Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris

•There are changes in physical and chemical properties in the aging of microplastics.•Aged microplastics pose a stronger inhibition on the growth of microalgae than that of virgin microplastics.•single microplastics and copper significantly inhibit the growth of microalgae and cause serious oxidativ...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Aquatic toxicology Ročník 216; s. 105319
Hlavní autori: Fu, Dongdong, Zhang, Qiongjie, Fan, Zhengquan, Qi, Huaiyuan, Wang, Zezheng, Peng, Licheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Netherlands Elsevier B.V 01.11.2019
Predmet:
ISSN:0166-445X, 1879-1514, 1879-1514
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •There are changes in physical and chemical properties in the aging of microplastics.•Aged microplastics pose a stronger inhibition on the growth of microalgae than that of virgin microplastics.•single microplastics and copper significantly inhibit the growth of microalgae and cause serious oxidative stress.•The interaction of microplastics and copper alleviates the negative effect of single microplastics and copper to microalgae. Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L).
AbstractList •There are changes in physical and chemical properties in the aging of microplastics.•Aged microplastics pose a stronger inhibition on the growth of microalgae than that of virgin microplastics.•single microplastics and copper significantly inhibit the growth of microalgae and cause serious oxidative stress.•The interaction of microplastics and copper alleviates the negative effect of single microplastics and copper to microalgae. Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L).
Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L).
Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L).Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of aged MPs with other pollutants and their toxic effects to microalgae. Therefore, the present study aimed to investigate i) the aging of microplastics polyvinyl chloride (mPVC) in simulated seawater and the changes in physical and chemical properties; ii) the effects of single mPVC (virgin and aged) and copper on microalgae Chlorella vulgaris; and iii) the interaction of aged mPVC and copper and the oxidative stress towards C. vulgaris. In this study, some wrinkles, rough and fractured surface textures can be observed on the aged mPVC, accompanying with increased hydroxyl groups and aromatic carbon-carbon double bond but decreased carbon hydrogen bond. It was found that single virgin or aged mPVC at low concentration (10 mg/L) had significant inhibition on the growth of C. vulgaris but no inhibition at higher concentration (100, 1,000 mg/L), which can be reasonably explained by the aggregation and precipitation of mPVC at high concentration. The aging of mPVC inhibited the growth of C. vulgaris with the maximum growth inhibition ratio (IR) of 35.26% as compared with that of virgin mPVC (IR = 28.5%). However, the single copper could significantly inhibit the growth of C. vulgaris and the inhibitory effects increased with concentration (0.2, 0.5, 1.0 mg/L). Furthermore, both the single aged mPVC (10 mg/L) and copper (0.5 mg/L) caused serious cell damage, although the concentration of superoxide dismutase (SOD) and the intracellular malonaldehyde (MDA) increased. In contrast to single treatment, the growth of C. vulgaris can be enhanced by the combined group with copper (0.5 mg/L) and aged mPVC (10 mg/L).
ArticleNumber 105319
Author Zhang, Qiongjie
Fu, Dongdong
Fan, Zhengquan
Wang, Zezheng
Peng, Licheng
Qi, Huaiyuan
Author_xml – sequence: 1
  givenname: Dongdong
  surname: Fu
  fullname: Fu, Dongdong
– sequence: 2
  givenname: Qiongjie
  surname: Zhang
  fullname: Zhang, Qiongjie
– sequence: 3
  givenname: Zhengquan
  surname: Fan
  fullname: Fan, Zhengquan
– sequence: 4
  givenname: Huaiyuan
  surname: Qi
  fullname: Qi, Huaiyuan
– sequence: 5
  givenname: Zezheng
  surname: Wang
  fullname: Wang, Zezheng
– sequence: 6
  givenname: Licheng
  surname: Peng
  fullname: Peng, Licheng
  email: lcpeng@hainanu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31586885$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFrGzEQhUVJaZy0P6FFx17WXWklW0sPJZg2KQRyaSA3MSuNExl5tZG0Tkz_fGXWufSSzEUwfO-NeO-MnPShR0I-s3rOarb4tpnD4wg5PM95zdqykw1r35EZU8u2YpKJEzIr3KISQt6dkrOUNnUZLtoP5LRhUi2UkjPy9-IeLd06E8PgIWVnEh2C3-9cv_fUPPgQnUXq-owRTKZPLj9QE4YBI4XeUgNjQhqenYXsdkhTjpgSzeEJok2TMfh7QLo6eKH3QHdjWUSXPpL3a_AJPx3fc3L76-ef1VV1fXP5e3VxXZmmVbnqJPKu5goFMGWhk4uutQ1gIxQumWw6VXcKoFUCzbJmTAgLuGxN2wE3a2mbc_J18h1ieBwxZb11yRy-0mMYk-aN5ILzRvA3oDVTSnGuCvrliI7dFq0eottC3OuXbAvwfQJKBClFXGvjckkp9DmC85rV-tCk3uhjk_rQpJ6aLGr5n_rlwGu6H5MOS6I7h1En47A3aF1Ek7UN7hWHf2aOvpU
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_118246
crossref_primary_10_1016_j_resconrec_2024_107732
crossref_primary_10_1007_s13201_025_02443_z
crossref_primary_10_1007_s00253_020_10704_x
crossref_primary_10_1016_j_gr_2021_07_029
crossref_primary_10_1016_j_scitotenv_2024_170591
crossref_primary_10_1016_j_scitotenv_2024_169926
crossref_primary_10_1111_raq_12941
crossref_primary_10_1016_j_biortech_2020_122860
crossref_primary_10_1016_j_envpol_2022_119106
crossref_primary_10_1016_j_chemosphere_2022_136599
crossref_primary_10_1016_j_envpol_2024_124805
crossref_primary_10_1016_j_envc_2025_101080
crossref_primary_10_3390_su142114338
crossref_primary_10_3389_fmars_2022_1021170
crossref_primary_10_1016_j_jhazmat_2020_124187
crossref_primary_10_1016_j_scitotenv_2021_147065
crossref_primary_10_1016_j_scitotenv_2021_147620
crossref_primary_10_1016_j_scitotenv_2024_170366
crossref_primary_10_1016_j_envpol_2024_124028
crossref_primary_10_3390_w14152422
crossref_primary_10_1080_02772248_2025_2515399
crossref_primary_10_1016_j_aquatox_2022_106097
crossref_primary_10_3390_su142214761
crossref_primary_10_1016_j_jhazmat_2020_123092
crossref_primary_10_1039_D5EN00310E
crossref_primary_10_1016_j_scitotenv_2024_175227
crossref_primary_10_3389_fmars_2021_779321
crossref_primary_10_2166_wst_2024_151
crossref_primary_10_1016_j_scitotenv_2023_168414
crossref_primary_10_1016_j_aquatox_2020_105650
crossref_primary_10_1007_s10661_025_13636_z
crossref_primary_10_1016_j_wroa_2025_100392
crossref_primary_10_1016_j_heliyon_2021_e07676
crossref_primary_10_1016_j_psep_2025_107532
crossref_primary_10_1016_j_jhazmat_2024_135652
crossref_primary_10_1016_j_algal_2022_102835
crossref_primary_10_1007_s10924_020_01929_y
crossref_primary_10_3389_fmars_2023_1234225
crossref_primary_10_1016_j_envpol_2021_118636
crossref_primary_10_1007_s11356_022_22897_x
crossref_primary_10_1016_j_aquatox_2022_106309
crossref_primary_10_1016_j_scitotenv_2024_170460
crossref_primary_10_1016_j_jclepro_2025_145842
crossref_primary_10_1016_j_watres_2024_121706
crossref_primary_10_1016_j_jhazmat_2021_127937
crossref_primary_10_1080_09593330_2021_1950841
crossref_primary_10_1016_j_scitotenv_2020_142572
crossref_primary_10_1016_j_watres_2020_116476
crossref_primary_10_1007_s10311_024_01730_6
crossref_primary_10_1016_j_ecoenv_2021_112243
crossref_primary_10_1016_j_scitotenv_2021_151750
crossref_primary_10_1007_s10311_021_01370_0
crossref_primary_10_3390_w17020201
crossref_primary_10_1007_s11356_022_21569_0
crossref_primary_10_1016_j_envpol_2023_123127
crossref_primary_10_1016_j_chemosphere_2024_143120
crossref_primary_10_1016_j_chemosphere_2022_134530
crossref_primary_10_1016_j_envres_2022_112734
crossref_primary_10_1016_j_trac_2024_117611
crossref_primary_10_1016_j_scitotenv_2023_164312
crossref_primary_10_1016_j_envpol_2024_124604
crossref_primary_10_1016_j_envpol_2022_120925
crossref_primary_10_1007_s40726_024_00298_7
crossref_primary_10_1016_j_tplants_2022_06_005
crossref_primary_10_3389_fimmu_2025_1528502
crossref_primary_10_1016_j_scitotenv_2021_151642
crossref_primary_10_1007_s11356_021_13907_5
crossref_primary_10_3390_toxics8020040
crossref_primary_10_3390_su16031107
crossref_primary_10_1007_s40242_023_3052_y
crossref_primary_10_1016_j_marpolbul_2020_110963
crossref_primary_10_1016_j_chemosphere_2022_136720
crossref_primary_10_1016_j_scitotenv_2023_167017
crossref_primary_10_1016_j_jhazmat_2022_130137
crossref_primary_10_1016_j_jconhyd_2024_104396
crossref_primary_10_1007_s00343_025_5078_0
crossref_primary_10_1016_j_jenvman_2023_118982
crossref_primary_10_1016_j_watres_2022_118780
crossref_primary_10_3390_w17020229
crossref_primary_10_3390_toxics12090676
crossref_primary_10_3390_ijms242417219
crossref_primary_10_1016_j_envpol_2023_121643
crossref_primary_10_1016_j_scitotenv_2020_140479
crossref_primary_10_1016_j_chemosphere_2023_141001
crossref_primary_10_1016_j_watres_2021_117011
crossref_primary_10_1016_j_envint_2024_108633
crossref_primary_10_1016_j_marenvres_2024_106343
crossref_primary_10_1007_s00128_025_04087_w
crossref_primary_10_1016_j_scitotenv_2023_167129
crossref_primary_10_1007_s10311_020_01044_3
crossref_primary_10_1016_j_aquatox_2023_106669
crossref_primary_10_1007_s11356_021_12983_x
crossref_primary_10_1016_j_scitotenv_2024_172308
crossref_primary_10_1016_j_jenvman_2024_122713
crossref_primary_10_1016_j_jtice_2024_105504
crossref_primary_10_1016_j_marpolbul_2021_113197
crossref_primary_10_1016_j_watres_2024_123008
crossref_primary_10_1016_j_envpol_2024_124084
crossref_primary_10_1016_j_scitotenv_2023_169659
crossref_primary_10_1016_j_scitotenv_2023_165607
crossref_primary_10_1016_j_scitotenv_2021_152070
crossref_primary_10_1007_s11356_024_33084_5
crossref_primary_10_1016_j_marpolbul_2022_113809
crossref_primary_10_1016_j_aquatox_2022_106234
crossref_primary_10_1016_j_jhazmat_2021_126482
crossref_primary_10_1016_j_scitotenv_2023_166140
crossref_primary_10_1016_j_ecss_2020_106757
crossref_primary_10_1016_j_scitotenv_2023_168399
crossref_primary_10_1016_j_scitotenv_2022_154266
crossref_primary_10_1007_s10452_021_09834_9
crossref_primary_10_1016_j_envres_2025_121128
crossref_primary_10_3389_fmars_2025_1519668
crossref_primary_10_1016_j_jhazmat_2021_126915
crossref_primary_10_1016_j_aquatox_2024_107211
crossref_primary_10_1016_j_envpol_2022_119626
crossref_primary_10_1016_j_jhazmat_2022_130463
crossref_primary_10_1186_s12870_024_05661_w
crossref_primary_10_1016_j_chemosphere_2023_138776
crossref_primary_10_1016_j_scitotenv_2024_173218
crossref_primary_10_1016_j_scitotenv_2023_162291
crossref_primary_10_1016_j_jclepro_2022_131454
crossref_primary_10_1007_s11356_021_17545_9
crossref_primary_10_3390_agronomy15082013
crossref_primary_10_1007_s00343_025_4175_4
crossref_primary_10_1016_j_ecoenv_2022_114102
crossref_primary_10_3389_fmicb_2022_865768
crossref_primary_10_1016_j_aquatox_2023_106638
crossref_primary_10_1016_j_jes_2023_12_017
crossref_primary_10_1016_j_aquatox_2024_106938
crossref_primary_10_1016_j_jhazmat_2020_124460
crossref_primary_10_1016_j_gr_2021_10_025
crossref_primary_10_1007_s11270_023_06642_9
crossref_primary_10_1016_j_trac_2023_117192
crossref_primary_10_1016_j_scitotenv_2024_176151
crossref_primary_10_1002_smll_202005834
crossref_primary_10_1016_j_scitotenv_2023_162950
crossref_primary_10_1007_s10661_024_13010_5
crossref_primary_10_3390_environments12060175
crossref_primary_10_1016_j_scitotenv_2022_156593
crossref_primary_10_1016_j_rsma_2023_103073
crossref_primary_10_1016_j_heliyon_2024_e32881
crossref_primary_10_1016_j_jhazmat_2022_129686
crossref_primary_10_1016_j_scitotenv_2024_171937
crossref_primary_10_1016_j_watres_2023_119717
crossref_primary_10_1007_s10646_025_02940_6
crossref_primary_10_1111_brv_13164
crossref_primary_10_1016_j_gr_2021_12_002
crossref_primary_10_1007_s00449_020_02369_7
crossref_primary_10_1016_j_jhazmat_2021_127773
crossref_primary_10_1016_j_scitotenv_2021_148333
crossref_primary_10_1016_j_dwt_2024_100138
crossref_primary_10_1016_j_scitotenv_2022_153266
crossref_primary_10_1016_j_scitotenv_2024_176841
crossref_primary_10_1016_j_jhazmat_2024_133984
crossref_primary_10_1016_j_aquatox_2025_107501
crossref_primary_10_1016_j_envpol_2021_118101
crossref_primary_10_1039_D0EN00654H
crossref_primary_10_1016_j_jhazmat_2020_123709
crossref_primary_10_1016_j_seppur_2024_128991
crossref_primary_10_1007_s13762_025_06433_1
crossref_primary_10_1016_j_jinorgbio_2020_111201
crossref_primary_10_1016_j_biortech_2021_126064
crossref_primary_10_1016_j_marenvres_2024_106645
crossref_primary_10_1016_j_hazadv_2022_100072
crossref_primary_10_19113_sdufenbed_1548817
crossref_primary_10_1016_j_scitotenv_2021_147535
crossref_primary_10_1016_j_jhazmat_2021_127529
crossref_primary_10_1016_j_marenvres_2023_106125
crossref_primary_10_1016_j_scitotenv_2023_162414
crossref_primary_10_1016_j_chemosphere_2019_125193
crossref_primary_10_1016_j_scitotenv_2023_167785
crossref_primary_10_1016_j_ecoenv_2021_112199
crossref_primary_10_1016_j_chemosphere_2022_134370
crossref_primary_10_1016_j_aquatox_2023_106725
crossref_primary_10_1007_s11356_024_34960_w
crossref_primary_10_1016_j_chemosphere_2023_138332
crossref_primary_10_1039_D3EN00742A
crossref_primary_10_1016_j_jhazmat_2025_137223
crossref_primary_10_1016_j_envpol_2024_124227
crossref_primary_10_1016_j_scitotenv_2022_155142
crossref_primary_10_1016_j_scitotenv_2023_163608
crossref_primary_10_1016_j_chemosphere_2023_140760
crossref_primary_10_1016_j_watres_2023_120778
crossref_primary_10_1016_j_envpol_2023_123079
crossref_primary_10_1016_j_aquatox_2023_106395
crossref_primary_10_1016_j_algal_2021_102296
crossref_primary_10_3390_atmos15111380
crossref_primary_10_1016_j_scitotenv_2023_164388
crossref_primary_10_1007_s11356_021_16665_6
crossref_primary_10_1016_j_gr_2021_08_013
crossref_primary_10_1016_j_envres_2022_113777
crossref_primary_10_1016_j_gr_2021_08_011
crossref_primary_10_1016_j_marpolbul_2021_112480
crossref_primary_10_3390_toxins13040293
crossref_primary_10_1016_j_apsoil_2025_106278
crossref_primary_10_1016_j_envpol_2024_124237
crossref_primary_10_1016_j_scitotenv_2020_140518
crossref_primary_10_1016_j_scitotenv_2022_153074
crossref_primary_10_1016_j_jhazmat_2022_130081
crossref_primary_10_1016_j_scitotenv_2020_141603
crossref_primary_10_1080_10643389_2023_2224182
crossref_primary_10_3389_fenvs_2020_551075
crossref_primary_10_1007_s11270_024_07343_7
crossref_primary_10_1016_j_scitotenv_2023_161780
crossref_primary_10_1007_s11356_023_27651_5
crossref_primary_10_3390_microorganisms11051108
crossref_primary_10_1007_s11356_022_23278_0
crossref_primary_10_1016_j_envpol_2025_125996
crossref_primary_10_1007_s11356_021_16448_z
crossref_primary_10_1016_j_marpolbul_2022_114505
crossref_primary_10_3390_toxics11030242
crossref_primary_10_1016_j_scitotenv_2021_144969
crossref_primary_10_1016_j_jenvman_2021_113995
crossref_primary_10_1016_j_emcon_2025_100486
crossref_primary_10_3389_fenvs_2020_00131
crossref_primary_10_1007_s11356_024_32564_y
crossref_primary_10_1016_j_jhazmat_2023_132318
crossref_primary_10_1016_j_scitotenv_2020_141280
crossref_primary_10_1016_j_chemosphere_2022_137199
crossref_primary_10_1016_j_chemosphere_2021_130262
crossref_primary_10_1016_j_jhazmat_2021_127174
crossref_primary_10_1016_j_watres_2025_124590
Cites_doi 10.3390/ma7042815
10.1371/journal.pone.0018026
10.1016/j.ecss.2015.07.023
10.1016/j.marchem.2014.06.001
10.1016/j.chemosphere.2018.05.170
10.1126/science.1094559
10.1016/j.marpolbul.2011.05.030
10.1021/es504730k
10.1016/j.ecoenv.2009.04.006
10.1016/j.marpolbul.2015.11.054
10.1016/S1360-1385(02)02312-9
10.1016/j.ecoenv.2009.01.003
10.1016/j.jhazmat.2019.04.039
10.1016/j.marpolbul.2010.07.014
10.1016/j.polymdegradstab.2007.11.008
10.1021/jp1054759
10.1021/sc400103x
10.1016/S1011-1344(98)00076-1
10.1016/j.scitotenv.2018.02.079
10.1016/j.aquatox.2015.04.018
10.1016/j.ecoenv.2017.05.048
10.1016/j.marchem.2015.04.003
10.1021/cm048357f
10.1016/j.envpol.2018.11.100
10.1016/j.ecoenv.2005.03.013
10.1002/tox.20636
10.1016/j.envpol.2018.01.024
10.1016/j.marpolbul.2009.12.013
10.1016/j.envpol.2016.05.006
10.1016/j.aquatox.2018.02.015
10.1016/j.envpol.2016.11.005
10.1016/j.envpol.2015.08.027
10.1021/acs.est.6b06155
10.1016/0025-326X(93)90188-P
10.1016/j.ecoenv.2014.03.021
10.1016/j.marpolbul.2016.06.048
10.1021/es303303g
10.1065/espr2006.10.355
10.1016/j.ecss.2015.12.003
10.1016/j.aquatox.2017.06.008
10.1016/j.biortech.2015.07.101
10.1007/BF02987309
10.1016/j.ecoenv.2019.02.020
10.1016/j.envpol.2011.08.052
10.1016/j.biortech.2016.01.081
10.1016/j.envpol.2013.02.031
10.1021/es0010498
10.1016/j.scitotenv.2019.134254
10.1016/j.cub.2013.10.012
10.1021/acs.est.5b05416
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.aquatox.2019.105319
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Ecology
EISSN 1879-1514
ExternalDocumentID 31586885
10_1016_j_aquatox_2019_105319
S0166445X19305648
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
6TJ
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HMT
HVGLF
HZ~
IHE
J1W
KOM
LW9
LY9
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCU
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SPT
SSA
SSZ
T5K
TN5
WUQ
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-b5e2b028e4a18dab56b9d3ae348e7153b80b8aa984ec701144dae79c9ba2cf5d3
ISICitedReferencesCount 240
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000496606500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0166-445X
1879-1514
IngestDate Thu Oct 02 11:47:20 EDT 2025
Sun Sep 28 01:01:24 EDT 2025
Wed Feb 19 02:31:55 EST 2025
Tue Nov 18 21:45:57 EST 2025
Sat Nov 29 07:29:07 EST 2025
Fri Feb 23 02:34:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxidative stress
Microalgae
Copper
Chlorella vulgaris
Aged microplastics
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-b5e2b028e4a18dab56b9d3ae348e7153b80b8aa984ec701144dae79c9ba2cf5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31586885
PQID 2301888228
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2352422342
proquest_miscellaneous_2301888228
pubmed_primary_31586885
crossref_citationtrail_10_1016_j_aquatox_2019_105319
crossref_primary_10_1016_j_aquatox_2019_105319
elsevier_sciencedirect_doi_10_1016_j_aquatox_2019_105319
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Aquatic toxicology
PublicationTitleAlternate Aquat Toxicol
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Browne, Niven, Galloway, Thompson (bib0040) 2013; 23
Hamid, Chowdhury, Zain (bib0095) 2014; 7
Mittler (bib0160) 2002; 7
Brennecke, Duarte, Paiva, Caçador, Canning-Clodeade (bib0035) 2016; 178
Holmes, Turner, Thompson (bib0100) 2012; 160
Peng, Zhang, Lan, Basak, Bond, Ding, Du (bib0195) 2016; 29
Murphy, Ewins, Carbonnier, Quinn (bib0165) 2016; 50
Long, Moriceau, Gallinari, Lambert, Huvet, Raffray, Soudant (bib0125) 2015; 175
Wu, Guo, Zhang, Zhang, Xie, Deng (bib0280) 2019; 374
Debelius, Forja, DelValls, Lubián (bib0070) 2009; 72
Gewert, Plassmann, Macleod (bib0080) 2015; 17
Prata, Lavorante, Montenegro, Guilhermino (bib0205) 2018; 197
Bergami, Pugnalini, Vannuccini, Manfra, Faleri, Savorelli, Dawson, Corsi (bib0020) 2017; 189
USEPA (bib0260) 2007
Baztan, Jorgensen, Pahl, Thompson (bib0015) 2016; 294
Ashton, Holmes, Turner (bib0010) 2010; 60
Zhao, Zhu, Li (bib0285) 2015; 206
Song, Hong, Jang, Han, Jung, Shim (bib0240) 2018; 51
Sabatini, Juárez, Eppis, Bianchi, Luquet, Molina (bib0235) 2009; 72
Fok, Fung (bib0075) 2013
Canning-Clode, Fofonoff, Riedel, Torchin, Ruiz (bib0050) 2011; 6
Peng, Lan, Zhang, Sarch, Laporte (bib0200) 2015; 197
Chen, Powell, Mortimer, Ke (bib0055) 2012; 46
Suhrhoff, Scholz-Böttcher (bib0250) 2016; 102
Hjertberg, Sörvik (bib0175) 1984
Vavilin, Ducruet, Matorin, Venediktov, Rubin (bib0270) 1998; 42
Lozano, Trombini, Crespo, Blasco, Moreno-Garrido (bib0130) 2014; 104
Andrady (bib0005) 2011; 62
Davarpanah, Guilhermino (bib0065) 2015; 167
Hamed, Selim, Klöck, AbdElgawad (bib0090) 2017; 144
Quigg, Chin, Chen, Zhang, Jiang, Miao, Schwehr, Xu, Santschi (bib0210) 2013; 1
Ma, Zhou, Yang, Lin (bib0140) 2015; 49
Holmes, Turner, Thompson (bib0105) 2014; 167
Valavanidis, Vlahogianni, Dassenakis, Scoullos (bib0265) 2006; 64
Mato, Isobe, Takada, Kanehiro, Ohtake, Kaminuma (bib0155) 2001; 35
Stevens (bib0245) 2001; 8
Gigault, Halle, Baudrimont, Pascal, Gauffre, Phi, Hadri, Grassl, Reynaud (bib0085) 2018; 235
Peng, Zhang, Cheng, Wang, Lan (bib0190) 2016; 206
Claisse, Alzieu (bib0060) 1993; 26
Mao, Ai, Chen, Zhang, Zeng, Kang, Li, Gu, He, Li (bib0145) 2018; 208
Qian, Li, Pan, Sun, Ye, Jin, Fu (bib0150) 2012; 27
Brandon, Goldstein, Ohman (bib0030) 2016; 110
Jonas, Millward (bib0110) 2010; 61
Singh, Sharma (bib0230) 2008; 93
Wright, Thompson, Galloway (bib0275) 2013; 178
Ram (bib0215) 1997
Thompson, Olsen, Mitchell, Davis, Rowland, John, McGonigle, Russell (bib0255) 2004; 304
Cai, Wang, Peng, Wu, Tan (bib0045) 2018; 628–629
Bhattacharya, Lin, Turner, Ke (bib0025) 2010; 114
Liu, Zhu, Yang, Sun, Yu, Ma (bib0120) 2018; 246
Garrido, Linares, Campillo, Albentosa (bib0225) 2019; 173
Luís, Ferreira, Fonte, Oliveira, Guilhermino (bib0135) 2015; 164
Lagarde, Olivier, Zanella, Daniel, Hiard, Caruso (bib0115) 2016; 215
Peng, Fu, Qi, Lan, Yu, Ge (bib0185) 2020; 698
Paulina, Hernán, Eliana (bib0180) 2011; 2
Ramanathan, Fisher, Ruoff, Brinson (bib0220) 2011; 17
Oliveira, Bocio, Trevilato, Takayanagui (bib0170) 2007; 14
Zhang, Chen, Wang, Tan (bib0290) 2016; 220
Paulina (10.1016/j.aquatox.2019.105319_bib0180) 2011; 2
Mao (10.1016/j.aquatox.2019.105319_bib0145) 2018; 208
Murphy (10.1016/j.aquatox.2019.105319_bib0165) 2016; 50
Fok (10.1016/j.aquatox.2019.105319_bib0075) 2013
Singh (10.1016/j.aquatox.2019.105319_bib0230) 2008; 93
Zhang (10.1016/j.aquatox.2019.105319_bib0290) 2016; 220
Oliveira (10.1016/j.aquatox.2019.105319_bib0170) 2007; 14
Hamid (10.1016/j.aquatox.2019.105319_bib0095) 2014; 7
Ashton (10.1016/j.aquatox.2019.105319_bib0010) 2010; 60
Mittler (10.1016/j.aquatox.2019.105319_bib0160) 2002; 7
Peng (10.1016/j.aquatox.2019.105319_bib0190) 2016; 206
Hamed (10.1016/j.aquatox.2019.105319_bib0090) 2017; 144
Jonas (10.1016/j.aquatox.2019.105319_bib0110) 2010; 61
Lozano (10.1016/j.aquatox.2019.105319_bib0130) 2014; 104
Bhattacharya (10.1016/j.aquatox.2019.105319_bib0025) 2010; 114
Holmes (10.1016/j.aquatox.2019.105319_bib0100) 2012; 160
Bergami (10.1016/j.aquatox.2019.105319_bib0020) 2017; 189
Brennecke (10.1016/j.aquatox.2019.105319_bib0035) 2016; 178
Suhrhoff (10.1016/j.aquatox.2019.105319_bib0250) 2016; 102
Zhao (10.1016/j.aquatox.2019.105319_bib0285) 2015; 206
Holmes (10.1016/j.aquatox.2019.105319_bib0105) 2014; 167
Prata (10.1016/j.aquatox.2019.105319_bib0205) 2018; 197
Ramanathan (10.1016/j.aquatox.2019.105319_bib0220) 2011; 17
Gigault (10.1016/j.aquatox.2019.105319_bib0085) 2018; 235
Stevens (10.1016/j.aquatox.2019.105319_bib0245) 2001; 8
Peng (10.1016/j.aquatox.2019.105319_bib0185) 2020; 698
Gewert (10.1016/j.aquatox.2019.105319_bib0080) 2015; 17
Qian (10.1016/j.aquatox.2019.105319_bib0150) 2012; 27
Canning-Clode (10.1016/j.aquatox.2019.105319_bib0050) 2011; 6
Garrido (10.1016/j.aquatox.2019.105319_bib0225) 2019; 173
Peng (10.1016/j.aquatox.2019.105319_bib0195) 2016; 29
USEPA (10.1016/j.aquatox.2019.105319_bib0260) 2007
Ma (10.1016/j.aquatox.2019.105319_bib0140) 2015; 49
Wright (10.1016/j.aquatox.2019.105319_bib0275) 2013; 178
Lagarde (10.1016/j.aquatox.2019.105319_bib0115) 2016; 215
Andrady (10.1016/j.aquatox.2019.105319_bib0005) 2011; 62
Davarpanah (10.1016/j.aquatox.2019.105319_bib0065) 2015; 167
Valavanidis (10.1016/j.aquatox.2019.105319_bib0265) 2006; 64
Hjertberg (10.1016/j.aquatox.2019.105319_bib0175) 1984
Brandon (10.1016/j.aquatox.2019.105319_bib0030) 2016; 110
Claisse (10.1016/j.aquatox.2019.105319_bib0060) 1993; 26
Liu (10.1016/j.aquatox.2019.105319_bib0120) 2018; 246
Baztan (10.1016/j.aquatox.2019.105319_bib0015) 2016; 294
Ram (10.1016/j.aquatox.2019.105319_bib0215) 1997
Sabatini (10.1016/j.aquatox.2019.105319_bib0235) 2009; 72
Thompson (10.1016/j.aquatox.2019.105319_bib0255) 2004; 304
Long (10.1016/j.aquatox.2019.105319_bib0125) 2015; 175
Browne (10.1016/j.aquatox.2019.105319_bib0040) 2013; 23
Chen (10.1016/j.aquatox.2019.105319_bib0055) 2012; 46
Debelius (10.1016/j.aquatox.2019.105319_bib0070) 2009; 72
Mato (10.1016/j.aquatox.2019.105319_bib0155) 2001; 35
Peng (10.1016/j.aquatox.2019.105319_bib0200) 2015; 197
Cai (10.1016/j.aquatox.2019.105319_bib0045) 2018; 628–629
Vavilin (10.1016/j.aquatox.2019.105319_bib0270) 1998; 42
Wu (10.1016/j.aquatox.2019.105319_bib0280) 2019; 374
Song (10.1016/j.aquatox.2019.105319_bib0240) 2018; 51
Quigg (10.1016/j.aquatox.2019.105319_bib0210) 2013; 1
Luís (10.1016/j.aquatox.2019.105319_bib0135) 2015; 164
References_xml – volume: 29
  start-page: 143
  year: 2016
  end-page: 152
  ident: bib0195
  article-title: Alleviation of oxygen stress on
  publication-title: J. Appl. Physiol.
– volume: 17
  start-page: 1290
  year: 2011
  end-page: 1295
  ident: bib0220
  article-title: Amino-functionalized carbon nanotubes for binding to polymers and biological systems
  publication-title: Chem. Mater.
– volume: 46
  start-page: 12178
  year: 2012
  end-page: 12185
  ident: bib0055
  article-title: Adaptive interactions between Zinc Oxide nanoparticles and Chlorella sp
  publication-title: Environ. Sci. Technol.
– volume: 178
  start-page: 189
  year: 2016
  end-page: 195
  ident: bib0035
  article-title: Microplastics as vector for heavy metal contamination from the marine environment
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 7
  start-page: 405
  year: 2002
  end-page: 410
  ident: bib0160
  article-title: Oxidative stress, antioxidants and stress tolerance
  publication-title: Trends Plant Sci.
– volume: 374
  start-page: 219
  year: 2019
  end-page: 227
  ident: bib0280
  article-title: Effect of microplastics exposure on the photosynthesis system of freshwater algae
  publication-title: J. Hazard. Mater.
– volume: 23
  start-page: 2388
  year: 2013
  end-page: 2392
  ident: bib0040
  article-title: Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity
  publication-title: Curr. Biol.
– volume: 144
  start-page: 19
  year: 2017
  end-page: 25
  ident: bib0090
  article-title: Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 61
  start-page: 52
  year: 2010
  end-page: 67
  ident: bib0110
  article-title: Metals and nutrients in the Severn estuary and Bristol Channel: contemporary inputs and distributions
  publication-title: Mar. Pollut. Bull.
– volume: 8
  start-page: 146
  year: 2001
  ident: bib0245
  article-title: Chlorine and the environment: an overview of the chlorine industry
  publication-title: Environ. Sci. Pollut. Res.
– year: 1997
  ident: bib0215
  article-title: The chemistry of polymers
  publication-title: Fundamentals of Polymer Engineering
– volume: 304
  start-page: 838
  year: 2004
  ident: bib0255
  article-title: Lost at Sea: Where is all the plastic?
  publication-title: Science
– volume: 64
  start-page: 178
  year: 2006
  end-page: 189
  ident: bib0265
  article-title: Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants
  publication-title: Ecotocicol. Environ. Saf.
– volume: 206
  start-page: 597
  year: 2015
  end-page: 604
  ident: bib0285
  article-title: Microplastic in three urban estuaries
  publication-title: China. Environ. Pollut.
– volume: 60
  start-page: 2050
  year: 2010
  end-page: 2055
  ident: bib0010
  article-title: Association of metals with plastic production pellets in the marine environment
  publication-title: Mar. Pollut. Bull.
– volume: 167
  start-page: 25
  year: 2014
  end-page: 32
  ident: bib0105
  article-title: Interactions between trace metals and plastic production pellets under estuarine conditions
  publication-title: Mar. Chem.
– volume: 114
  start-page: 16556
  year: 2010
  end-page: 16561
  ident: bib0025
  article-title: Physical adsorption of charged plastic nanoparticles affects algal photosynthesis
  publication-title: J. Phys. Chem. C
– volume: 246
  start-page: 26
  year: 2018
  end-page: 33
  ident: bib0120
  article-title: Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater
  publication-title: Environ. Pollut.
– volume: 197
  start-page: 143
  year: 2018
  end-page: 152
  ident: bib0205
  article-title: Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii
  publication-title: Aquat. Toxicol.
– volume: 50
  start-page: 5800
  year: 2016
  end-page: 5808
  ident: bib0165
  article-title: Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment
  publication-title: Environ. Sci. Technol.
– volume: 197
  start-page: 143
  year: 2015
  end-page: 151
  ident: bib0200
  article-title: Control of protozoa contamination and lipid accumulation in
  publication-title: Bioresour. Technol.
– volume: 1
  start-page: 686
  year: 2013
  end-page: 702
  ident: bib0210
  article-title: Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter
  publication-title: ACS Sustainable Chem. Eng.
– volume: 72
  start-page: 1200
  year: 2009
  end-page: 1206
  ident: bib0235
  article-title: Oxidative stress and antioxidant defenses in two green microalgae exposed to copper
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 62
  start-page: 1596
  year: 2011
  end-page: 1605
  ident: bib0005
  article-title: Microplastics in the marine environment
  publication-title: Mar. Pollut. Bull.
– volume: 42
  start-page: 233
  year: 1998
  end-page: 239
  ident: bib0270
  article-title: Membrane lipid peroxidation, cell viability and Photosystem II activity in the green alga
  publication-title: J. Photochem. Photobiol. B
– volume: 175
  start-page: 39
  year: 2015
  end-page: 46
  ident: bib0125
  article-title: Interactions between microplastics and phytoplankton aggregates: impact on their respective fates
  publication-title: Mar. Chem.
– volume: 14
  start-page: 483
  year: 2007
  end-page: 489
  ident: bib0170
  article-title: Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant
  publication-title: Environ. Sci. Pollut. Res.
– volume: 167
  start-page: 269
  year: 2015
  end-page: 275
  ident: bib0065
  article-title: Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii
  publication-title: Estuar. Coasta. Shelf. Sci.
– volume: 220
  start-page: 1282
  year: 2016
  end-page: 1288
  ident: bib0290
  article-title: Toxic effects of microplastic on marine microalgae
  publication-title: Environ. Pollut.
– volume: 2
  start-page: 280
  year: 2011
  end-page: 285
  ident: bib0180
  article-title: Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae
  publication-title: Lat. Am. J. Aquat. Res.
– volume: 104
  start-page: 294
  year: 2014
  end-page: 301
  ident: bib0130
  article-title: ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine)
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 189
  start-page: 159
  year: 2017
  end-page: 169
  ident: bib0020
  article-title: Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species
  publication-title: Aquat. Toxicol.
– volume: 26
  start-page: 395
  year: 1993
  end-page: 397
  ident: bib0060
  article-title: Copper contamination as a result of antifouling paint regulations?
  publication-title: Mar. Pollut. Bull.
– volume: 215
  start-page: 331
  year: 2016
  end-page: 339
  ident: bib0115
  article-title: Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type
  publication-title: Environ. Pollut.
– volume: 208
  start-page: 59
  year: 2018
  end-page: 68
  ident: bib0145
  article-title: Phytoplankton response to polystyrene microplastics: perspective from an entire growth period
  publication-title: Chemosphere
– year: 2007
  ident: bib0260
  article-title: Aquatic Life Ambient Freshwater Quality Criteria
– year: 2013
  ident: bib0075
  article-title: Microplastics As a Potential Carrier of DDT in the Marine Environment
– volume: 17
  start-page: 1513
  year: 2015
  end-page: 1521
  ident: bib0080
  article-title: Pathways for degradation of plastic polymers floating in the marine environment
  publication-title: Environ. Sci: Processes. Impacts
– year: 1984
  ident: bib0175
  article-title: Thermal degradation of PVC
  publication-title: DegraDation and Stabilisation of PVC
– volume: 49
  start-page: 932
  year: 2015
  end-page: 939
  ident: bib0140
  article-title: Heteroagglomeration of oxide nanoparticles with algal cells: effects of particle type, ionic strength and pH
  publication-title: Environ. Sci. Technol.
– volume: 628–629
  start-page: 740
  year: 2018
  end-page: 747
  ident: bib0045
  article-title: Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments
  publication-title: Sci. Total Environ.
– volume: 235
  start-page: 1030
  year: 2018
  end-page: 1034
  ident: bib0085
  article-title: Current opinion: what is a nanoplastic?
  publication-title: Environ. Pollut.
– volume: 93
  start-page: 561
  year: 2008
  end-page: 584
  ident: bib0230
  article-title: Mechanistic implications of plastic degradation
  publication-title: Polym. Degrad. Stab.
– volume: 294
  start-page: 189
  year: 2016
  end-page: 219
  ident: bib0015
  article-title: Fate and impact of microplastics in marine ecosystems
  publication-title: MICRO
– volume: 206
  start-page: 255
  year: 2016
  end-page: 263
  ident: bib0190
  article-title: Cultivation of
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 84
  year: 2016
  end-page: 94
  ident: bib0250
  article-title: Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics — a lab experiment
  publication-title: Mar. Pollut. Bull.
– volume: 7
  start-page: 2815
  year: 2014
  end-page: 2832
  ident: bib0095
  article-title: Base catalytic approach: a promising technique for the activation of biochar for equilibrium sorption studies of copper, Cu(II) ions in single solute system
  publication-title: Materials
– volume: 6
  start-page: e18026
  year: 2011
  ident: bib0050
  article-title: The effects of copper pollution on fouling assemblage diversity: a tropical-temperate comparison
  publication-title: PLoS One
– volume: 160
  start-page: 42
  year: 2012
  end-page: 48
  ident: bib0100
  article-title: Adsorption of trace metals to plastic resin pellets in the marine environment
  publication-title: Environ. Pollut.
– volume: 698
  start-page: 134254
  year: 2020
  ident: bib0185
  article-title: Micro- and nano-plastics in marine environment: source, distribution and threats — a review
  publication-title: Sci. Total Environ.
– volume: 164
  start-page: 163
  year: 2015
  end-page: 174
  ident: bib0135
  article-title: Does the presence of microplastics influence the acute toxicity of chromium (VI) to early juveniles of the common goby (
  publication-title: Aquat. Toxicol.
– volume: 110
  start-page: 299
  year: 2016
  end-page: 308
  ident: bib0030
  article-title: Long-term aging and degradation of microplastic particles: comparing in situ oceanic and experimental weathering patterns
  publication-title: Mar. Pollut. Bull.
– volume: 51
  start-page: 4368
  year: 2018
  end-page: 4376
  ident: bib0240
  article-title: Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type
  publication-title: Environ. Sci. Technol.
– volume: 72
  start-page: 1503
  year: 2009
  end-page: 1513
  ident: bib0070
  article-title: Toxicity and bioaccumulation of copper and lead in five marine microalgae
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 35
  start-page: 318
  year: 2001
  end-page: 324
  ident: bib0155
  article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment
  publication-title: Environ. Sci. Technol.
– volume: 178
  start-page: 483
  year: 2013
  end-page: 492
  ident: bib0275
  article-title: The physical impacts of microplastics on marine organisms: a review
  publication-title: Environ. Pollut.
– volume: 27
  start-page: 229
  year: 2012
  end-page: 237
  ident: bib0150
  article-title: Effects of streptomycin on growth of algae
  publication-title: Environ. Toxicol.
– volume: 173
  start-page: 103
  year: 2019
  end-page: 109
  ident: bib0225
  article-title: Effect of microplastics on the toxicity of chlorpyrifos to the microalgae
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 7
  start-page: 2815
  year: 2014
  ident: 10.1016/j.aquatox.2019.105319_bib0095
  article-title: Base catalytic approach: a promising technique for the activation of biochar for equilibrium sorption studies of copper, Cu(II) ions in single solute system
  publication-title: Materials
  doi: 10.3390/ma7042815
– volume: 6
  start-page: e18026
  issue: 3
  year: 2011
  ident: 10.1016/j.aquatox.2019.105319_bib0050
  article-title: The effects of copper pollution on fouling assemblage diversity: a tropical-temperate comparison
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018026
– volume: 167
  start-page: 269
  year: 2015
  ident: 10.1016/j.aquatox.2019.105319_bib0065
  article-title: Single and combined effects of microplastics and copper on the population growth of the marine microalgae Tetraselmis chuii
  publication-title: Estuar. Coasta. Shelf. Sci.
  doi: 10.1016/j.ecss.2015.07.023
– volume: 17
  start-page: 1513
  year: 2015
  ident: 10.1016/j.aquatox.2019.105319_bib0080
  article-title: Pathways for degradation of plastic polymers floating in the marine environment
  publication-title: Environ. Sci: Processes. Impacts
– volume: 167
  start-page: 25
  year: 2014
  ident: 10.1016/j.aquatox.2019.105319_bib0105
  article-title: Interactions between trace metals and plastic production pellets under estuarine conditions
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2014.06.001
– volume: 208
  start-page: 59
  year: 2018
  ident: 10.1016/j.aquatox.2019.105319_bib0145
  article-title: Phytoplankton response to polystyrene microplastics: perspective from an entire growth period
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.05.170
– volume: 304
  start-page: 838
  year: 2004
  ident: 10.1016/j.aquatox.2019.105319_bib0255
  article-title: Lost at Sea: Where is all the plastic?
  publication-title: Science
  doi: 10.1126/science.1094559
– volume: 62
  start-page: 1596
  year: 2011
  ident: 10.1016/j.aquatox.2019.105319_bib0005
  article-title: Microplastics in the marine environment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.05.030
– volume: 49
  start-page: 932
  year: 2015
  ident: 10.1016/j.aquatox.2019.105319_bib0140
  article-title: Heteroagglomeration of oxide nanoparticles with algal cells: effects of particle type, ionic strength and pH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es504730k
– volume: 72
  start-page: 1503
  year: 2009
  ident: 10.1016/j.aquatox.2019.105319_bib0070
  article-title: Toxicity and bioaccumulation of copper and lead in five marine microalgae
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2009.04.006
– volume: 102
  start-page: 84
  year: 2016
  ident: 10.1016/j.aquatox.2019.105319_bib0250
  article-title: Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics — a lab experiment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.11.054
– volume: 7
  start-page: 405
  year: 2002
  ident: 10.1016/j.aquatox.2019.105319_bib0160
  article-title: Oxidative stress, antioxidants and stress tolerance
  publication-title: Trends Plant Sci.
  doi: 10.1016/S1360-1385(02)02312-9
– volume: 72
  start-page: 1200
  year: 2009
  ident: 10.1016/j.aquatox.2019.105319_bib0235
  article-title: Oxidative stress and antioxidant defenses in two green microalgae exposed to copper
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2009.01.003
– volume: 374
  start-page: 219
  year: 2019
  ident: 10.1016/j.aquatox.2019.105319_bib0280
  article-title: Effect of microplastics exposure on the photosynthesis system of freshwater algae
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.04.039
– volume: 60
  start-page: 2050
  year: 2010
  ident: 10.1016/j.aquatox.2019.105319_bib0010
  article-title: Association of metals with plastic production pellets in the marine environment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2010.07.014
– volume: 93
  start-page: 561
  issue: 3
  year: 2008
  ident: 10.1016/j.aquatox.2019.105319_bib0230
  article-title: Mechanistic implications of plastic degradation
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2007.11.008
– volume: 114
  start-page: 16556
  year: 2010
  ident: 10.1016/j.aquatox.2019.105319_bib0025
  article-title: Physical adsorption of charged plastic nanoparticles affects algal photosynthesis
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1054759
– volume: 1
  start-page: 686
  year: 2013
  ident: 10.1016/j.aquatox.2019.105319_bib0210
  article-title: Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc400103x
– volume: 42
  start-page: 233
  year: 1998
  ident: 10.1016/j.aquatox.2019.105319_bib0270
  article-title: Membrane lipid peroxidation, cell viability and Photosystem II activity in the green alga Chlorella pyrenoidosa subjected to various stress conditions
  publication-title: J. Photochem. Photobiol. B
  doi: 10.1016/S1011-1344(98)00076-1
– volume: 628–629
  start-page: 740
  year: 2018
  ident: 10.1016/j.aquatox.2019.105319_bib0045
  article-title: Observation of the degradation of three types of plastic pellets exposed to UV irradiation in three different environments
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.079
– volume: 164
  start-page: 163
  year: 2015
  ident: 10.1016/j.aquatox.2019.105319_bib0135
  article-title: Does the presence of microplastics influence the acute toxicity of chromium (VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2015.04.018
– volume: 144
  start-page: 19
  year: 2017
  ident: 10.1016/j.aquatox.2019.105319_bib0090
  article-title: Sensitivity of two green microalgae to copper stress: growth, oxidative and antioxidants analyses
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2017.05.048
– year: 1984
  ident: 10.1016/j.aquatox.2019.105319_bib0175
  article-title: Thermal degradation of PVC
– volume: 175
  start-page: 39
  year: 2015
  ident: 10.1016/j.aquatox.2019.105319_bib0125
  article-title: Interactions between microplastics and phytoplankton aggregates: impact on their respective fates
  publication-title: Mar. Chem.
  doi: 10.1016/j.marchem.2015.04.003
– volume: 294
  start-page: 189
  year: 2016
  ident: 10.1016/j.aquatox.2019.105319_bib0015
  article-title: Fate and impact of microplastics in marine ecosystems
  publication-title: MICRO
– volume: 17
  start-page: 1290
  year: 2011
  ident: 10.1016/j.aquatox.2019.105319_bib0220
  article-title: Amino-functionalized carbon nanotubes for binding to polymers and biological systems
  publication-title: Chem. Mater.
  doi: 10.1021/cm048357f
– volume: 246
  start-page: 26
  year: 2018
  ident: 10.1016/j.aquatox.2019.105319_bib0120
  article-title: Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.11.100
– volume: 64
  start-page: 178
  year: 2006
  ident: 10.1016/j.aquatox.2019.105319_bib0265
  article-title: Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants
  publication-title: Ecotocicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2005.03.013
– year: 2013
  ident: 10.1016/j.aquatox.2019.105319_bib0075
– volume: 27
  start-page: 229
  issue: 4
  year: 2012
  ident: 10.1016/j.aquatox.2019.105319_bib0150
  article-title: Effects of streptomycin on growth of algae Chlorella vulgaris and Microcystis aeruginosa
  publication-title: Environ. Toxicol.
  doi: 10.1002/tox.20636
– volume: 235
  start-page: 1030
  year: 2018
  ident: 10.1016/j.aquatox.2019.105319_bib0085
  article-title: Current opinion: what is a nanoplastic?
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.01.024
– volume: 61
  start-page: 52
  year: 2010
  ident: 10.1016/j.aquatox.2019.105319_bib0110
  article-title: Metals and nutrients in the Severn estuary and Bristol Channel: contemporary inputs and distributions
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2009.12.013
– volume: 215
  start-page: 331
  year: 2016
  ident: 10.1016/j.aquatox.2019.105319_bib0115
  article-title: Microplastic interactions with freshwater microalgae: hetero-aggregation and changes in plastic density appear strongly dependent on polymer type
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.05.006
– volume: 2
  start-page: 280
  year: 2011
  ident: 10.1016/j.aquatox.2019.105319_bib0180
  article-title: Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc
  publication-title: Lat. Am. J. Aquat. Res.
– volume: 197
  start-page: 143
  year: 2018
  ident: 10.1016/j.aquatox.2019.105319_bib0205
  article-title: Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2018.02.015
– volume: 220
  start-page: 1282
  year: 2016
  ident: 10.1016/j.aquatox.2019.105319_bib0290
  article-title: Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.11.005
– year: 2007
  ident: 10.1016/j.aquatox.2019.105319_bib0260
– volume: 206
  start-page: 597
  year: 2015
  ident: 10.1016/j.aquatox.2019.105319_bib0285
  article-title: Microplastic in three urban estuaries
  publication-title: China. Environ. Pollut.
  doi: 10.1016/j.envpol.2015.08.027
– volume: 51
  start-page: 4368
  year: 2018
  ident: 10.1016/j.aquatox.2019.105319_bib0240
  article-title: Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06155
– volume: 26
  start-page: 395
  issue: 7
  year: 1993
  ident: 10.1016/j.aquatox.2019.105319_bib0060
  article-title: Copper contamination as a result of antifouling paint regulations?
