP6ClcD3XdWc1lrMu-x6mgxDJWmO1R-bkirqjW4TzuIKz13mX9PeFydUq6rQpaR_6pNvGW7931dtw2aLIcWg6fQdWMLJLmx8Yhbcg3ggkvH8UZpJLpOxeRNJ9VRWUzFoKcQFYVVxW455OUHEDV2GqcT1cy1aJJh9o5oitarlZqb7cD-8vLu4kq10grRepGfSOoQscswRtS6CLKCgCOkJq6U7me8UrodR32Q-GiqpZuG4uUYmRwvQojLeASxPygkegoj6mRdgyFAMfaWNDk3g5KYIqfDc0Hag92HL1La84ixvMU7r-EJFKVk_ZeunrfU78GfR4qXh1Pih7h5bfFGvNXYHutxdKcEE5rq1nBRkZxzHRARBj75vdAprV3f_RunoOr7pwjq_pklMOYblWTXHE1i1r7OnafW7HljvFsvJuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Plug-and-Play+Priors+Approach+for+Solving+Nonlinear+Imaging+Inverse+Problems&rft.jtitle=IEEE+signal+processing+letters&rft.au=Kamilov%2C+Ulugbek+S.&rft.au=Mansour%2C+Hassan&rft.au=Wohlberg%2C+Brendt&rft.date=2017-12-01&rft.pub=IEEE+Signal+Processing+Society&rft.issn=1070-9908&rft.volume=24&rft.issue=12&rft_id=info:doi/10.1109%2Flsp.2017.2763583&rft.externalDocID=1469540
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon