A review of struvite crystallization for nutrient source recovery from wastewater
Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery...
Uloženo v:
| Vydáno v: | Journal of environmental management Ročník 344; s. 118383 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
15.10.2023
|
| Témata: | |
| ISSN: | 0301-4797, 1095-8630, 1095-8630 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.
[Display omitted]
•Struvite crystallization processes for nutrient recovery from wastewater are overviewed.•Assessment of performance of novel technologies assisted with struvite crystallization process.•Analysis of economic feasibility and environmental impacts in struvite recovery process.•Current challenges and future prospects directions are identified. |
|---|---|
| AbstractList | Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.
[Display omitted]
•Struvite crystallization processes for nutrient recovery from wastewater are overviewed.•Assessment of performance of novel technologies assisted with struvite crystallization process.•Analysis of economic feasibility and environmental impacts in struvite recovery process.•Current challenges and future prospects directions are identified. Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion. Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion. |
| ArticleNumber | 118383 |
| Author | Yu, Xin Liu, Wei Zhang, Jiajie Guan, Qian Ou, Ranwen Zhong, Yun Zeng, Guisheng Li, Yingpeng |
| Author_xml | – sequence: 1 givenname: Qian surname: Guan fullname: Guan, Qian organization: College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China – sequence: 2 givenname: Yingpeng surname: Li fullname: Li, Yingpeng organization: Haixi (Fujian) Institute, China Academy of Machinery Science and Technology Group, Sanming, 365500, PR China – sequence: 3 givenname: Yun surname: Zhong fullname: Zhong, Yun organization: Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China – sequence: 4 givenname: Wei surname: Liu fullname: Liu, Wei organization: School of Space and Environment, Beihang University, Beijing, 100191, PR China – sequence: 5 givenname: Jiajie surname: Zhang fullname: Zhang, Jiajie organization: College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China – sequence: 6 givenname: Xin surname: Yu fullname: Yu, Xin organization: College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China – sequence: 7 givenname: Ranwen surname: Ou fullname: Ou, Ranwen email: ouranwen@xmu.edu.cn organization: College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China – sequence: 8 givenname: Guisheng surname: Zeng fullname: Zeng, Guisheng email: zengguisheng@hotmail.com organization: School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37348306$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU9LHDEYh0NR6mr7EVpy9DLb_JvZBA8i0mpBEMGewzuZN5BlZmKTzC7rp-_YXS9e9pTL87yB33NOTsY4IiHfOFtyxpsf6-Uax80A41IwIZeca6nlJ7LgzNSVbiQ7IQsmGa_UyqzOyHnOa8aYFHz1mZzJlVRasmZBnm5owk3ALY2e5pKmTShIXdrlAn0fXqGEOFIfEx2nkgKOheY4JYez5uIG0476FAe6hVxwCwXTF3Lqoc_49fBekD-_fj7f3lcPj3e_b28eKieNLlXLwbsWJArFXYsCNOta57FpARpfc-XQeK6Qm85544wEhdDUykvRcAUoL8jl_u5Lin8nzMUOITvsexgxTtlKppiSRhhxFBVaGCVqzfSMfj-gUztgZ19SGCDt7PtiM3C1B1yKOSf01oXyf6WSIPSWM_vWx67toY9962P3fWa7_mC_f3DMu957OC8650o2uzmGwy7MHYrtYjhy4R9vmK81 |
| CitedBy_id | crossref_primary_10_1016_j_dwt_2024_100881 crossref_primary_10_1016_j_jenvman_2024_122943 crossref_primary_10_1016_j_icheatmasstransfer_2024_108316 crossref_primary_10_36783_18069657rbcs20240127 crossref_primary_10_1016_j_jenvman_2024_120727 crossref_primary_10_3390_app14010131 crossref_primary_10_3390_membranes15070189 crossref_primary_10_1016_j_seppur_2024_127257 crossref_primary_10_1002_clen_202300142 crossref_primary_10_1016_j_cej_2025_164185 crossref_primary_10_1016_j_scitotenv_2024_171636 crossref_primary_10_1016_j_rineng_2024_103707 crossref_primary_10_1007_s10653_024_02129_6 crossref_primary_10_1016_j_cej_2025_166612 crossref_primary_10_1016_j_dwt_2025_101301 crossref_primary_10_1016_j_jenvman_2024_123027 crossref_primary_10_1016_j_jece_2024_112286 crossref_primary_10_1016_j_renene_2025_122411 crossref_primary_10_1016_j_jclepro_2025_146599 crossref_primary_10_1016_j_jece_2024_112129 crossref_primary_10_3390_w16131928 crossref_primary_10_1016_j_colsurfa_2025_136279 crossref_primary_10_3390_catal15040361 crossref_primary_10_1016_j_chemosphere_2024_143648 crossref_primary_10_3390_membranes14020029 crossref_primary_10_1016_j_horiz_2023_100084 crossref_primary_10_1039_D5RA02880A crossref_primary_10_1016_j_jwpe_2024_105340 crossref_primary_10_1016_j_jenvman_2023_119712 crossref_primary_10_1016_j_jwpe_2025_107408 crossref_primary_10_1007_s10163_025_02369_3 crossref_primary_10_1016_j_cej_2025_165735 crossref_primary_10_1039_D5RA03370E crossref_primary_10_1007_s13399_024_06210_z crossref_primary_10_1016_j_jclepro_2024_142244 crossref_primary_10_1016_j_cej_2024_154884 crossref_primary_10_1089_ees_2023_0304 crossref_primary_10_1016_j_dwt_2024_100902 crossref_primary_10_1016_j_seppur_2024_128406 crossref_primary_10_3390_agriculture15131352 crossref_primary_10_1002_jeq2_70069 crossref_primary_10_1016_j_jwpe_2025_107955 crossref_primary_10_1016_j_jwpe_2025_108766 crossref_primary_10_1016_j_jwpe_2024_106922 crossref_primary_10_1016_j_jenvman_2025_124799 crossref_primary_10_1139_cjc_2024_0044 crossref_primary_10_1016_j_envres_2025_120865 crossref_primary_10_1016_j_jwpe_2025_108088 crossref_primary_10_1002_mabi_202500042 crossref_primary_10_1016_j_cej_2025_160536 crossref_primary_10_1016_j_seppur_2024_127420 crossref_primary_10_1016_j_biortech_2024_130521 crossref_primary_10_11648_j_sjc_20251304_11 |
| Cites_doi | 10.1016/j.seppur.2022.122192 10.1016/j.chemosphere.2011.02.046 10.1016/j.jclepro.2015.05.060 10.1002/crat.2170200204 10.1021/acs.chemmater.0c01561 10.1016/j.desal.2021.114949 10.1016/j.chemosphere.2015.06.089 10.1016/j.scitotenv.2019.03.485 10.1016/j.chemosphere.2021.129861 10.1021/acs.oprd.1c00103 10.1016/0022-0248(79)90082-4 10.1016/j.jece.2020.103957 10.1016/j.cej.2023.141522 10.1016/j.jhazmat.2013.06.072 10.1021/acs.cgd.8b01074 10.1016/j.watres.2009.12.015 10.1016/S1001-0742(08)62310-4 10.1016/j.watres.2020.116521 10.1021/cg5018032 10.1016/j.eti.2020.101347 10.1016/j.arabjc.2013.10.007 10.1016/j.cej.2017.12.097 10.1139/s03-050 10.1021/cg034173m 10.1007/s11356-019-07542-4 10.1021/cg1016593 10.1016/j.ces.2020.115911 10.1016/j.molliq.2021.116293 10.1016/j.jclepro.2020.122649 10.1002/aic.690341108 10.1016/j.cej.2017.02.112 10.1080/03601230801941709 10.1016/j.cej.2016.03.148 10.1016/j.cej.2016.06.036 10.1016/j.scitotenv.2018.11.259 10.1016/j.jenvman.2020.111359 10.1016/j.jes.2016.06.020 10.1016/j.jhazmat.2008.11.101 10.1021/acs.est.6b04623 10.1016/j.scitotenv.2018.07.166 10.1016/j.ultsonch.2015.11.025 10.1016/S0009-2509(99)00481-9 10.1016/j.cej.2019.123950 10.1016/j.watres.2020.115510 10.1016/j.jhazmat.2008.11.025 10.1021/es402710y 10.1021/es505102v 10.1016/j.chemosphere.2020.128357 10.1016/j.watres.2021.117823 10.1016/j.watres.2013.04.026 10.1016/j.jece.2021.105623 10.1016/j.biortech.2012.03.107 10.1016/j.jpowsour.2018.02.049 10.1016/j.jenvman.2021.112961 10.1080/19443994.2012.749378 10.1016/j.cej.2022.136809 10.1016/j.biortech.2010.11.054 10.1016/S1001-0742(13)60473-8 10.1007/s11771-018-3803-y 10.1016/j.jhazmat.2007.12.010 10.1016/j.scitotenv.2011.12.065 10.1080/09593330.2014.929179 10.1002/adem.201400434 10.1016/j.jclepro.2018.08.012 10.1016/j.scitotenv.2020.144269 10.1021/cg4007636 10.1016/S0043-1354(01)00143-9 10.1016/j.jes.2017.11.029 10.1016/j.jclepro.2017.09.042 10.5004/dwt.2010.1866 10.1007/s11157-020-09533-1 10.1016/j.wasman.2022.11.008 10.1016/j.jece.2020.105019 10.1139/s03-082 10.1016/S0043-1354(02)00126-4 10.1016/S1004-9541(08)60212-8 10.1016/j.resconrec.2014.03.012 10.2166/wst.2010.060 10.1021/op050109x 10.1016/j.watres.2009.08.054 10.1021/es500188t 10.1016/j.chemosphere.2020.126245 10.2166/wst.2008.722 10.1016/j.jenvman.2019.07.025 10.1016/j.jenvman.2015.12.006 10.1021/es300864t 10.1016/j.jclepro.2020.124222 10.1080/09593332808618885 10.1021/acssuschemeng.8b04393 10.1016/j.scitotenv.2022.153750 10.1016/j.cej.2015.02.057 10.1016/j.jenvman.2014.06.021 10.1016/j.watres.2014.08.008 10.1016/j.biortech.2015.09.070 10.1016/j.scitotenv.2017.11.128 10.4236/jep.2010.12023 10.1021/acsestwater.0c00234 10.1016/j.jes.2015.10.008 10.1080/15422119.2015.1119699 10.1021/es302296m 10.1016/j.jcrysgro.2013.03.010 10.1016/j.biortech.2022.126976 10.1016/j.jclepro.2013.01.001 10.1016/j.seppur.2013.02.002 10.1016/j.jenvman.2023.117552 10.1016/S0043-1354(01)00391-8 10.1016/S0022-0248(00)00351-1 10.1016/j.ultsonch.2016.11.019 10.1061/(ASCE)0733-9372(1999)125:8(730) 10.1016/j.jhazmat.2007.12.067 10.1021/acssuschemeng.6b00247 10.1016/j.watres.2019.115449 10.1016/j.envres.2020.109774 10.1016/j.jclepro.2016.07.012 10.1016/j.biortech.2008.05.024 10.1016/j.chemosphere.2017.01.088 10.1080/09593330802075452 10.1021/cg3005882 10.1016/S1001-0742(13)60536-7 10.1016/j.jece.2021.105579 10.1016/j.scitotenv.2018.04.129 10.1016/j.cej.2007.10.023 10.1016/j.jclepro.2016.04.002 10.1002/crat.201100049 10.1016/j.scitotenv.2019.134240 10.1016/j.jhazmat.2010.12.103 10.1016/j.chemosphere.2005.08.021 10.1016/j.chemosphere.2017.12.004 10.1002/jctb.3936 10.1016/j.watres.2012.09.036 10.1039/D0NR03642K 10.1016/j.watres.2021.118001 10.1002/jctb.5009 10.1016/j.apt.2013.10.014 10.1139/s03-040 10.1061/(ASCE)0733-9372(2000)126:4(361) 10.1016/j.mattod.2023.02.013 10.1016/j.watres.2022.118678 10.1016/j.jclepro.2021.129588 10.1016/j.jece.2020.104488 10.1007/s11356-015-4504-9 10.1080/10643380701640573 10.1016/j.watres.2005.12.041 10.1016/j.jenvman.2022.117143 10.1007/s10098-010-0321-5 10.1016/j.watres.2018.07.016 10.1080/09593330.2014.921732 10.1016/j.desal.2014.06.005 10.1016/j.chemosphere.2020.126968 10.2166/wst.2011.720 10.1021/ie50229a008 10.1016/j.resconrec.2015.12.009 10.1016/j.chemosphere.2013.11.019 10.1016/j.cej.2010.02.026 10.1002/kin.21362 10.1016/j.jcrysgro.2013.04.027 10.2166/wst.2012.092 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jenvman.2023.118383 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1095-8630 |
| ExternalDocumentID | 37348306 10_1016_j_jenvman_2023_118383 S0301479723011714 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAHBH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AVARZ AXJTR BELTK BKOJK BKOMP BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SES SEW SPC SPCBC SSB SSJ SSO SSR SSZ T5K TAE TWZ WH7 XSW Y6R YK3 ZCA ZU3 ~02 ~G- ~KM 29K 3EH 53G 9DU AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDBO AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF D-I EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN UHS UQL VH1 WUQ XPP YV5 ZMT ZY4 ~HD NPM YIN 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c398t-b1afcba3e241cbe2a80dbcfe6baa6f514ce9f14e19dcf9c93a4ea654f32614ae3 |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001042141900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0301-4797 1095-8630 |
| IngestDate | Thu Oct 02 10:27:40 EDT 2025 Mon Sep 29 05:42:09 EDT 2025 Wed Feb 19 02:23:17 EST 2025 Tue Nov 18 22:22:42 EST 2025 Sat Nov 29 03:51:38 EST 2025 Sat Jul 27 15:43:26 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Struvite crystallization Assistive technology Slow-release fertilizer Nutrient recovery Process parameters |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c398t-b1afcba3e241cbe2a80dbcfe6baa6f514ce9f14e19dcf9c93a4ea654f32614ae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 37348306 |
| PQID | 2829425808 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3040439292 proquest_miscellaneous_2829425808 pubmed_primary_37348306 crossref_citationtrail_10_1016_j_jenvman_2023_118383 crossref_primary_10_1016_j_jenvman_2023_118383 elsevier_sciencedirect_doi_10_1016_j_jenvman_2023_118383 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-15 |
| PublicationDateYYYYMMDD | 2023-10-15 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of environmental management |
| PublicationTitleAlternate | J Environ Manage |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | McMurtry, Qian, Teglasi, Swarnakar, De Roo, Owen (bib95) 2020; 32 Marti, Bouzas, Seco, Ferrer (bib91) 2008; 141 Li, Yao, Dong, Zhao, Zhou, Fu (bib76) 2019; 7 Ronteltap, Maurer, Hausherr, Gujer (bib116) 2010; 44 Thompson, Doraiswamy (bib136) 2000; 55 Ye, Chen, Wang, Shen, Wu, Huang (bib152) 2021; 188 Huang, Zhang, Li, Guo, Tang (bib48) 2017; 168 Lahav, Telzhensky, Zewuhn, Gendel, Gerth, Calmano, Birnhack (bib67) 2013; 108 Wang, Ye, Gao, Wang, Li, Ding, Li, Ren, Chen, Wang, Ye (bib142) 2023; 330 Li, Boiarkina, Yu, Huang, Munir, Wang, Young (bib73) 2019; 648 Wagterveld, Miedema, Witkamp (bib138) 2012; 12 Bayuseno, Schmahl (bib12) 2020; 250 Ye, Shen, Ye, Zhang, Chen, Shi (bib155) 2014; 26 Li, Zhang, Shaheen, Abdelrahman, Ali, Bolan, Li, Rinklebe (bib77) 2022; 351 Zhang, Ding, Ren, Xiong (bib163) 2009; 43 Hutnik, Kozik, Mazienczuk, Piotrowski, Wierzbowska, Matynia (bib53) 2013; 247 Tansel, Lunn, Monje (bib133) 2018; 194 Prasad, Dalvi (bib107) 2020; 226 Bradford-Hartke, Lane, Lant, Leslie (bib15) 2015; 49 Song, Weidler, Berg, Nüesch, Donnert (bib129) 2006; 63 Avagyan (bib8) 2010; 1 McCabe (bib94) 1929; 21 Wang, Da, Deng, Wang, Liu, Chang (bib145) 2023; 335 Ye, Zhang, Cai, Chen (bib154) 2020; 385 Bouropoulos, Koutsoukos (bib14) 2000; 213 Kékedy-Nagy, English, Anari, Abolhassani, Pollet, Popp, Greenlee (bib61) 2022; 210 Thorat, Dalvi (bib137) 2016; 30 Fattah, Sabrina, Mavinic, Koch (bib31) 2008; 58 Ohlinger, Young, Schroeder (bib101) 2000; 126 Wu, Bishop (bib149) 2004; 3 Abbona, Boistelle (bib1) 1979; 46 Song, Li, Wang, Tian, Yang (bib127) 2021; 336 Davis, Siccardi, Huysman, Wyatt, Hewson, Lane (bib25) 2015; 198 Stratful, Scrimshaw, Lester (bib130) 2001; 35 Di Capua, de Sario, Ferraro, Petrella, Race, Pirozzi, Fratino, Spasiano (bib29) 2022; 823 Borgerding (bib13) 1972; 44 Gu, Zhang, Li, Zhou (bib34) 2015; 9 Huang, Zhang, Zhang, Liu, Xiao, Gao (bib51) 2016; 127 Jarvie, Smith, Norton, Edwards, Bowes, King, Scarlett, Davies, Dils, Bachiller-Jareno (bib57) 2018; 621 Peng, Chai, Song, Min, Tang (bib103) 2018; 25 Mbanaso, Theophilus, Sam-Ateki, Nnadi, Umoren, Umeokafor (bib93) 2023; 5 Huang, Zhang, Yang, Zhang, Guo, Liu (bib50) 2017; 317 De, Lindeboom, Vanoppen, De Paepe, Demey, Coessens, Lamaze, Verliefde, Clauwaert, Vlaeminck (bib26) 2018; 144 Qiu, Shi, Liu, Xie, Wang, Zhang, Song, Lu (bib110) 2017; 36 Rahman, Salleh, Rashid, Ahsan, Hossain, Ra (bib114) 2014; 7 Avagyan (bib10) 2018 Cafolla, Voïtchovsky (bib17) 2020; 12 Dai, Wen, Huang, Bao, Xi, Liao, Shi, Ou, Qin (bib23) 2022; 446 Rubio-Rincón, Lopez-Vazquez, Ronteltap, Brdjanovic (bib119) 2014; 348 Wang, Zhang, Zhang, She, Xiang, Xia (bib148) 2023; 454 Xiao, Huang, Jiang, Ding (bib150) 2017; 24 Chen, Yang, Zheng, Cheng, Xu, Dou (bib19) 2020; 188 Ma, Xue, Zhang, Kobayashi, Kubota, Li (bib88) 2020; 172 Krishnamoorthy, Dey, Unpaprom, Ramaraj, Maniam, Govindan, Jayaraman, Arunachalam, Paramasivan (bib65) 2021; 9 Lee, Yoo, Kim, Lim, Kim, Kim (bib71) 2013; 261 Iqbal, Bhuiyan, Mavinic (bib55) 2008; 29 Carrillo, Fuentes, Gómez, Vidal (bib18) 2020; 19 Ohlinger, Young, Schroeder (bib100) 1999; 125 Devarakonda, Evans, Myerson (bib28) 2004; 4 Mullin (bib98) 2001 Song, Dai, Hu, Yu, Qian (bib128) 2014; 101 Kumar, Pal (bib66) 2013; 43 Rouff (bib117) 2012; 46 Narducci, Jones, Kougoulos (bib99) 2011; 11 Zang, Li, Wang, Zhang, Xiong (bib158) 2015; 107 Zhang, Shan, Wang, Zhu, Yu, Ma (bib161) 2021; 25 Li, Huang, Sun, Zhao, Munir, Yu, Young (bib74) 2020; 272 Liu, Kumar, Kwag, Ra (bib84) 2013; 88 Zhou, Hu, Ren, Zhao, Jiang, Wang (bib166) 2015; 141 Ryu, Kim, Lee (bib121) 2008; 156 Kemacheevakul, Chuangchote, Otani, Matsuda, Shimizu (bib62) 2014; 35 Rahman, Liu, Kwag, Ra (bib113) 2011; 186 Aguado, Barat, Bouzas, Seco, Ferrer (bib5) 2019; 672 Darwish, Aris, Puteh, Abideen, Othman (bib24) 2016; 45 Romero-Güiza, Astals, Mata-Alvarez, Chimenos (bib115) 2015; 270 Zhang, Ding, Ren (bib162) 2009; 166 Foletto, Santos, Jahn, Bassaco, Mazutti, Cancelier, Gundel (bib32) 2013; 51 Koralewska, Piotrowski, Wierzbowska, Matynia (bib64) 2009; 17 Li, Huang, Boiarkina, Yu, Huang, Wang (bib75) 2019; 248 Ruecroft, Hipkiss, Ly, Maxted, Cains (bib120) 2005; 9 Atrens, Song, Liu, Shi, Cao, Dargusch (bib7) 2015; 17 Prywer, Olszynski (bib108) 2013; 375 Lu, Zhong, Liu, Li, Yang, Wang (bib87) 2020; 276 Mihelcic, Fry, Shaw (bib96) 2011; 84 Alan (bib167) 2002 Huang, Xiao, Yang, Yan (bib46) 2010; 61 Le Corre, Valsami-Jones, Hobbs, Parsons (bib68) 2007; 28 Zhang, Chen, Jilani, Wu, Liu, Han (bib160) 2012; 116 Jiang, Wu (bib58) 2010; 23 Wang, Xiao, Zhong, Zheng, Wei (bib147) 2016; 39 Bradford-Hartke, Razmjou, Gregory (bib16) 2021; 504 Huang, Zhang, Wang, Li, Zhao, Li, Dai (bib49) 2019; 655 Guan, Fang, Wu, Ou, Zhang, Xie, Tang, Zeng (bib35) 2023; 64 Muhmood, Wu, Lu, Ajmal, Luo, Dong (bib97) 2018; 635 Kim, Kim, Ryu, Lee (bib63) 2009; 100 Tao, Fattah, Huchzermeier (bib134) 2016; 169 Avagyan (bib9) 2011; 13 Sultana, Greenlee (bib131) 2023; 459 Sun, Gao, Hou, Zuo, Chen, Liang, Zhang, Ren, Huang (bib132) 2018; 384 Park, Chang, Jang, Lim, Jung, Kim (bib102) 2021; 21 Yetilmezsoy, Sapci-Zengin (bib156) 2009; 166 Hounslow, Ryall, Marshall (bib42) 1988; 34 Guan, Zeng, Gong, Li, Ji, Zhang, Song, Liu, Wang, Deng (bib37) 2021; 328 Peng, Chai, Tang, Min, Ali, Song, Qi (bib104) 2017; 92 Rabinovich, Rouff (bib112) 2021; 1 Shih, Abarca, de Luna, Huang, Lu (bib126) 2017; 173 Ha, Mahasti, Lu, Huang (bib41) 2022; 303 Liu, Å (bib81) 2013; 13 Li, Zhao, Zhang, Hao, Zhang (bib78) 2022; 221 Lu, Huang, Liang, Li, Yang, Wang, Wang (bib86) 2021; 764 Hutnik, Piotrowski, Wierzbowska, Matynia (bib54) 2011; 46 Maaß, Grundmann, von Bock und Polach (bib90) 2014; 87 Mavhungu, Masindi, Foteinis, Mbaya, Tekere, Kortidis, Chatzisymeon (bib92) 2020; 8 Ye, Chen, Lu, Shi, Lin, Wang (bib153) 2011; 64 Gunay, Karadag, Tosun, Ozturk (bib40) 2008; 156 Le, Vo, Nguyen, Shih, Vu, Liao, Huang (bib70) 2021; 9 Chen, Kong, Wu, Wang, Lin (bib20) 2009; 21 Fu, Kurniawan, Avtar, Xu, Othman (bib33) 2021; 271 Guan, Zeng, Song, Liu, Wang, Wu (bib39) 2021; 293 Barbosa, Peixoto, Meulman, Alves, Pereira (bib11) 2016; 298 Guan, Zeng, Song, Li, Yang, Wang, Liu (bib38) 2021; 9 Sena, Rodriguez Morris, Seib, Hicks (bib123) 2020; 172 Sena, Seib, Noguera, Hicks (bib124) 2021; 280 Zheng, Wan, Zhang, Huang, Yang, Tsang, Wang, Chen, Gao (bib165) 2022; 53 Abbona, Boistelle (bib2) 1985; 20 Wang, Dong, Yang, Toor, Zhang (bib140) 2013; 25 Kataki, West, Clarke, Baruah (bib60) 2016; 107 Wang, Wang, Li, Li, Liu, Wang, Zhao (bib146) 2020; 8 Ma, Rouff (bib89) 2012; 46 Dai, Tang, Zheng, Mackey, Chui, van Loosdrecht, Chen (bib22) 2014; 66 Xiao, Huang, Zhang, Gao, Zhao (bib151) 2018; 337 Karapinar, Hoffmann, Hahn (bib59) 2006; 40 Liu, Wang, Chang (bib83) 2021; 207 Ariyanto, Sen, Ang (bib6) 2014; 25 Rouff, Juarez (bib118) 2014; 48 Chowdhury, Moore, Weatherley, Arora (bib21) 2017; 140 Pepè Sciarria, Zangarini, Tambone, Trombino, Puig, Adani (bib106) 2023; 155 Hug, Udert (bib52) 2013; 47 Peng, Chai, Tang, Min, Song, Duan, Yu (bib105) 2017; 51 Adnan, Mavinic, Koch (bib4) 2003; 2 Liu, Hu, Mu, Zang, Liu (bib82) 2014; 35 Lou, Ye, Ye, Chiang, Chen (bib85) 2018; 201 Wang, Xin, Li, Huang, Liu, Song, Wu, Huang (bib144) 2020; 360 Zangarini, Pepè Sciarria, Tambone, Adani (bib159) 2020; 27 Shaddel, Grini, Andreassen, Østerhus, Ucar (bib125) 2020; 256 Wang, Hao, Guo, van Loosdrecht (bib139) 2010; 159 Lin, Chen, Pan (bib80) 2013; 47 Li, Zhou, Yang, Wen (bib79) 2021; 262 Desmidt, Ghyselbrecht, Monballiu, Verstraete, Meesschaert (bib27) 2012; 65 Hövelmann, Putnis (bib43) 2016; 50 Guan, Liu, Ling, Zeng, Ji, Zhang, Zhang (bib36) 2020; 52 Huang, Xu, Zhang (bib47) 2011; 102 Jaffer, Clark, Pearce, Parsons (bib56) 2002; 36 Doyle, Parsons (bib30) 2002; 36 Qureshi, Lo, Liao (bib111) 2008; 43 Sakthivel, Tilley, Udert (bib122) 2012; 419 Wang, Ye, Zhang, Ye, Chen (bib141) 2018; 70 Huang, Xiao, Zhang, Ding (bib45) 2014; 145 Prywer, Sadowski, Torzewska (bib109) 2015; 15 Tarragó, Puig, Ruscalleda, Balaguer, Colprim (bib135) 2016; 302 Adnan, Dastur, Mavinic, Koch (bib3) 2004; 3 Lee, Yoo, Lim, Kim, Kim, Kim (bib72) 2013; 372 Wang, Sun, Xiang, Zhao, Shi, Su, Tan, Zhang (bib143) 2022; 10 Yousuf, Frawley (bib157) 2018; 18 Zhang, He, Deng, Tsang, Jiang, Becker, Kruse (bib164) 2020; 698 Le Corre, Valsami-Jones, Hobbs, Parsons (bib69) 2009; 39 Huang, Liu, Xiao, Zhang, Gao (bib44) 2016; 4 Cafolla (10.1016/j.jenvman.2023.118383_bib17) 2020; 12 Sakthivel (10.1016/j.jenvman.2023.118383_bib122) 2012; 419 Hutnik (10.1016/j.jenvman.2023.118383_bib54) 2011; 46 Zhang (10.1016/j.jenvman.2023.118383_bib163) 2009; 43 Stratful (10.1016/j.jenvman.2023.118383_bib130) 2001; 35 Avagyan (10.1016/j.jenvman.2023.118383_bib8) 2010; 1 Gunay (10.1016/j.jenvman.2023.118383_bib40) 2008; 156 Huang (10.1016/j.jenvman.2023.118383_bib51) 2016; 127 Sun (10.1016/j.jenvman.2023.118383_bib132) 2018; 384 Chen (10.1016/j.jenvman.2023.118383_bib20) 2009; 21 Adnan (10.1016/j.jenvman.2023.118383_bib3) 2004; 3 Atrens (10.1016/j.jenvman.2023.118383_bib7) 2015; 17 McMurtry (10.1016/j.jenvman.2023.118383_bib95) 2020; 32 Huang (10.1016/j.jenvman.2023.118383_bib45) 2014; 145 Doyle (10.1016/j.jenvman.2023.118383_bib30) 2002; 36 Le Corre (10.1016/j.jenvman.2023.118383_bib68) 2007; 28 Mullin (10.1016/j.jenvman.2023.118383_bib98) 2001 Kim (10.1016/j.jenvman.2023.118383_bib63) 2009; 100 Huang (10.1016/j.jenvman.2023.118383_bib48) 2017; 168 Liu (10.1016/j.jenvman.2023.118383_bib82) 2014; 35 Jiang (10.1016/j.jenvman.2023.118383_bib58) 2010; 23 Avagyan (10.1016/j.jenvman.2023.118383_bib9) 2011; 13 Bayuseno (10.1016/j.jenvman.2023.118383_bib12) 2020; 250 Borgerding (10.1016/j.jenvman.2023.118383_bib13) 1972; 44 Kemacheevakul (10.1016/j.jenvman.2023.118383_bib62) 2014; 35 Ye (10.1016/j.jenvman.2023.118383_bib152) 2021; 188 Ma (10.1016/j.jenvman.2023.118383_bib89) 2012; 46 Jarvie (10.1016/j.jenvman.2023.118383_bib57) 2018; 621 Foletto (10.1016/j.jenvman.2023.118383_bib32) 2013; 51 Thompson (10.1016/j.jenvman.2023.118383_bib136) 2000; 55 Guan (10.1016/j.jenvman.2023.118383_bib37) 2021; 328 Ye (10.1016/j.jenvman.2023.118383_bib155) 2014; 26 Bradford-Hartke (10.1016/j.jenvman.2023.118383_bib15) 2015; 49 Ruecroft (10.1016/j.jenvman.2023.118383_bib120) 2005; 9 Li (10.1016/j.jenvman.2023.118383_bib74) 2020; 272 Fu (10.1016/j.jenvman.2023.118383_bib33) 2021; 271 Peng (10.1016/j.jenvman.2023.118383_bib104) 2017; 92 Kumar (10.1016/j.jenvman.2023.118383_bib66) 2013; 43 Xiao (10.1016/j.jenvman.2023.118383_bib150) 2017; 24 Guan (10.1016/j.jenvman.2023.118383_bib38) 2021; 9 Wang (10.1016/j.jenvman.2023.118383_bib141) 2018; 70 Li (10.1016/j.jenvman.2023.118383_bib75) 2019; 248 Karapinar (10.1016/j.jenvman.2023.118383_bib59) 2006; 40 Li (10.1016/j.jenvman.2023.118383_bib79) 2021; 262 Wang (10.1016/j.jenvman.2023.118383_bib148) 2023; 454 Lee (10.1016/j.jenvman.2023.118383_bib71) 2013; 261 Wang (10.1016/j.jenvman.2023.118383_bib145) 2023; 335 Li (10.1016/j.jenvman.2023.118383_bib76) 2019; 7 Jaffer (10.1016/j.jenvman.2023.118383_bib56) 2002; 36 Maaß (10.1016/j.jenvman.2023.118383_bib90) 2014; 87 Marti (10.1016/j.jenvman.2023.118383_bib91) 2008; 141 Ye (10.1016/j.jenvman.2023.118383_bib154) 2020; 385 Chowdhury (10.1016/j.jenvman.2023.118383_bib21) 2017; 140 Shaddel (10.1016/j.jenvman.2023.118383_bib125) 2020; 256 Zhang (10.1016/j.jenvman.2023.118383_bib164) 2020; 698 Wang (10.1016/j.jenvman.2023.118383_bib146) 2020; 8 Peng (10.1016/j.jenvman.2023.118383_bib105) 2017; 51 Huang (10.1016/j.jenvman.2023.118383_bib46) 2010; 61 Krishnamoorthy (10.1016/j.jenvman.2023.118383_bib65) 2021; 9 Peng (10.1016/j.jenvman.2023.118383_bib103) 2018; 25 Shih (10.1016/j.jenvman.2023.118383_bib126) 2017; 173 Wang (10.1016/j.jenvman.2023.118383_bib142) 2023; 330 Iqbal (10.1016/j.jenvman.2023.118383_bib55) 2008; 29 Lahav (10.1016/j.jenvman.2023.118383_bib67) 2013; 108 Bradford-Hartke (10.1016/j.jenvman.2023.118383_bib16) 2021; 504 Zang (10.1016/j.jenvman.2023.118383_bib158) 2015; 107 Avagyan (10.1016/j.jenvman.2023.118383_bib10) 2018 Prasad (10.1016/j.jenvman.2023.118383_bib107) 2020; 226 Ryu (10.1016/j.jenvman.2023.118383_bib121) 2008; 156 Sena (10.1016/j.jenvman.2023.118383_bib123) 2020; 172 Wang (10.1016/j.jenvman.2023.118383_bib139) 2010; 159 Aguado (10.1016/j.jenvman.2023.118383_bib5) 2019; 672 Le (10.1016/j.jenvman.2023.118383_bib70) 2021; 9 Rouff (10.1016/j.jenvman.2023.118383_bib118) 2014; 48 Ha (10.1016/j.jenvman.2023.118383_bib41) 2022; 303 Wang (10.1016/j.jenvman.2023.118383_bib147) 2016; 39 Prywer (10.1016/j.jenvman.2023.118383_bib109) 2015; 15 Zheng (10.1016/j.jenvman.2023.118383_bib165) 2022; 53 McCabe (10.1016/j.jenvman.2023.118383_bib94) 1929; 21 Lu (10.1016/j.jenvman.2023.118383_bib87) 2020; 276 Yousuf (10.1016/j.jenvman.2023.118383_bib157) 2018; 18 Le Corre (10.1016/j.jenvman.2023.118383_bib69) 2009; 39 Abbona (10.1016/j.jenvman.2023.118383_bib2) 1985; 20 Guan (10.1016/j.jenvman.2023.118383_bib36) 2020; 52 Rabinovich (10.1016/j.jenvman.2023.118383_bib112) 2021; 1 Prywer (10.1016/j.jenvman.2023.118383_bib108) 2013; 375 Tansel (10.1016/j.jenvman.2023.118383_bib133) 2018; 194 Ohlinger (10.1016/j.jenvman.2023.118383_bib100) 1999; 125 Rubio-Rincón (10.1016/j.jenvman.2023.118383_bib119) 2014; 348 Wu (10.1016/j.jenvman.2023.118383_bib149) 2004; 3 Tarragó (10.1016/j.jenvman.2023.118383_bib135) 2016; 302 Ohlinger (10.1016/j.jenvman.2023.118383_bib101) 2000; 126 Bouropoulos (10.1016/j.jenvman.2023.118383_bib14) 2000; 213 Lu (10.1016/j.jenvman.2023.118383_bib86) 2021; 764 Hug (10.1016/j.jenvman.2023.118383_bib52) 2013; 47 Rahman (10.1016/j.jenvman.2023.118383_bib113) 2011; 186 Chen (10.1016/j.jenvman.2023.118383_bib19) 2020; 188 Narducci (10.1016/j.jenvman.2023.118383_bib99) 2011; 11 Qiu (10.1016/j.jenvman.2023.118383_bib110) 2017; 36 Song (10.1016/j.jenvman.2023.118383_bib127) 2021; 336 Rouff (10.1016/j.jenvman.2023.118383_bib117) 2012; 46 Guan (10.1016/j.jenvman.2023.118383_bib35) 2023; 64 Wagterveld (10.1016/j.jenvman.2023.118383_bib138) 2012; 12 Qureshi (10.1016/j.jenvman.2023.118383_bib111) 2008; 43 Ma (10.1016/j.jenvman.2023.118383_bib88) 2020; 172 Wang (10.1016/j.jenvman.2023.118383_bib140) 2013; 25 Ye (10.1016/j.jenvman.2023.118383_bib153) 2011; 64 De (10.1016/j.jenvman.2023.118383_bib26) 2018; 144 Sultana (10.1016/j.jenvman.2023.118383_bib131) 2023; 459 Mbanaso (10.1016/j.jenvman.2023.118383_bib93) 2023; 5 Xiao (10.1016/j.jenvman.2023.118383_bib151) 2018; 337 Adnan (10.1016/j.jenvman.2023.118383_bib4) 2003; 2 Liu (10.1016/j.jenvman.2023.118383_bib81) 2013; 13 Park (10.1016/j.jenvman.2023.118383_bib102) 2021; 21 Huang (10.1016/j.jenvman.2023.118383_bib44) 2016; 4 Lee (10.1016/j.jenvman.2023.118383_bib72) 2013; 372 Barbosa (10.1016/j.jenvman.2023.118383_bib11) 2016; 298 Hövelmann (10.1016/j.jenvman.2023.118383_bib43) 2016; 50 Wang (10.1016/j.jenvman.2023.118383_bib143) 2022; 10 Lin (10.1016/j.jenvman.2023.118383_bib80) 2013; 47 Rahman (10.1016/j.jenvman.2023.118383_bib114) 2014; 7 Huang (10.1016/j.jenvman.2023.118383_bib50) 2017; 317 Kataki (10.1016/j.jenvman.2023.118383_bib60) 2016; 107 Muhmood (10.1016/j.jenvman.2023.118383_bib97) 2018; 635 Zhou (10.1016/j.jenvman.2023.118383_bib166) 2015; 141 Ariyanto (10.1016/j.jenvman.2023.118383_bib6) 2014; 25 Dai (10.1016/j.jenvman.2023.118383_bib23) 2022; 446 Huang (10.1016/j.jenvman.2023.118383_bib49) 2019; 655 Zhang (10.1016/j.jenvman.2023.118383_bib160) 2012; 116 Desmidt (10.1016/j.jenvman.2023.118383_bib27) 2012; 65 Huang (10.1016/j.jenvman.2023.118383_bib47) 2011; 102 Mavhungu (10.1016/j.jenvman.2023.118383_bib92) 2020; 8 Ronteltap (10.1016/j.jenvman.2023.118383_bib116) 2010; 44 Zhang (10.1016/j.jenvman.2023.118383_bib162) 2009; 166 Hutnik (10.1016/j.jenvman.2023.118383_bib53) 2013; 247 Li (10.1016/j.jenvman.2023.118383_bib77) 2022; 351 Wang (10.1016/j.jenvman.2023.118383_bib144) 2020; 360 Fattah (10.1016/j.jenvman.2023.118383_bib31) 2008; 58 Song (10.1016/j.jenvman.2023.118383_bib128) 2014; 101 Devarakonda (10.1016/j.jenvman.2023.118383_bib28) 2004; 4 Davis (10.1016/j.jenvman.2023.118383_bib25) 2015; 198 Darwish (10.1016/j.jenvman.2023.118383_bib24) 2016; 45 Yetilmezsoy (10.1016/j.jenvman.2023.118383_bib156) 2009; 166 Li (10.1016/j.jenvman.2023.118383_bib73) 2019; 648 Zhang (10.1016/j.jenvman.2023.118383_bib161) 2021; 25 Sena (10.1016/j.jenvman.2023.118383_bib124) 2021; 280 Zangarini (10.1016/j.jenvman.2023.118383_bib159) 2020; 27 Di Capua (10.1016/j.jenvman.2023.118383_bib29) 2022; 823 Hounslow (10.1016/j.jenvman.2023.118383_bib42) 1988; 34 Romero-Güiza (10.1016/j.jenvman.2023.118383_bib115) 2015; 270 Pepè Sciarria (10.1016/j.jenvman.2023.118383_bib106) 2023; 155 Li (10.1016/j.jenvman.2023.118383_bib78) 2022; 221 Gu (10.1016/j.jenvman.2023.118383_bib34) 2015; 9 Lou (10.1016/j.jenvman.2023.118383_bib85) 2018; 201 Dai (10.1016/j.jenvman.2023.118383_bib22) 2014; 66 Guan (10.1016/j.jenvman.2023.118383_bib39) 2021; 293 Thorat (10.1016/j.jenvman.2023.118383_bib137) 2016; 30 Carrillo (10.1016/j.jenvman.2023.118383_bib18) 2020; 19 Abbona (10.1016/j.jenvman.2023.118383_bib1) 1979; 46 Koralewska (10.1016/j.jenvman.2023.118383_bib64) 2009; 17 Song (10.1016/j.jenvman.2023.118383_bib129) 2006; 63 Tao (10.1016/j.jenvman.2023.118383_bib134) 2016; 169 Kékedy-Nagy (10.1016/j.jenvman.2023.118383_bib61) 2022; 210 Mihelcic (10.1016/j.jenvman.2023.118383_bib96) 2011; 84 Alan (10.1016/j.jenvman.2023.118383_bib167) 2002 Liu (10.1016/j.jenvman.2023.118383_bib84) 2013; 88 Liu (10.1016/j.jenvman.2023.118383_bib83) 2021; 207 |
| References_xml | – volume: 372 start-page: 129 year: 2013 end-page: 137 ident: bib72 article-title: Development and validation of an equilibrium model for struvite formation with calcium co-precipitation publication-title: J. Cryst. Growth – volume: 7 start-page: 139 year: 2014 end-page: 155 ident: bib114 article-title: Production of slow release crystal fertilizer from wastewaters through struvite crystallization – a review publication-title: Arab. J. Chem. – volume: 46 start-page: 12493 year: 2012 end-page: 12501 ident: bib117 article-title: Sorption of chromium with struvite during phosphorus recovery publication-title: Environ. Sci. Technol. – volume: 43 start-page: 350 year: 2008 end-page: 357 ident: bib111 article-title: Microwave treatment and struvite recovery potential of dairy manure publication-title: J. Environ. Sci. Heal., Part B – volume: 336 year: 2021 ident: bib127 article-title: Supersaturation control of struvite growth by operating pH publication-title: J. Mol. Liq. – volume: 198 start-page: 577 year: 2015 end-page: 585 ident: bib25 article-title: Growth of mono- and mixed cultures of nannochloropsis salina and phaeodactylum tricornutum on struvite as a nutrient source publication-title: Bioresour. Technol. – volume: 61 start-page: 2741 year: 2010 end-page: 2748 ident: bib46 article-title: Recovery of nitrogen from saponification wastewater by struvite precipitation publication-title: Water Sci. Technol. – volume: 823 year: 2022 ident: bib29 article-title: Phosphorous removal and recovery from urban wastewater: current practices and new directions publication-title: Sci. Total Environ. – volume: 328 year: 2021 ident: bib37 article-title: Phosphorus recovery and iron, copper precipitation from swine wastewater via struvite crystallization using various magnesium compounds publication-title: J. Clean. Prod. – volume: 46 start-page: 443 year: 2011 end-page: 449 ident: bib54 article-title: Continuous reaction crystallization of struvite from phosphate(V) solutions containing calcium ions publication-title: Cryst. Res. Technol. – volume: 24 start-page: 26901 year: 2017 end-page: 26909 ident: bib150 article-title: Recovery of phosphate from the supernatant of activated sludge pretreated by microwave irradiation through chemical precipitation publication-title: Environ. Sci. Pollut. Res. – volume: 276 year: 2020 ident: bib87 article-title: The incorporation of Pb2+ during struvite precipitation: quantitative, morphological and structural analysis publication-title: J. Environ. Manag. – volume: 15 start-page: 1446 year: 2015 end-page: 1451 ident: bib109 article-title: Aggregation of struvite, carbonate apatite, and proteus mirabilis as a key factor of infectious urinary stone formation publication-title: Cryst. Growth Des. – volume: 17 start-page: 330 year: 2009 end-page: 339 ident: bib64 article-title: Kinetics of reaction-crystallization of struvite in the continuous draft tube magma type crystallizers—influence of different internal hydrodynamics publication-title: Chin. J. Chem. Eng. – volume: 39 start-page: 433 year: 2009 end-page: 477 ident: bib69 article-title: Phosphorus recovery from wastewater by struvite crystallization: a review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 52 start-page: 463 year: 2020 end-page: 471 ident: bib36 article-title: Effect of magnetic field on sodium arsenate metastable zone width and crystal nucleation kinetics for crystallization publication-title: Int. J. Chem. Kinet. – volume: 9 year: 2021 ident: bib65 article-title: Engineering principles and process designs for phosphorus recovery as struvite: a comprehensive review publication-title: J. Environ. Chem. Eng. – volume: 70 start-page: 144 year: 2018 end-page: 153 ident: bib141 article-title: Selection of cost-effective magnesium sources for fluidized struvite crystallization publication-title: J. Environ. Sci. (China) – volume: 25 start-page: 1496 year: 2021 end-page: 1511 ident: bib161 article-title: Progress and opportunities for utilizing seeding techniques in crystallization processes publication-title: Org. Process Res. Dev. – volume: 672 start-page: 88 year: 2019 end-page: 96 ident: bib5 article-title: P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources publication-title: Sci. Total Environ. – volume: 272 year: 2020 ident: bib74 article-title: Minimizing heavy metals in recovered struvite from swine wastewater after anaerobic biochemical treatment: reaction mechanisms and pilot test publication-title: J. Clean. Prod. – volume: 207 year: 2021 ident: bib83 article-title: A review on the incorporation and potential mechanism of heavy metals on the recovered struvite from wastewater publication-title: Water Res. – volume: 351 year: 2022 ident: bib77 article-title: Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: multivariate and multiscale investigations publication-title: Bioresour. Technol. – volume: 303 year: 2022 ident: bib41 article-title: Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology publication-title: Sep. Purif. Technol. – volume: 102 start-page: 2523 year: 2011 end-page: 2528 ident: bib47 article-title: Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology publication-title: Bioresour. Technol. – volume: 188 year: 2021 ident: bib152 article-title: Dissolving the high-cost with acidity: a happy encounter between fluidized struvite crystallization and wastewater from activated carbon manufacture publication-title: Water Res. – volume: 101 start-page: 41 year: 2014 end-page: 48 ident: bib128 article-title: Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater publication-title: Chemosphere – volume: 30 start-page: 35 year: 2016 end-page: 43 ident: bib137 article-title: Ultrasound-assisted modulation of concomitant polymorphism of curcumin during liquid antisolvent precipitation publication-title: Ultrason. Sonochem. – volume: 11 start-page: 1742 year: 2011 end-page: 1749 ident: bib99 article-title: An assessment of the use of ultrasound in the particle engineering of micrometer-scale adipic acid crystals publication-title: Cryst. Growth Des. – volume: 40 start-page: 1210 year: 2006 end-page: 1216 ident: bib59 article-title: P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral publication-title: Water Res. – volume: 25 start-page: 2435 year: 2013 end-page: 2442 ident: bib140 article-title: Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China publication-title: J. Environ. Sci. (China) – volume: 384 start-page: 160 year: 2018 end-page: 164 ident: bib132 article-title: Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell publication-title: J. Power Sources – volume: 65 start-page: 1954 year: 2012 end-page: 1962 ident: bib27 article-title: Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale publication-title: Water Sci. Technol. – volume: 271 year: 2021 ident: bib33 article-title: Recovering heavy metals from electroplating wastewater and their conversion into Zn2Cr-layered double hydroxide (LDH) for pyrophosphate removal from industrial wastewater publication-title: Chemosphere – volume: 12 start-page: 14504 year: 2020 end-page: 14513 ident: bib17 article-title: Impact of water on the lubricating properties of hexadecane at the nanoscale publication-title: Nanoscale – volume: 126 start-page: 361 year: 2000 end-page: 368 ident: bib101 article-title: Postdigestion struvite precipitation using a fluidized bed reactor publication-title: J. Environ. Eng. – volume: 250 year: 2020 ident: bib12 article-title: Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions publication-title: Chemosphere – volume: 159 start-page: 280 year: 2010 end-page: 283 ident: bib139 article-title: Formation of pure struvite at neutral pH by electrochemical deposition publication-title: Chem. Eng. J. – volume: 1 start-page: 183 year: 2010 ident: bib8 article-title: New design & build biological system through the use of microalgae addressed to sustainable development publication-title: J. Environ. Prot. Ecol. – volume: 504 year: 2021 ident: bib16 article-title: Factors affecting phosphorus recovery as struvite: effects of alternative magnesium sources publication-title: Desalination – volume: 621 start-page: 849 year: 2018 end-page: 862 ident: bib57 article-title: Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: a national perspective on eutrophication publication-title: Sci. Total Environ. – volume: 36 start-page: 123 year: 2017 end-page: 128 ident: bib110 article-title: Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate publication-title: Ultrason. Sonochem. – volume: 648 start-page: 1244 year: 2019 end-page: 1256 ident: bib73 article-title: Phosphorous recovery through struvite crystallization: challenges for future design publication-title: Sci. Total Environ. – year: 2018 ident: bib10 publication-title: Algae to Energy and Sustainable Development. Technologies, Resources, Economics and System analyses. New Design of Global Environmental Policy and Live Conserve Industry – volume: 58 start-page: 957 year: 2008 end-page: 962 ident: bib31 article-title: Reducing operating costs for struvite formation with a carbon dioxide stripper publication-title: Water Sci. Technol. – volume: 28 start-page: 1245 year: 2007 end-page: 1256 ident: bib68 article-title: Impact of reactor operation on success of struvite precipitation from synthetic liquors publication-title: Environ. Technol. – volume: 35 start-page: 3011 year: 2014 end-page: 3019 ident: bib62 article-title: Phosphorus recovery: minimization of amount of pharmaceuticals and improvement of purity in struvite recovered from hydrolysed urine publication-title: Environ. Technol. – volume: 293 year: 2021 ident: bib39 article-title: Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process publication-title: J. Environ. Manag. – volume: 459 year: 2023 ident: bib131 article-title: The implications of pulsating anode potential on the electrochemical recovery of phosphate as magnesium ammonium phosphate hexahydrate (struvite) publication-title: Chem. Eng. J. – volume: 635 start-page: 1 year: 2018 end-page: 9 ident: bib97 article-title: Nutrient recovery from anaerobically digested chicken slurry via struvite: performance optimization and interactions with heavy metals and pathogens publication-title: Sci. Total Environ. – volume: 27 start-page: 5730 year: 2020 end-page: 5743 ident: bib159 article-title: Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies publication-title: Environ. Sci. Pollut. Res. – volume: 50 start-page: 13032 year: 2016 end-page: 13041 ident: bib43 article-title: In situ nanoscale imaging of struvite formation during the dissolution of natural brucite: implications for phosphorus recovery from wastewaters publication-title: Environ. Sci. Technol. – volume: 25 start-page: 1033 year: 2018 end-page: 1042 ident: bib103 article-title: Thermodynamics, kinetics and mechanism analysis of Cu(II) adsorption by in-situ synthesized struvite crystal publication-title: J. Cent. South Univ. – volume: 35 start-page: 2781 year: 2014 end-page: 2787 ident: bib82 article-title: Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor publication-title: Environ. Technol. – volume: 39 start-page: 29 year: 2016 end-page: 36 ident: bib147 article-title: Effect of organic matter on phosphorus recovery from sewage sludge subjected to microwave hybrid pretreatment publication-title: J. Environ. Sci. (China) – volume: 7 start-page: 2035 year: 2019 end-page: 2043 ident: bib76 article-title: Controlled synthesis of struvite nanowires in synthetic wastewater publication-title: ACS Sustain. Chem. Eng. – volume: 92 start-page: 325 year: 2017 end-page: 333 ident: bib104 article-title: Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation: a comparative research publication-title: J. Chem. Technol. Biotechnol. – volume: 169 start-page: 46 year: 2016 end-page: 57 ident: bib134 article-title: Struvite recovery from anaerobically digested dairy manure: a review of application potential and hindrances publication-title: J. Environ. Manag. – volume: 46 start-page: 8791 year: 2012 end-page: 8798 ident: bib89 article-title: Influence of pH and oxidation state on the interaction of arsenic with struvite during mineralformation publication-title: Environ. Sci. Technol. – volume: 2 start-page: 315 year: 2003 end-page: 324 ident: bib4 article-title: Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility publication-title: J. Environ. Eng. Sci. – volume: 698 year: 2020 ident: bib164 article-title: Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer publication-title: Sci. Total Environ. – volume: 17 start-page: 400 year: 2015 end-page: 453 ident: bib7 article-title: Review of recent developments in the field of magnesium corrosion publication-title: Adv. Eng. Mater. – volume: 64 start-page: 334 year: 2011 end-page: 340 ident: bib153 article-title: Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source publication-title: Water Sci. Technol. – volume: 35 start-page: 4191 year: 2001 end-page: 4199 ident: bib130 article-title: Conditions influencing the precipitation of magnesium ammonium phosphate publication-title: Water Res. – volume: 226 year: 2020 ident: bib107 article-title: Sonocrystallization: monitoring and controlling crystallization using ultrasound publication-title: Chem. Eng. Sci. – volume: 64 start-page: 138 year: 2023 end-page: 164 ident: bib35 article-title: Stimuli responsive metal organic framework materials towards advanced smart application publication-title: Mater. Today – volume: 4 start-page: 687 year: 2004 end-page: 690 ident: bib28 article-title: Impact of ultrasonic energy on the flow crystallization of dextrose monohydrate publication-title: Cryst. Growth Des. – volume: 51 start-page: 2776 year: 2013 end-page: 2780 ident: bib32 article-title: Organic pollutants removal and recovery from animal wastewater by mesoporous struvite precipitation publication-title: Desalination Water Treat. – volume: 655 start-page: 211 year: 2019 end-page: 219 ident: bib49 article-title: Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources publication-title: Sci. Total Environ. – volume: 330 year: 2023 ident: bib142 article-title: Applying struvite as a N-fertilizer to mitigate N2O emissions in agriculture: feasibility and mechanism publication-title: J. Environ. Manag. – volume: 5 year: 2023 ident: bib93 article-title: Investigation of impact of slow-release fertilizer and struvite on biodegradation rate of diesel-contaminated soils publication-title: Curr. Opin. Environ. Sustain. – volume: 385 year: 2020 ident: bib154 article-title: Investigation of tetracyclines transport in the presence of dissolved organic matters during struvite recovery from swine wastewater publication-title: Chem. Eng. J. – volume: 13 start-page: 4385 year: 2013 end-page: 4394 ident: bib81 article-title: Influence of agitation and fluid shear on primary nucleation in solution publication-title: Cryst. Growth Des. – volume: 26 start-page: 991 year: 2014 end-page: 1000 ident: bib155 article-title: Phosphorus recovery from wastewater by struvite crystallization: property of aggregates publication-title: J. Environ. Sci. (China) – volume: 247 start-page: 3635 year: 2013 end-page: 3643 ident: bib53 article-title: Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process publication-title: Water Res. – volume: 84 start-page: 832 year: 2011 end-page: 839 ident: bib96 article-title: Global potential of phosphorus recovery from human urine and feces publication-title: Chemosphere – volume: 63 start-page: 236 year: 2006 end-page: 243 ident: bib129 article-title: Calcite-seeded crystallization of calcium phosphate for phosphorus recovery publication-title: Chemosphere – volume: 360 year: 2020 ident: bib144 article-title: Effect of organics on Cu and Cr in recovered struvite from synthetic swine wastewater publication-title: J. Clean. Prod. – volume: 348 start-page: 49 year: 2014 end-page: 56 ident: bib119 article-title: Seawater for phosphorus recovery from urine publication-title: Desalination – volume: 419 start-page: 68 year: 2012 end-page: 75 ident: bib122 article-title: Wood ash as a magnesium source for phosphorus recovery from source-separated urine publication-title: Sci. Total Environ. – volume: 20 start-page: 133 year: 1985 end-page: 140 ident: bib2 article-title: Nucleation of struvite (MgNH4PO4• 6H2O) single crystals and aggregates publication-title: Cryst. Res. Technol. – year: 2002 ident: bib167 publication-title: Crystallization process systems – volume: 141 start-page: 67 year: 2008 end-page: 74 ident: bib91 article-title: Struvite precipitation assessment in anaerobic digestion processes publication-title: Chem. Eng. J. – volume: 166 start-page: 260 year: 2009 end-page: 269 ident: bib156 article-title: Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer publication-title: J. Hazard Mater. – volume: 156 start-page: 163 year: 2008 end-page: 169 ident: bib121 article-title: Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater publication-title: J. Hazard Mater. – volume: 1 start-page: 910 year: 2021 end-page: 918 ident: bib112 article-title: Effect of phenolic organics on the precipitation of struvite from simulated dairy wastewater publication-title: ACS ES&T Water – volume: 127 start-page: 302 year: 2016 end-page: 310 ident: bib51 article-title: Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology publication-title: J. Clean. Prod. – volume: 66 start-page: 75 year: 2014 end-page: 84 ident: bib22 article-title: An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR) publication-title: Water Res. – volume: 125 start-page: 730 year: 1999 end-page: 737 ident: bib100 article-title: Kinetics effects on preferential struvite accumulation in wastewater publication-title: J. Environ. Eng. – volume: 337 start-page: 265 year: 2018 end-page: 274 ident: bib151 article-title: Utilizing the supernatant of waste sulfuric acid after dolomite neutralization to recover nutrients from swine wastewater publication-title: Chem. Eng. J. – volume: 36 start-page: 3925 year: 2002 end-page: 3940 ident: bib30 article-title: Struvite formation, control and recovery publication-title: Water Res. – volume: 173 start-page: 466 year: 2017 end-page: 473 ident: bib126 article-title: Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions publication-title: Chemosphere – volume: 107 start-page: 676 year: 2015 end-page: 692 ident: bib158 article-title: Towards more accurate life cycle assessment of biological wastewater treatment plants: a review publication-title: J. Clean. Prod. – volume: 116 start-page: 386 year: 2012 end-page: 395 ident: bib160 article-title: Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants publication-title: Bioresour. Technol. – volume: 4 start-page: 3688 year: 2016 end-page: 3696 ident: bib44 article-title: Highly efficient recovery of ammonium nitrogen from coking wastewater by coupling struvite precipitation and microwave radiation technology publication-title: ACS Sustain. Chem. Eng. – volume: 317 start-page: 640 year: 2017 end-page: 650 ident: bib50 article-title: A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization publication-title: Chem. Eng. J. – volume: 46 start-page: 339 year: 1979 end-page: 354 ident: bib1 article-title: Growth morphology and crystal habit of struvite crystals (MgNH4PO4 · 6 H2O) publication-title: J. Cryst. Growth – volume: 34 start-page: 1821 year: 1988 end-page: 1832 ident: bib42 article-title: A discretized population balance for nucleation, growth, and aggregation publication-title: AIChE J. – year: 2001 ident: bib98 article-title: Crystallization – volume: 108 start-page: 103 year: 2013 end-page: 110 ident: bib67 article-title: Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(II) source publication-title: Sep. Purif. Technol. – volume: 213 start-page: 381 year: 2000 end-page: 388 ident: bib14 article-title: Spontaneous precipitation of struvite from aqueous solutions publication-title: J. Cryst. Growth – volume: 32 start-page: 4358 year: 2020 end-page: 4368 ident: bib95 article-title: Continuous nucleation and size dependent growth kinetics of indium phosphide nanocrystals publication-title: Chem. Mater. – volume: 43 start-page: 59 year: 2013 end-page: 70 ident: bib66 article-title: Turning hazardous waste into value-added products: production and characterization of struvite from ammoniacal waste with new approaches publication-title: J. Clean. Prod. – volume: 201 start-page: 678 year: 2018 end-page: 685 ident: bib85 article-title: Occurrence and ecological risks of veterinary antibiotics in struvite recovered from swine wastewater publication-title: J. Clean. Prod. – volume: 51 start-page: 222 year: 2017 end-page: 233 ident: bib105 article-title: Study on the mechanism of copper–ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal publication-title: J. Environ. Sci. (China) – volume: 270 start-page: 542 year: 2015 end-page: 548 ident: bib115 article-title: Feasibility of coupling anaerobic digestion and struvite precipitation in the same reactor: evaluation of different magnesium sources publication-title: Chem. Eng. J. – volume: 454 year: 2023 ident: bib148 article-title: Concurrent recovery of ammonia and phosphate by an electrochemical nutrients recovery system with authigenic acid and base publication-title: Chem. Eng. J. – volume: 43 start-page: 5209 year: 2009 end-page: 5215 ident: bib163 article-title: Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology publication-title: Water Res. – volume: 9 start-page: 3127 year: 2015 end-page: 3133 ident: bib34 article-title: Phosphorus recovery from sludge fermentation broth by cow-bone powder-seeded crystallization of calcium phosphate publication-title: Chinese J. Environ. Eng. – volume: 145 start-page: 191 year: 2014 end-page: 198 ident: bib45 article-title: Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources publication-title: J. Environ. Manag. – volume: 155 start-page: 252 year: 2023 end-page: 259 ident: bib106 article-title: Phosphorus recovery from high solid content liquid fraction of digestate using seawater bittern as the magnesium source publication-title: Waste Manage. (Tucson, Ariz.) – volume: 335 year: 2023 ident: bib145 article-title: Competitive adsorption of heavy metals between Ca–P and Mg–P products from wastewater during struvite crystallization publication-title: J. Environ. Manag. – volume: 25 start-page: 682 year: 2014 end-page: 694 ident: bib6 article-title: The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation publication-title: Adv. Powder Technol. – volume: 446 year: 2022 ident: bib23 article-title: Preparation and application of MgO-loaded tobermorite to simultaneously remove nitrogen and phosphorus from wastewater publication-title: Chem. Eng. J. – volume: 9 start-page: 923 year: 2005 end-page: 932 ident: bib120 article-title: Sonocrystallization: the use of ultrasound for improved industrial crystallization publication-title: Org. Process Res. Dev. – volume: 298 start-page: 146 year: 2016 end-page: 153 ident: bib11 article-title: A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources publication-title: Chem. Eng. J. – volume: 256 year: 2020 ident: bib125 article-title: Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization publication-title: Chemosphere – volume: 141 start-page: 94 year: 2015 end-page: 99 ident: bib166 article-title: Effect of humic substances on phosphorus removal by struvite precipitation publication-title: Chemosphere – volume: 48 start-page: 6342 year: 2014 end-page: 6349 ident: bib118 article-title: Zinc interaction with struvite during and after mineral formation publication-title: Environ. Sci. Technol. – volume: 100 start-page: 74 year: 2009 end-page: 78 ident: bib63 article-title: Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater publication-title: Bioresour. Technol. – volume: 168 start-page: 338 year: 2017 end-page: 345 ident: bib48 article-title: Phosphate recovery from swine wastewater using plant ash in chemical crystallization publication-title: J. Clean. Prod. – volume: 47 start-page: 289 year: 2013 end-page: 299 ident: bib52 article-title: Struvite precipitation from urine with electrochemical magnesium dosage publication-title: Water Res. – volume: 12 start-page: 4403 year: 2012 end-page: 4410 ident: bib138 article-title: Effect of ultrasonic treatment on early growth during CaCO3 precipitation publication-title: Cryst. Growth Des. – volume: 88 start-page: 181 year: 2013 end-page: 189 ident: bib84 article-title: Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review publication-title: J. Chem. Technol. Biotechnol. – volume: 44 start-page: 813 year: 1972 end-page: 819 ident: bib13 article-title: Phosphate deposits in digestion systems publication-title: J. Water Pollut. Control Fed. – volume: 87 start-page: 126 year: 2014 end-page: 136 ident: bib90 article-title: Added-value from innovative value chains by establishing nutrient cycles via struvite publication-title: Resour. Conserv. Recycl. – volume: 10 year: 2022 ident: bib143 article-title: Biochar-seeded struvite precipitation for simultaneous nutrient recovery and chemical oxygen demand removal in leachate: from laboratory to pilot scale publication-title: Front. Chem. – volume: 764 year: 2021 ident: bib86 article-title: Co-precipitation of Cu and Zn in precipitation of struvite publication-title: Sci. Total Environ. – volume: 172 year: 2020 ident: bib88 article-title: Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C publication-title: Water Res. – volume: 8 year: 2020 ident: bib146 article-title: Adsorption and precipitation behaviors of zinc, copper and tetracycline with struvite products obtained by phosphorus recovery from swine wastewater publication-title: J. Environ. Chem. Eng. – volume: 221 year: 2022 ident: bib78 article-title: Struvite crystallization by using active serpentine: an innovative application for the economical and efficient recovery of phosphorus from black water publication-title: Water Res. – volume: 29 start-page: 1157 year: 2008 end-page: 1167 ident: bib55 article-title: An Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer publication-title: Environ. Technol. – volume: 261 start-page: 29 year: 2013 end-page: 37 ident: bib71 article-title: Enhancement of struvite purity by re-dissolution of calcium ions in synthetic wastewaters publication-title: J. Hazard Mater. – volume: 45 start-page: 261 year: 2016 end-page: 274 ident: bib24 article-title: Ammonium-nitrogen recovery from wastewater by struvite crystallization technology publication-title: Separ. Purif. Rev. – volume: 210 year: 2022 ident: bib61 article-title: Electrochemical nutrient removal from natural wastewater sources and its impact on water quality publication-title: Water Res. – volume: 166 start-page: 911 year: 2009 end-page: 915 ident: bib162 article-title: Pretreatment of ammonium removal from landfill leachate by chemical precipitation publication-title: J. Hazard Mater. – volume: 13 start-page: 431 year: 2011 end-page: 445 ident: bib9 article-title: Water global recourse management through the use of microalgae addressed to sustainable development publication-title: Clean Technol. Environ. Policy – volume: 49 start-page: 8611 year: 2015 end-page: 8622 ident: bib15 article-title: Environmental benefits and burdens of phosphorus recovery from municipal wastewater publication-title: Environ. Sci. Technol. – volume: 194 start-page: 504 year: 2018 end-page: 514 ident: bib133 article-title: Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia-phosphate interactions publication-title: Chemosphere – volume: 55 start-page: 3085 year: 2000 end-page: 3090 ident: bib136 article-title: The rate enhancing effect of ultrasound by inducing supersaturation in a solid–liquid system publication-title: Chem. Eng. Sci. – volume: 19 start-page: 389 year: 2020 end-page: 418 ident: bib18 article-title: Characterization and recovery of phosphorus from wastewater by combined technologies publication-title: Rev. Environ. Sci. Biotechnol. – volume: 53 start-page: 1 year: 2022 end-page: 25 ident: bib165 article-title: Recovery of phosphorus from wastewater: a review based on current phosphorous removal technologies publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 156 start-page: 619 year: 2008 end-page: 623 ident: bib40 article-title: Use of magnesit as a magnesium source for ammonium removal from leachate publication-title: J. Hazard Mater. – volume: 36 start-page: 1834 year: 2002 end-page: 1842 ident: bib56 article-title: Potential phosphorus recovery by struvite formation publication-title: Water Res. – volume: 172 year: 2020 ident: bib123 article-title: An exploration of economic valuation of phosphorus in the environment and its implications in decision making for resource recovery publication-title: Water Res. – volume: 188 year: 2020 ident: bib19 article-title: Thermal decomposition of struvite pellet by microwave radiation and recycling of its product to remove ammonium and phosphate from urine publication-title: Environ. Res. – volume: 144 start-page: 76 year: 2018 end-page: 86 ident: bib26 article-title: Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification publication-title: Water Res. – volume: 107 start-page: 142 year: 2016 end-page: 156 ident: bib60 article-title: Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential publication-title: Resour. Conserv. Recycl. – volume: 21 year: 2021 ident: bib102 article-title: Prediction of adequate pH and Mg2+ dosage using an empirical MgO solubility model for struvite crystallization publication-title: Environ. Technol. Innov. – volume: 23 start-page: 49 year: 2010 end-page: 54 ident: bib58 article-title: Preliminary study of calcium silicate hydrate (tobermorite) as crystal material to recovery phosphate from wastewater publication-title: Desalination Water Treat. – volume: 47 start-page: 12728 year: 2013 end-page: 12735 ident: bib80 article-title: Arsenic incorporation in synthetic struvite (NH4MgPO4·6H2O): a synchrotron XAS and single-crystal EPR study publication-title: Environ. Sci. Technol. – volume: 9 year: 2021 ident: bib38 article-title: Highly efficient phosphorus and potassium recovery from urine via crystallization process in a fluidized bed reactor system publication-title: J. Environ. Chem. Eng. – volume: 375 start-page: 108 year: 2013 end-page: 114 ident: bib108 article-title: Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite publication-title: J. Cryst. Growth – volume: 44 start-page: 2038 year: 2010 end-page: 2046 ident: bib116 article-title: Struvite precipitation from urine – influencing factors on particle size publication-title: Water Res. – volume: 302 start-page: 819 year: 2016 end-page: 827 ident: bib135 article-title: Controlling struvite particles' size using the up-flow velocity publication-title: Chem. Eng. J. – volume: 3 start-page: 21 year: 2004 end-page: 29 ident: bib149 article-title: Enhancing struvite crystallization from anaerobic supernatant publication-title: J. Environ. Eng. Sci. – volume: 140 start-page: 945 year: 2017 end-page: 963 ident: bib21 article-title: Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation publication-title: J. Clean. Prod. – volume: 18 start-page: 6843 year: 2018 end-page: 6852 ident: bib157 article-title: Experimental evaluation of fluid shear stress impact on secondary nucleation in a solution crystallization of paracetamol publication-title: Cryst. Growth Des. – volume: 3 start-page: 195 year: 2004 end-page: 202 ident: bib3 article-title: Preliminary investigation into factors affecting controlled struvite crystallization at the bench scale publication-title: J. Environ. Eng. Sci. – volume: 248 year: 2019 ident: bib75 article-title: Phosphorus recovery through struvite crystallisation: recent developments in the understanding of operational factors publication-title: J. Environ. Manag. – volume: 9 year: 2021 ident: bib70 article-title: Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process publication-title: J. Environ. Chem. Eng. – volume: 8 year: 2020 ident: bib92 article-title: Advocating circular economy in wastewater treatment: struvite formation and drinking water reclamation from real municipal effluents publication-title: J. Environ. Chem. Eng. – volume: 21 start-page: 30 year: 1929 end-page: 33 ident: bib94 article-title: Crystal growth in aqueous solutions1: I—theory publication-title: Ind. Eng. Chem. – volume: 262 year: 2021 ident: bib79 article-title: Recovery phosphate and ammonium from aqueous solution by the process of electrochemically decomposing dolomite publication-title: Chemosphere – volume: 186 start-page: 2026 year: 2011 end-page: 2030 ident: bib113 article-title: Recovery of struvite from animal wastewater and its nutrient leaching loss in soil publication-title: J. Hazard Mater. – volume: 280 year: 2021 ident: bib124 article-title: Environmental impacts of phosphorus recovery through struvite precipitation in wastewater treatment publication-title: J. Clean. Prod. – volume: 21 start-page: 575 year: 2009 end-page: 580 ident: bib20 article-title: Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal publication-title: J. Environ. Sci. (China) – volume: 303 year: 2022 ident: 10.1016/j.jenvman.2023.118383_bib41 article-title: Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.122192 – volume: 84 start-page: 832 year: 2011 ident: 10.1016/j.jenvman.2023.118383_bib96 article-title: Global potential of phosphorus recovery from human urine and feces publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.02.046 – volume: 107 start-page: 676 year: 2015 ident: 10.1016/j.jenvman.2023.118383_bib158 article-title: Towards more accurate life cycle assessment of biological wastewater treatment plants: a review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.05.060 – volume: 20 start-page: 133 year: 1985 ident: 10.1016/j.jenvman.2023.118383_bib2 article-title: Nucleation of struvite (MgNH4PO4• 6H2O) single crystals and aggregates publication-title: Cryst. Res. Technol. doi: 10.1002/crat.2170200204 – volume: 32 start-page: 4358 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib95 article-title: Continuous nucleation and size dependent growth kinetics of indium phosphide nanocrystals publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c01561 – volume: 504 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib16 article-title: Factors affecting phosphorus recovery as struvite: effects of alternative magnesium sources publication-title: Desalination doi: 10.1016/j.desal.2021.114949 – volume: 141 start-page: 94 year: 2015 ident: 10.1016/j.jenvman.2023.118383_bib166 article-title: Effect of humic substances on phosphorus removal by struvite precipitation publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.089 – volume: 672 start-page: 88 year: 2019 ident: 10.1016/j.jenvman.2023.118383_bib5 article-title: P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.485 – volume: 271 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib33 article-title: Recovering heavy metals from electroplating wastewater and their conversion into Zn2Cr-layered double hydroxide (LDH) for pyrophosphate removal from industrial wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129861 – volume: 25 start-page: 1496 issue: 7 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib161 article-title: Progress and opportunities for utilizing seeding techniques in crystallization processes publication-title: Org. Process Res. Dev. doi: 10.1021/acs.oprd.1c00103 – volume: 46 start-page: 339 year: 1979 ident: 10.1016/j.jenvman.2023.118383_bib1 article-title: Growth morphology and crystal habit of struvite crystals (MgNH4PO4 · 6 H2O) publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(79)90082-4 – volume: 8 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib92 article-title: Advocating circular economy in wastewater treatment: struvite formation and drinking water reclamation from real municipal effluents publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.103957 – year: 2002 ident: 10.1016/j.jenvman.2023.118383_bib167 – volume: 459 year: 2023 ident: 10.1016/j.jenvman.2023.118383_bib131 article-title: The implications of pulsating anode potential on the electrochemical recovery of phosphate as magnesium ammonium phosphate hexahydrate (struvite) publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.141522 – volume: 261 start-page: 29 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib71 article-title: Enhancement of struvite purity by re-dissolution of calcium ions in synthetic wastewaters publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2013.06.072 – volume: 18 start-page: 6843 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib157 article-title: Experimental evaluation of fluid shear stress impact on secondary nucleation in a solution crystallization of paracetamol publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b01074 – volume: 44 start-page: 2038 year: 2010 ident: 10.1016/j.jenvman.2023.118383_bib116 article-title: Struvite precipitation from urine – influencing factors on particle size publication-title: Water Res. doi: 10.1016/j.watres.2009.12.015 – volume: 21 start-page: 575 year: 2009 ident: 10.1016/j.jenvman.2023.118383_bib20 article-title: Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal publication-title: J. Environ. Sci. (China) doi: 10.1016/S1001-0742(08)62310-4 – volume: 188 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib152 article-title: Dissolving the high-cost with acidity: a happy encounter between fluidized struvite crystallization and wastewater from activated carbon manufacture publication-title: Water Res. doi: 10.1016/j.watres.2020.116521 – volume: 15 start-page: 1446 year: 2015 ident: 10.1016/j.jenvman.2023.118383_bib109 article-title: Aggregation of struvite, carbonate apatite, and proteus mirabilis as a key factor of infectious urinary stone formation publication-title: Cryst. Growth Des. doi: 10.1021/cg5018032 – volume: 21 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib102 article-title: Prediction of adequate pH and Mg2+ dosage using an empirical MgO solubility model for struvite crystallization publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2020.101347 – volume: 7 start-page: 139 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib114 article-title: Production of slow release crystal fertilizer from wastewaters through struvite crystallization – a review publication-title: Arab. J. Chem. doi: 10.1016/j.arabjc.2013.10.007 – volume: 337 start-page: 265 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib151 article-title: Utilizing the supernatant of waste sulfuric acid after dolomite neutralization to recover nutrients from swine wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.12.097 – volume: 3 start-page: 21 year: 2004 ident: 10.1016/j.jenvman.2023.118383_bib149 article-title: Enhancing struvite crystallization from anaerobic supernatant publication-title: J. Environ. Eng. Sci. doi: 10.1139/s03-050 – volume: 4 start-page: 687 year: 2004 ident: 10.1016/j.jenvman.2023.118383_bib28 article-title: Impact of ultrasonic energy on the flow crystallization of dextrose monohydrate publication-title: Cryst. Growth Des. doi: 10.1021/cg034173m – volume: 27 start-page: 5730 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib159 article-title: Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-019-07542-4 – volume: 11 start-page: 1742 year: 2011 ident: 10.1016/j.jenvman.2023.118383_bib99 article-title: An assessment of the use of ultrasound in the particle engineering of micrometer-scale adipic acid crystals publication-title: Cryst. Growth Des. doi: 10.1021/cg1016593 – volume: 226 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib107 article-title: Sonocrystallization: monitoring and controlling crystallization using ultrasound publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2020.115911 – volume: 336 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib127 article-title: Supersaturation control of struvite growth by operating pH publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.116293 – volume: 272 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib74 article-title: Minimizing heavy metals in recovered struvite from swine wastewater after anaerobic biochemical treatment: reaction mechanisms and pilot test publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.122649 – volume: 34 start-page: 1821 year: 1988 ident: 10.1016/j.jenvman.2023.118383_bib42 article-title: A discretized population balance for nucleation, growth, and aggregation publication-title: AIChE J. doi: 10.1002/aic.690341108 – volume: 317 start-page: 640 year: 2017 ident: 10.1016/j.jenvman.2023.118383_bib50 article-title: A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.02.112 – volume: 43 start-page: 350 year: 2008 ident: 10.1016/j.jenvman.2023.118383_bib111 article-title: Microwave treatment and struvite recovery potential of dairy manure publication-title: J. Environ. Sci. Heal., Part B doi: 10.1080/03601230801941709 – volume: 298 start-page: 146 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib11 article-title: A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.03.148 – volume: 302 start-page: 819 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib135 article-title: Controlling struvite particles' size using the up-flow velocity publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.06.036 – volume: 655 start-page: 211 year: 2019 ident: 10.1016/j.jenvman.2023.118383_bib49 article-title: Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.259 – volume: 276 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib87 article-title: The incorporation of Pb2+ during struvite precipitation: quantitative, morphological and structural analysis publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.111359 – volume: 51 start-page: 222 year: 2017 ident: 10.1016/j.jenvman.2023.118383_bib105 article-title: Study on the mechanism of copper–ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2016.06.020 – volume: 166 start-page: 911 year: 2009 ident: 10.1016/j.jenvman.2023.118383_bib162 article-title: Pretreatment of ammonium removal from landfill leachate by chemical precipitation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2008.11.101 – volume: 50 start-page: 13032 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib43 article-title: In situ nanoscale imaging of struvite formation during the dissolution of natural brucite: implications for phosphorus recovery from wastewaters publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04623 – volume: 648 start-page: 1244 year: 2019 ident: 10.1016/j.jenvman.2023.118383_bib73 article-title: Phosphorous recovery through struvite crystallization: challenges for future design publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.166 – volume: 30 start-page: 35 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib137 article-title: Ultrasound-assisted modulation of concomitant polymorphism of curcumin during liquid antisolvent precipitation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2015.11.025 – volume: 5 year: 2023 ident: 10.1016/j.jenvman.2023.118383_bib93 article-title: Investigation of impact of slow-release fertilizer and struvite on biodegradation rate of diesel-contaminated soils publication-title: Curr. Opin. Environ. Sustain. – volume: 55 start-page: 3085 year: 2000 ident: 10.1016/j.jenvman.2023.118383_bib136 article-title: The rate enhancing effect of ultrasound by inducing supersaturation in a solid–liquid system publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(99)00481-9 – volume: 385 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib154 article-title: Investigation of tetracyclines transport in the presence of dissolved organic matters during struvite recovery from swine wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123950 – volume: 172 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib88 article-title: Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C publication-title: Water Res. doi: 10.1016/j.watres.2020.115510 – volume: 166 start-page: 260 year: 2009 ident: 10.1016/j.jenvman.2023.118383_bib156 article-title: Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2008.11.025 – volume: 360 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib144 article-title: Effect of organics on Cu and Cr in recovered struvite from synthetic swine wastewater publication-title: J. Clean. Prod. – volume: 47 start-page: 12728 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib80 article-title: Arsenic incorporation in synthetic struvite (NH4MgPO4·6H2O): a synchrotron XAS and single-crystal EPR study publication-title: Environ. Sci. Technol. doi: 10.1021/es402710y – volume: 49 start-page: 8611 year: 2015 ident: 10.1016/j.jenvman.2023.118383_bib15 article-title: Environmental benefits and burdens of phosphorus recovery from municipal wastewater publication-title: Environ. Sci. Technol. doi: 10.1021/es505102v – volume: 262 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib79 article-title: Recovery phosphate and ammonium from aqueous solution by the process of electrochemically decomposing dolomite publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128357 – volume: 207 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib83 article-title: A review on the incorporation and potential mechanism of heavy metals on the recovered struvite from wastewater publication-title: Water Res. doi: 10.1016/j.watres.2021.117823 – volume: 247 start-page: 3635 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib53 article-title: Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process publication-title: Water Res. doi: 10.1016/j.watres.2013.04.026 – volume: 9 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib38 article-title: Highly efficient phosphorus and potassium recovery from urine via crystallization process in a fluidized bed reactor system publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105623 – volume: 116 start-page: 386 year: 2012 ident: 10.1016/j.jenvman.2023.118383_bib160 article-title: Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.03.107 – volume: 384 start-page: 160 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib132 article-title: Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.02.049 – volume: 293 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib39 article-title: Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2021.112961 – volume: 51 start-page: 2776 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib32 article-title: Organic pollutants removal and recovery from animal wastewater by mesoporous struvite precipitation publication-title: Desalination Water Treat. doi: 10.1080/19443994.2012.749378 – volume: 446 year: 2022 ident: 10.1016/j.jenvman.2023.118383_bib23 article-title: Preparation and application of MgO-loaded tobermorite to simultaneously remove nitrogen and phosphorus from wastewater publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136809 – volume: 102 start-page: 2523 year: 2011 ident: 10.1016/j.jenvman.2023.118383_bib47 article-title: Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.11.054 – volume: 25 start-page: 2435 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib140 article-title: Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China publication-title: J. Environ. Sci. (China) doi: 10.1016/S1001-0742(13)60473-8 – volume: 25 start-page: 1033 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib103 article-title: Thermodynamics, kinetics and mechanism analysis of Cu(II) adsorption by in-situ synthesized struvite crystal publication-title: J. Cent. South Univ. doi: 10.1007/s11771-018-3803-y – volume: 156 start-page: 163 year: 2008 ident: 10.1016/j.jenvman.2023.118383_bib121 article-title: Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2007.12.010 – volume: 419 start-page: 68 year: 2012 ident: 10.1016/j.jenvman.2023.118383_bib122 article-title: Wood ash as a magnesium source for phosphorus recovery from source-separated urine publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.12.065 – volume: 35 start-page: 3011 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib62 article-title: Phosphorus recovery: minimization of amount of pharmaceuticals and improvement of purity in struvite recovered from hydrolysed urine publication-title: Environ. Technol. doi: 10.1080/09593330.2014.929179 – volume: 17 start-page: 400 year: 2015 ident: 10.1016/j.jenvman.2023.118383_bib7 article-title: Review of recent developments in the field of magnesium corrosion publication-title: Adv. Eng. Mater. doi: 10.1002/adem.201400434 – volume: 201 start-page: 678 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib85 article-title: Occurrence and ecological risks of veterinary antibiotics in struvite recovered from swine wastewater publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.08.012 – volume: 764 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib86 article-title: Co-precipitation of Cu and Zn in precipitation of struvite publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.144269 – volume: 13 start-page: 4385 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib81 article-title: Influence of agitation and fluid shear on primary nucleation in solution publication-title: Cryst. Growth Des. doi: 10.1021/cg4007636 – volume: 35 start-page: 4191 year: 2001 ident: 10.1016/j.jenvman.2023.118383_bib130 article-title: Conditions influencing the precipitation of magnesium ammonium phosphate publication-title: Water Res. doi: 10.1016/S0043-1354(01)00143-9 – volume: 70 start-page: 144 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib141 article-title: Selection of cost-effective magnesium sources for fluidized struvite crystallization publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2017.11.029 – volume: 168 start-page: 338 year: 2017 ident: 10.1016/j.jenvman.2023.118383_bib48 article-title: Phosphate recovery from swine wastewater using plant ash in chemical crystallization publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.09.042 – volume: 23 start-page: 49 year: 2010 ident: 10.1016/j.jenvman.2023.118383_bib58 article-title: Preliminary study of calcium silicate hydrate (tobermorite) as crystal material to recovery phosphate from wastewater publication-title: Desalination Water Treat. doi: 10.5004/dwt.2010.1866 – volume: 19 start-page: 389 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib18 article-title: Characterization and recovery of phosphorus from wastewater by combined technologies publication-title: Rev. Environ. Sci. Biotechnol. doi: 10.1007/s11157-020-09533-1 – volume: 155 start-page: 252 year: 2023 ident: 10.1016/j.jenvman.2023.118383_bib106 article-title: Phosphorus recovery from high solid content liquid fraction of digestate using seawater bittern as the magnesium source publication-title: Waste Manage. (Tucson, Ariz.) doi: 10.1016/j.wasman.2022.11.008 – volume: 9 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib70 article-title: Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.105019 – volume: 3 start-page: 195 year: 2004 ident: 10.1016/j.jenvman.2023.118383_bib3 article-title: Preliminary investigation into factors affecting controlled struvite crystallization at the bench scale publication-title: J. Environ. Eng. Sci. doi: 10.1139/s03-082 – volume: 53 start-page: 1 issue: 11 year: 2022 ident: 10.1016/j.jenvman.2023.118383_bib165 article-title: Recovery of phosphorus from wastewater: a review based on current phosphorous removal technologies publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 36 start-page: 3925 year: 2002 ident: 10.1016/j.jenvman.2023.118383_bib30 article-title: Struvite formation, control and recovery publication-title: Water Res. doi: 10.1016/S0043-1354(02)00126-4 – volume: 17 start-page: 330 year: 2009 ident: 10.1016/j.jenvman.2023.118383_bib64 article-title: Kinetics of reaction-crystallization of struvite in the continuous draft tube magma type crystallizers—influence of different internal hydrodynamics publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(08)60212-8 – volume: 87 start-page: 126 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib90 article-title: Added-value from innovative value chains by establishing nutrient cycles via struvite publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2014.03.012 – volume: 61 start-page: 2741 year: 2010 ident: 10.1016/j.jenvman.2023.118383_bib46 article-title: Recovery of nitrogen from saponification wastewater by struvite precipitation publication-title: Water Sci. Technol. doi: 10.2166/wst.2010.060 – volume: 9 start-page: 923 year: 2005 ident: 10.1016/j.jenvman.2023.118383_bib120 article-title: Sonocrystallization: the use of ultrasound for improved industrial crystallization publication-title: Org. Process Res. Dev. doi: 10.1021/op050109x – volume: 43 start-page: 5209 year: 2009 ident: 10.1016/j.jenvman.2023.118383_bib163 article-title: Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology publication-title: Water Res. doi: 10.1016/j.watres.2009.08.054 – volume: 48 start-page: 6342 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib118 article-title: Zinc interaction with struvite during and after mineral formation publication-title: Environ. Sci. Technol. doi: 10.1021/es500188t – volume: 250 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib12 article-title: Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126245 – volume: 58 start-page: 957 year: 2008 ident: 10.1016/j.jenvman.2023.118383_bib31 article-title: Reducing operating costs for struvite formation with a carbon dioxide stripper publication-title: Water Sci. Technol. doi: 10.2166/wst.2008.722 – volume: 248 year: 2019 ident: 10.1016/j.jenvman.2023.118383_bib75 article-title: Phosphorus recovery through struvite crystallisation: recent developments in the understanding of operational factors publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2019.07.025 – volume: 169 start-page: 46 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib134 article-title: Struvite recovery from anaerobically digested dairy manure: a review of application potential and hindrances publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.12.006 – volume: 46 start-page: 8791 year: 2012 ident: 10.1016/j.jenvman.2023.118383_bib89 article-title: Influence of pH and oxidation state on the interaction of arsenic with struvite during mineralformation publication-title: Environ. Sci. Technol. doi: 10.1021/es300864t – volume: 280 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib124 article-title: Environmental impacts of phosphorus recovery through struvite precipitation in wastewater treatment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124222 – volume: 28 start-page: 1245 year: 2007 ident: 10.1016/j.jenvman.2023.118383_bib68 article-title: Impact of reactor operation on success of struvite precipitation from synthetic liquors publication-title: Environ. Technol. doi: 10.1080/09593332808618885 – volume: 7 start-page: 2035 year: 2019 ident: 10.1016/j.jenvman.2023.118383_bib76 article-title: Controlled synthesis of struvite nanowires in synthetic wastewater publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b04393 – volume: 823 year: 2022 ident: 10.1016/j.jenvman.2023.118383_bib29 article-title: Phosphorous removal and recovery from urban wastewater: current practices and new directions publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.153750 – volume: 270 start-page: 542 year: 2015 ident: 10.1016/j.jenvman.2023.118383_bib115 article-title: Feasibility of coupling anaerobic digestion and struvite precipitation in the same reactor: evaluation of different magnesium sources publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.02.057 – volume: 145 start-page: 191 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib45 article-title: Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2014.06.021 – volume: 66 start-page: 75 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib22 article-title: An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR) publication-title: Water Res. doi: 10.1016/j.watres.2014.08.008 – volume: 198 start-page: 577 year: 2015 ident: 10.1016/j.jenvman.2023.118383_bib25 article-title: Growth of mono- and mixed cultures of nannochloropsis salina and phaeodactylum tricornutum on struvite as a nutrient source publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.09.070 – volume: 621 start-page: 849 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib57 article-title: Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: a national perspective on eutrophication publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.128 – volume: 1 start-page: 183 year: 2010 ident: 10.1016/j.jenvman.2023.118383_bib8 article-title: New design & build biological system through the use of microalgae addressed to sustainable development publication-title: J. Environ. Prot. Ecol. doi: 10.4236/jep.2010.12023 – volume: 1 start-page: 910 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib112 article-title: Effect of phenolic organics on the precipitation of struvite from simulated dairy wastewater publication-title: ACS ES&T Water doi: 10.1021/acsestwater.0c00234 – volume: 39 start-page: 29 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib147 article-title: Effect of organic matter on phosphorus recovery from sewage sludge subjected to microwave hybrid pretreatment publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2015.10.008 – volume: 45 start-page: 261 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib24 article-title: Ammonium-nitrogen recovery from wastewater by struvite crystallization technology publication-title: Separ. Purif. Rev. doi: 10.1080/15422119.2015.1119699 – volume: 46 start-page: 12493 year: 2012 ident: 10.1016/j.jenvman.2023.118383_bib117 article-title: Sorption of chromium with struvite during phosphorus recovery publication-title: Environ. Sci. Technol. doi: 10.1021/es302296m – volume: 372 start-page: 129 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib72 article-title: Development and validation of an equilibrium model for struvite formation with calcium co-precipitation publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2013.03.010 – volume: 351 year: 2022 ident: 10.1016/j.jenvman.2023.118383_bib77 article-title: Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: multivariate and multiscale investigations publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2022.126976 – volume: 43 start-page: 59 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib66 article-title: Turning hazardous waste into value-added products: production and characterization of struvite from ammoniacal waste with new approaches publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2013.01.001 – volume: 108 start-page: 103 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib67 article-title: Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(II) source publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2013.02.002 – volume: 335 year: 2023 ident: 10.1016/j.jenvman.2023.118383_bib145 article-title: Competitive adsorption of heavy metals between Ca–P and Mg–P products from wastewater during struvite crystallization publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2023.117552 – volume: 36 start-page: 1834 year: 2002 ident: 10.1016/j.jenvman.2023.118383_bib56 article-title: Potential phosphorus recovery by struvite formation publication-title: Water Res. doi: 10.1016/S0043-1354(01)00391-8 – volume: 213 start-page: 381 year: 2000 ident: 10.1016/j.jenvman.2023.118383_bib14 article-title: Spontaneous precipitation of struvite from aqueous solutions publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(00)00351-1 – volume: 36 start-page: 123 year: 2017 ident: 10.1016/j.jenvman.2023.118383_bib110 article-title: Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2016.11.019 – year: 2001 ident: 10.1016/j.jenvman.2023.118383_bib98 – volume: 125 start-page: 730 year: 1999 ident: 10.1016/j.jenvman.2023.118383_bib100 article-title: Kinetics effects on preferential struvite accumulation in wastewater publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(1999)125:8(730) – year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib10 – volume: 44 start-page: 813 year: 1972 ident: 10.1016/j.jenvman.2023.118383_bib13 article-title: Phosphate deposits in digestion systems publication-title: J. Water Pollut. Control Fed. – volume: 156 start-page: 619 year: 2008 ident: 10.1016/j.jenvman.2023.118383_bib40 article-title: Use of magnesit as a magnesium source for ammonium removal from leachate publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2007.12.067 – volume: 4 start-page: 3688 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib44 article-title: Highly efficient recovery of ammonium nitrogen from coking wastewater by coupling struvite precipitation and microwave radiation technology publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.6b00247 – volume: 172 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib123 article-title: An exploration of economic valuation of phosphorus in the environment and its implications in decision making for resource recovery publication-title: Water Res. doi: 10.1016/j.watres.2019.115449 – volume: 188 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib19 article-title: Thermal decomposition of struvite pellet by