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/0025-326X(93)90188-P
– year: 1997
  ident: 10.1016/j.aquatox.2019.105319_bib0215
  article-title: The chemistry of polymers
– volume: 104
  start-page: 294
  year: 2014
  ident: 10.1016/j.aquatox.2019.105319_bib0130
  article-title: ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine)
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2014.03.021
– volume: 110
  start-page: 299
  year: 2016
  ident: 10.1016/j.aquatox.2019.105319_bib0030
  article-title: Long-term aging and degradation of microplastic particles: comparing in situ oceanic and experimental weathering patterns
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.06.048
– volume: 46
  start-page: 12178
  year: 2012
  ident: 10.1016/j.aquatox.2019.105319_bib0055
  article-title: Adaptive interactions between Zinc Oxide nanoparticles and Chlorella sp
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es303303g
– volume: 14
  start-page: 483
  year: 2007
  ident: 10.1016/j.aquatox.2019.105319_bib0170
  article-title: Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1065/espr2006.10.355
– volume: 178
  start-page: 189
  year: 2016
  ident: 10.1016/j.aquatox.2019.105319_bib0035
  article-title: Microplastics as vector for heavy metal contamination from the marine environment
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2015.12.003
– volume: 189
  start-page: 159
  year: 2017
  ident: 10.1016/j.aquatox.2019.105319_bib0020
  article-title: Long-term toxicity of surface-charged polystyrene nanoplastics to marine planktonic species Dunaliella tertiolecta and Artemia franciscana
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2017.06.008
– volume: 29
  start-page: 143
  year: 2016
  ident: 10.1016/j.aquatox.2019.105319_bib0195
  article-title: Alleviation of oxygen stress on Neochloris oleoabundans: effects of bicarbonate and pH
  publication-title: J. Appl. Physiol.
– volume: 197
  start-page: 143
  year: 2015
  ident: 10.1016/j.aquatox.2019.105319_bib0200
  article-title: Control of protozoa contamination and lipid accumulation in Neochloris oleoabundans culture: effects of pH and dissolved inorganic carbon
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.07.101
– volume: 8
  start-page: 146
  year: 2001
  ident: 10.1016/j.aquatox.2019.105319_bib0245
  article-title: Chlorine and the environment: an overview of the chlorine industry
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/BF02987309
– volume: 173
  start-page: 103
  year: 2019
  ident: 10.1016/j.aquatox.2019.105319_bib0225
  article-title: Effect of microplastics on the toxicity of chlorpyrifos to the microalgae Isochrysis galbana, clone t-ISO
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.02.020
– volume: 160
  start-page: 42
  year: 2012
  ident: 10.1016/j.aquatox.2019.105319_bib0100
  article-title: Adsorption of trace metals to plastic resin pellets in the marine environment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.08.052
– volume: 206
  start-page: 255
  year: 2016
  ident: 10.1016/j.aquatox.2019.105319_bib0190
  article-title: Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.01.081
– volume: 178
  start-page: 483
  year: 2013
  ident: 10.1016/j.aquatox.2019.105319_bib0275
  article-title: The physical impacts of microplastics on marine organisms: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.02.031
– volume: 35
  start-page: 318
  year: 2001
  ident: 10.1016/j.aquatox.2019.105319_bib0155
  article-title: Plastic resin pellets as a transport medium for toxic chemicals in the marine environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0010498
– volume: 698
  start-page: 134254
  year: 2020
  ident: 10.1016/j.aquatox.2019.105319_bib0185
  article-title: Micro- and nano-plastics in marine environment: source, distribution and threats — a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134254
– volume: 23
  start-page: 2388
  year: 2013
  ident: 10.1016/j.aquatox.2019.105319_bib0040
  article-title: Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.10.012
– volume: 50
  start-page: 5800
  year: 2016
  ident: 10.1016/j.aquatox.2019.105319_bib0165
  article-title: Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05416
SSID ssj0000249
Score 2.6525085
Snippet •There are changes in physical and chemical properties in the aging of microplastics.•Aged microplastics pose a stronger inhibition on the growth of microalgae...
Microplastics (MPs) could pose potential risks to microalgae, the primary producer of marine ecosystems. Currently, few studies focus on the interaction of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105319
SubjectTerms Aged microplastics
Antioxidants - metabolism
Biomass
carbon
Cell Proliferation - drug effects
Chlorella vulgaris
Chlorella vulgaris - cytology
Chlorella vulgaris - drug effects
Chlorella vulgaris - enzymology
Chlorella vulgaris - ultrastructure
Copper
Copper - toxicity
growth retardation
hydrogen bonding
malondialdehyde
Malondialdehyde - metabolism
marine ecosystems
Microalgae
Microalgae - cytology
Microalgae - drug effects
Microalgae - enzymology
Microalgae - ultrastructure
microplastics
Microplastics - toxicity
moieties
Oxidative stress
Oxidative Stress - drug effects
Particle Size
physicochemical properties
pollutants
poly(vinyl chloride)
Polyvinyl Chloride - toxicity
seawater
Seawater - chemistry
superoxide dismutase
Superoxide Dismutase - metabolism
toxicity
Ultraviolet Rays
Water Pollutants, Chemical - toxicity
Title Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris
URI https://dx.doi.org/10.1016/j.aquatox.2019.105319
https://www.ncbi.nlm.nih.gov/pubmed/31586885
https://www.proquest.com/docview/2301888228
https://www.proquest.com/docview/2352422342
Volume 216
WOSCitedRecordID wos000496606500020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1514
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000249
  issn: 0166-445X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9owELZYto-9VO32RR8rV-oNhZIXto8IgdqqWnWlrYR6iWzHsEFski4EgfoT-qc7juPAtku3PfQSISeZEH8f45lhZozQ2y7v-jwUruMJ0tMOysQRxBNO1xd-0Au6SoqyUPgTOT2l4zH73Gj8sLUwqzlJU7pes_y_Qg1jALYunf0HuGuhMACfAXQ4Auxw_Cvg-1OwIS91nl0OlnHZhTnP5ptVkm7mbXmhM-5iVbaJ0AVSNvc8z5XJppS80OH9dRKbluBVMcmyTK9dGMG6_kO1B1qWTp5qrwpdEJIsdi3d_reibAa7BFHyWux-VBjLPZ3GWbVu7kauz2BmprOkJtzIhGi_Xqh0CjJrMp-Z_bYLnmzsaBW9cFlVxlcuPkbjUgKDoakktSrZc3eVqlsqihv1vQk9zDpcv1O21ql6rPP79YBQflni7bsh7VGzS9AvjbbtqQN06JGQ0SY67H8Yjj9uF3ZwVbdFYO9ufOoRumfl7LN09nkypUVz_hA9qFwR3DcUeoQaKj1G9wd2B8BjdHdogHuMvmtS4WukwjWpsCUVtqTCmlTYkAoDqXBJKlyTChtS4YpUeEsqXJMKW1I9QV9Gw_PBe6fatsORPqNLR4TKE2C2qoC7NOYi7AkW-1z5AVUEFlhBu4JyzmigJNH-eBBzRZhkgntyEsb-U9RMs1Q9R3iiQGdQBl5BQAOuoykulS5MrudN4piQFgrsFEey6mmvt1aZRzZ5cRZVIEUapMiA1EKd-rbcNHW57QZq8Ysqy9RYnBEQ8bZb31i8I4BP_x3HU5UViwicf5fqV6F_uiYEG9rzA6-Fnhmy1N_Y8uzF3jMv0dH2N_cKNZdXhXqN7sjVMllcnaADMqYnFcl_Atf50kk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aged+microplastics+polyvinyl+chloride+interact+with+copper+and+cause+oxidative+stress+towards+microalgae+Chlorella+vulgaris&rft.jtitle=Aquatic+toxicology&rft.au=Fu%2C+Dongdong&rft.au=Zhang%2C+Qiongjie&rft.au=Fan%2C+Zhengquan&rft.au=Qi%2C+Huaiyuan&rft.date=2019-11-01&rft.eissn=1879-1514&rft.volume=216&rft.spage=105319&rft_id=info:doi/10.1016%2Fj.aquatox.2019.105319&rft_id=info%3Apmid%2F31586885&rft.externalDocID=31586885
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-445X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-445X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-445X&client=summon