microwave radiation and recycling of its product to remove ammonium and phosphate from urine publication-title: Environ. Res. doi: 10.1016/j.envres.2020.109774 – volume: 140 start-page: 945 year: 2017 ident: 10.1016/j.jenvman.2023.118383_bib21 article-title: Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.07.012 – volume: 100 start-page: 74 year: 2009 ident: 10.1016/j.jenvman.2023.118383_bib63 article-title: Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2008.05.024 – volume: 173 start-page: 466 year: 2017 ident: 10.1016/j.jenvman.2023.118383_bib126 article-title: Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.01.088 – volume: 29 start-page: 1157 year: 2008 ident: 10.1016/j.jenvman.2023.118383_bib55 article-title: An Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer publication-title: Environ. Technol. doi: 10.1080/09593330802075452 – volume: 12 start-page: 4403 year: 2012 ident: 10.1016/j.jenvman.2023.118383_bib138 article-title: Effect of ultrasonic treatment on early growth during CaCO3 precipitation publication-title: Cryst. Growth Des. doi: 10.1021/cg3005882 – volume: 26 start-page: 991 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib155 article-title: Phosphorus recovery from wastewater by struvite crystallization: property of aggregates publication-title: J. Environ. Sci. (China) doi: 10.1016/S1001-0742(13)60536-7 – volume: 9 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib65 article-title: Engineering principles and process designs for phosphorus recovery as struvite: a comprehensive review publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2021.105579 – volume: 635 start-page: 1 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib97 article-title: Nutrient recovery from anaerobically digested chicken slurry via struvite: performance optimization and interactions with heavy metals and pathogens publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.129 – volume: 141 start-page: 67 year: 2008 ident: 10.1016/j.jenvman.2023.118383_bib91 article-title: Struvite precipitation assessment in anaerobic digestion processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2007.10.023 – volume: 127 start-page: 302 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib51 article-title: Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.04.002 – volume: 46 start-page: 443 year: 2011 ident: 10.1016/j.jenvman.2023.118383_bib54 article-title: Continuous reaction crystallization of struvite from phosphate(V) solutions containing calcium ions publication-title: Cryst. Res. Technol. doi: 10.1002/crat.201100049 – volume: 698 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib164 article-title: Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134240 – volume: 186 start-page: 2026 year: 2011 ident: 10.1016/j.jenvman.2023.118383_bib113 article-title: Recovery of struvite from animal wastewater and its nutrient leaching loss in soil publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2010.12.103 – volume: 63 start-page: 236 year: 2006 ident: 10.1016/j.jenvman.2023.118383_bib129 article-title: Calcite-seeded crystallization of calcium phosphate for phosphorus recovery publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.08.021 – volume: 194 start-page: 504 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib133 article-title: Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia-phosphate interactions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.004 – volume: 88 start-page: 181 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib84 article-title: Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.3936 – volume: 47 start-page: 289 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib52 article-title: Struvite precipitation from urine with electrochemical magnesium dosage publication-title: Water Res. doi: 10.1016/j.watres.2012.09.036 – volume: 454 year: 2023 ident: 10.1016/j.jenvman.2023.118383_bib148 article-title: Concurrent recovery of ammonia and phosphate by an electrochemical nutrients recovery system with authigenic acid and base publication-title: Chem. Eng. J. – volume: 12 start-page: 14504 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib17 article-title: Impact of water on the lubricating properties of hexadecane at the nanoscale publication-title: Nanoscale doi: 10.1039/D0NR03642K – volume: 210 year: 2022 ident: 10.1016/j.jenvman.2023.118383_bib61 article-title: Electrochemical nutrient removal from natural wastewater sources and its impact on water quality publication-title: Water Res. doi: 10.1016/j.watres.2021.118001 – volume: 92 start-page: 325 year: 2017 ident: 10.1016/j.jenvman.2023.118383_bib104 article-title: Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation: a comparative research publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5009 – volume: 25 start-page: 682 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib6 article-title: The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2013.10.014 – volume: 2 start-page: 315 year: 2003 ident: 10.1016/j.jenvman.2023.118383_bib4 article-title: Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility publication-title: J. Environ. Eng. Sci. doi: 10.1139/s03-040 – volume: 126 start-page: 361 year: 2000 ident: 10.1016/j.jenvman.2023.118383_bib101 article-title: Postdigestion struvite precipitation using a fluidized bed reactor publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2000)126:4(361) – volume: 64 start-page: 138 year: 2023 ident: 10.1016/j.jenvman.2023.118383_bib35 article-title: Stimuli responsive metal organic framework materials towards advanced smart application publication-title: Mater. Today doi: 10.1016/j.mattod.2023.02.013 – volume: 221 year: 2022 ident: 10.1016/j.jenvman.2023.118383_bib78 article-title: Struvite crystallization by using active serpentine: an innovative application for the economical and efficient recovery of phosphorus from black water publication-title: Water Res. doi: 10.1016/j.watres.2022.118678 – volume: 328 year: 2021 ident: 10.1016/j.jenvman.2023.118383_bib37 article-title: Phosphorus recovery and iron, copper precipitation from swine wastewater via struvite crystallization using various magnesium compounds publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129588 – volume: 8 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib146 article-title: Adsorption and precipitation behaviors of zinc, copper and tetracycline with struvite products obtained by phosphorus recovery from swine wastewater publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104488 – volume: 24 start-page: 26901 year: 2017 ident: 10.1016/j.jenvman.2023.118383_bib150 article-title: Recovery of phosphate from the supernatant of activated sludge pretreated by microwave irradiation through chemical precipitation publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4504-9 – volume: 39 start-page: 433 year: 2009 ident: 10.1016/j.jenvman.2023.118383_bib69 article-title: Phosphorus recovery from wastewater by struvite crystallization: a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380701640573 – volume: 40 start-page: 1210 year: 2006 ident: 10.1016/j.jenvman.2023.118383_bib59 article-title: P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral publication-title: Water Res. doi: 10.1016/j.watres.2005.12.041 – volume: 330 year: 2023 ident: 10.1016/j.jenvman.2023.118383_bib142 article-title: Applying struvite as a N-fertilizer to mitigate N2O emissions in agriculture: feasibility and mechanism publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2022.117143 – volume: 13 start-page: 431 year: 2011 ident: 10.1016/j.jenvman.2023.118383_bib9 article-title: Water global recourse management through the use of microalgae addressed to sustainable development publication-title: Clean Technol. Environ. Policy doi: 10.1007/s10098-010-0321-5 – volume: 9 start-page: 3127 year: 2015 ident: 10.1016/j.jenvman.2023.118383_bib34 article-title: Phosphorus recovery from sludge fermentation broth by cow-bone powder-seeded crystallization of calcium phosphate publication-title: Chinese J. Environ. Eng. – volume: 144 start-page: 76 year: 2018 ident: 10.1016/j.jenvman.2023.118383_bib26 article-title: Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification publication-title: Water Res. doi: 10.1016/j.watres.2018.07.016 – volume: 35 start-page: 2781 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib82 article-title: Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor publication-title: Environ. Technol. doi: 10.1080/09593330.2014.921732 – volume: 348 start-page: 49 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib119 article-title: Seawater for phosphorus recovery from urine publication-title: Desalination doi: 10.1016/j.desal.2014.06.005 – volume: 256 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib125 article-title: Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126968 – volume: 64 start-page: 334 year: 2011 ident: 10.1016/j.jenvman.2023.118383_bib153 article-title: Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source publication-title: Water Sci. Technol. doi: 10.2166/wst.2011.720 – volume: 10 year: 2022 ident: 10.1016/j.jenvman.2023.118383_bib143 article-title: Biochar-seeded struvite precipitation for simultaneous nutrient recovery and chemical oxygen demand removal in leachate: from laboratory to pilot scale publication-title: Front. Chem. – volume: 21 start-page: 30 year: 1929 ident: 10.1016/j.jenvman.2023.118383_bib94 article-title: Crystal growth in aqueous solutions1: I—theory publication-title: Ind. Eng. Chem. doi: 10.1021/ie50229a008 – volume: 107 start-page: 142 year: 2016 ident: 10.1016/j.jenvman.2023.118383_bib60 article-title: Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2015.12.009 – volume: 101 start-page: 41 year: 2014 ident: 10.1016/j.jenvman.2023.118383_bib128 article-title: Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.11.019 – volume: 159 start-page: 280 year: 2010 ident: 10.1016/j.jenvman.2023.118383_bib139 article-title: Formation of pure struvite at neutral pH by electrochemical deposition publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.02.026 – volume: 52 start-page: 463 year: 2020 ident: 10.1016/j.jenvman.2023.118383_bib36 article-title: Effect of magnetic field on sodium arsenate metastable zone width and crystal nucleation kinetics for crystallization publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.21362 – volume: 375 start-page: 108 year: 2013 ident: 10.1016/j.jenvman.2023.118383_bib108 article-title: Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2013.04.027 – volume: 65 start-page: 1954 year: 2012 ident: 10.1016/j.jenvman.2023.118383_bib27 article-title: Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale publication-title: Water Sci. Technol. doi: 10.2166/wst.2012.092 |
| SSID | ssj0003217 |
| Score | 2.598448 |
| SecondaryResourceType | review_article |
| Snippet | Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 118383 |
| SubjectTerms | Assistive technology crystallization environmental management magnesium ammonium phosphate Nutrient recovery pollution load Process parameters Slow-release fertilizer slow-release fertilizers Struvite crystallization sustainable communities wastewater |
| Title | A review of struvite crystallization for nutrient source recovery from wastewater |
| URI | https://dx.doi.org/10.1016/j.jenvman.2023.118383 https://www.ncbi.nlm.nih.gov/pubmed/37348306 https://www.proquest.com/docview/2829425808 https://www.proquest.com/docview/3040439292 |
| Volume | 344 |
| WOSCitedRecordID | wos001042141900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-8630 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYh2AvCAaDcpmMxNuUkMROYj9WqAgQmpg0pO4pchxbWtWl1bKO7d9zfGujlWrwwEsUJXYS5_tyLs45xwh9YAqs9jprItJoFtGc00jkgkY5L8pSgcJlqbCLTZTHx2wy4T98rGpnlxMo25bd3PDFf4UajgHYJnX2H-BeXRQOwD6ADluAHbZ_Bfyol45iqsNeg1F5JC9vwQyczXzWpQ0ubE0hfhMK4Cbwj4xvDKO9dSknv0Rn5tVC9O6m_dpLkTMZKBthNEA-K9FOegT8bmMHzkBdLpRXmXbS2scFny17LZc2_E-d9-clMhvh5jIzY-VkKVhvESv8bxcvbAmlPXEJ3g1x69hsSHI3qTCNpzAaGEJsbhFvtod3v7iwSBJTp4ckd-pqO03tT-2g3azMORug3dHX8eTbSmUTcMzW6V0f_3jXPfQoXGebDbPNR7G2yulT9MSDhEeOHM_QA9Xuo8chB73bRwfjPnjYC_juOToZYccePNc4sAffYQ8G9uDAHuzYgwN7sGEPXrPnBfr5eXz66UvkV92IJOHsKqpToWUtiALbTtYqEyxpaqlVUQtRaLCvpeI6pSrljdRcciKoEkVONTgCKRWKHKBBO2_VK4SJ4pmgDSV1nVCdyDopRAoM0BlRmjE6RDS8x0r6kvRmZZRZFWIPp5VHojJIVA6JIYpX3RauJst9HVgAqfKGpTMYK2DbfV3fB1ArELzmb5po1XzZVSYEARQeS9j2NiQxxavAA8mG6KVjxOqJA5lebz3zBu2tP6y3aACgq3fooby-Ou8uD9FOOWGHnsm_AbfYuiQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+struvite+crystallization+for+nutrient+source+recovery+from+wastewater&rft.jtitle=Journal+of+environmental+management&rft.au=Guan%2C+Qian&rft.au=Li%2C+Yingpeng&rft.au=Zhong%2C+Yun&rft.au=Liu%2C+Wei&rft.date=2023-10-15&rft.eissn=1095-8630&rft.volume=344&rft.spage=118383&rft_id=info:doi/10.1016%2Fj.jenvman.2023.118383&rft_id=info%3Apmid%2F37348306&rft.externalDocID=37348306 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |