A review of struvite crystallization for nutrient source recovery from wastewater

Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of environmental management Ročník 344; s. 118383
Hlavní autoři: Guan, Qian, Li, Yingpeng, Zhong, Yun, Liu, Wei, Zhang, Jiajie, Yu, Xin, Ou, Ranwen, Zeng, Guisheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 15.10.2023
Témata:
ISSN:0301-4797, 1095-8630, 1095-8630
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion. [Display omitted] •Struvite crystallization processes for nutrient recovery from wastewater are overviewed.•Assessment of performance of novel technologies assisted with struvite crystallization process.•Analysis of economic feasibility and environmental impacts in struvite recovery process.•Current challenges and future prospects directions are identified.
AbstractList Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion. [Display omitted] •Struvite crystallization processes for nutrient recovery from wastewater are overviewed.•Assessment of performance of novel technologies assisted with struvite crystallization process.•Analysis of economic feasibility and environmental impacts in struvite recovery process.•Current challenges and future prospects directions are identified.
Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.
Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems, which is a solution to achieve a sustainable society. Besides, struvite crystallization technology is considered a potential nutrient recovery technology because the precipitate obtained can be reused as a slow-release fertilizer. This review presents the basic properties of struvite and the theory of the basic crystallization process. In addition, the possible influencing variables of the struvite crystallization process on the recovery efficiency and product purity are also examined in detail. Then, the advanced auxiliary technologies for facilitating the struvite crystallization process are systematically discussed. Moreover, the economic and environmental benefits of the struvite crystallization process for nutrient recovery are introduced. Finally, the shortcomings and inadequacies of struvite crystallization technology are presented, and future research prospects are provided. This work serves as the foundation for the future use of struvite crystallization technology to recover nutrients in response to the increasingly serious environmental problems and resource depletion.
ArticleNumber 118383
Author Yu, Xin
Liu, Wei
Zhang, Jiajie
Guan, Qian
Ou, Ranwen
Zhong, Yun
Zeng, Guisheng
Li, Yingpeng
Author_xml – sequence: 1
  givenname: Qian
  surname: Guan
  fullname: Guan, Qian
  organization: College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
– sequence: 2
  givenname: Yingpeng
  surname: Li
  fullname: Li, Yingpeng
  organization: Haixi (Fujian) Institute, China Academy of Machinery Science and Technology Group, Sanming, 365500, PR China
– sequence: 3
  givenname: Yun
  surname: Zhong
  fullname: Zhong, Yun
  organization: Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, PR China
– sequence: 4
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: School of Space and Environment, Beihang University, Beijing, 100191, PR China
– sequence: 5
  givenname: Jiajie
  surname: Zhang
  fullname: Zhang, Jiajie
  organization: College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
– sequence: 6
  givenname: Xin
  surname: Yu
  fullname: Yu, Xin
  organization: College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
– sequence: 7
  givenname: Ranwen
  surname: Ou
  fullname: Ou, Ranwen
  email: ouranwen@xmu.edu.cn
  organization: College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China
– sequence: 8
  givenname: Guisheng
  surname: Zeng
  fullname: Zeng, Guisheng
  email: zengguisheng@hotmail.com
  organization: School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37348306$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9LHDEYh0NR6mr7EVpy9DLb_JvZBA8i0mpBEMGewzuZN5BlZmKTzC7rp-_YXS9e9pTL87yB33NOTsY4IiHfOFtyxpsf6-Uax80A41IwIZeca6nlJ7LgzNSVbiQ7IQsmGa_UyqzOyHnOa8aYFHz1mZzJlVRasmZBnm5owk3ALY2e5pKmTShIXdrlAn0fXqGEOFIfEx2nkgKOheY4JYez5uIG0476FAe6hVxwCwXTF3Lqoc_49fBekD-_fj7f3lcPj3e_b28eKieNLlXLwbsWJArFXYsCNOta57FpARpfc-XQeK6Qm85544wEhdDUykvRcAUoL8jl_u5Lin8nzMUOITvsexgxTtlKppiSRhhxFBVaGCVqzfSMfj-gUztgZ19SGCDt7PtiM3C1B1yKOSf01oXyf6WSIPSWM_vWx67toY9962P3fWa7_mC_f3DMu957OC8650o2uzmGwy7MHYrtYjhy4R9vmK81
CitedBy_id crossref_primary_10_1016_j_dwt_2024_100881
crossref_primary_10_1016_j_jenvman_2024_122943
crossref_primary_10_1016_j_icheatmasstransfer_2024_108316
crossref_primary_10_36783_18069657rbcs20240127
crossref_primary_10_1016_j_jenvman_2024_120727
crossref_primary_10_3390_app14010131
crossref_primary_10_3390_membranes15070189
crossref_primary_10_1016_j_seppur_2024_127257
crossref_primary_10_1002_clen_202300142
crossref_primary_10_1016_j_cej_2025_164185
crossref_primary_10_1016_j_scitotenv_2024_171636
crossref_primary_10_1016_j_rineng_2024_103707
crossref_primary_10_1007_s10653_024_02129_6
crossref_primary_10_1016_j_cej_2025_166612
crossref_primary_10_1016_j_dwt_2025_101301
crossref_primary_10_1016_j_jenvman_2024_123027
crossref_primary_10_1016_j_jece_2024_112286
crossref_primary_10_1016_j_renene_2025_122411
crossref_primary_10_1016_j_jclepro_2025_146599
crossref_primary_10_1016_j_jece_2024_112129
crossref_primary_10_3390_w16131928
crossref_primary_10_1016_j_colsurfa_2025_136279
crossref_primary_10_3390_catal15040361
crossref_primary_10_1016_j_chemosphere_2024_143648
crossref_primary_10_3390_membranes14020029
crossref_primary_10_1016_j_horiz_2023_100084
crossref_primary_10_1039_D5RA02880A
crossref_primary_10_1016_j_jwpe_2024_105340
crossref_primary_10_1016_j_jenvman_2023_119712
crossref_primary_10_1016_j_jwpe_2025_107408
crossref_primary_10_1007_s10163_025_02369_3
crossref_primary_10_1016_j_cej_2025_165735
crossref_primary_10_1039_D5RA03370E
crossref_primary_10_1007_s13399_024_06210_z
crossref_primary_10_1016_j_jclepro_2024_142244
crossref_primary_10_1016_j_cej_2024_154884
crossref_primary_10_1089_ees_2023_0304
crossref_primary_10_1016_j_dwt_2024_100902
crossref_primary_10_1016_j_seppur_2024_128406
crossref_primary_10_3390_agriculture15131352
crossref_primary_10_1002_jeq2_70069
crossref_primary_10_1016_j_jwpe_2025_107955
crossref_primary_10_1016_j_jwpe_2025_108766
crossref_primary_10_1016_j_jwpe_2024_106922
crossref_primary_10_1016_j_jenvman_2025_124799
crossref_primary_10_1139_cjc_2024_0044
crossref_primary_10_1016_j_envres_2025_120865
crossref_primary_10_1016_j_jwpe_2025_108088
crossref_primary_10_1002_mabi_202500042
crossref_primary_10_1016_j_cej_2025_160536
crossref_primary_10_1016_j_seppur_2024_127420
crossref_primary_10_1016_j_biortech_2024_130521
crossref_primary_10_11648_j_sjc_20251304_11
Cites_doi 10.1016/j.seppur.2022.122192
10.1016/j.chemosphere.2011.02.046
10.1016/j.jclepro.2015.05.060
10.1002/crat.2170200204
10.1021/acs.chemmater.0c01561
10.1016/j.desal.2021.114949
10.1016/j.chemosphere.2015.06.089
10.1016/j.scitotenv.2019.03.485
10.1016/j.chemosphere.2021.129861
10.1021/acs.oprd.1c00103
10.1016/0022-0248(79)90082-4
10.1016/j.jece.2020.103957
10.1016/j.cej.2023.141522
10.1016/j.jhazmat.2013.06.072
10.1021/acs.cgd.8b01074
10.1016/j.watres.2009.12.015
10.1016/S1001-0742(08)62310-4
10.1016/j.watres.2020.116521
10.1021/cg5018032
10.1016/j.eti.2020.101347
10.1016/j.arabjc.2013.10.007
10.1016/j.cej.2017.12.097
10.1139/s03-050
10.1021/cg034173m
10.1007/s11356-019-07542-4
10.1021/cg1016593
10.1016/j.ces.2020.115911
10.1016/j.molliq.2021.116293
10.1016/j.jclepro.2020.122649
10.1002/aic.690341108
10.1016/j.cej.2017.02.112
10.1080/03601230801941709
10.1016/j.cej.2016.03.148
10.1016/j.cej.2016.06.036
10.1016/j.scitotenv.2018.11.259
10.1016/j.jenvman.2020.111359
10.1016/j.jes.2016.06.020
10.1016/j.jhazmat.2008.11.101
10.1021/acs.est.6b04623
10.1016/j.scitotenv.2018.07.166
10.1016/j.ultsonch.2015.11.025
10.1016/S0009-2509(99)00481-9
10.1016/j.cej.2019.123950
10.1016/j.watres.2020.115510
10.1016/j.jhazmat.2008.11.025
10.1021/es402710y
10.1021/es505102v
10.1016/j.chemosphere.2020.128357
10.1016/j.watres.2021.117823
10.1016/j.watres.2013.04.026
10.1016/j.jece.2021.105623
10.1016/j.biortech.2012.03.107
10.1016/j.jpowsour.2018.02.049
10.1016/j.jenvman.2021.112961
10.1080/19443994.2012.749378
10.1016/j.cej.2022.136809
10.1016/j.biortech.2010.11.054
10.1016/S1001-0742(13)60473-8
10.1007/s11771-018-3803-y
10.1016/j.jhazmat.2007.12.010
10.1016/j.scitotenv.2011.12.065
10.1080/09593330.2014.929179
10.1002/adem.201400434
10.1016/j.jclepro.2018.08.012
10.1016/j.scitotenv.2020.144269
10.1021/cg4007636
10.1016/S0043-1354(01)00143-9
10.1016/j.jes.2017.11.029
10.1016/j.jclepro.2017.09.042
10.5004/dwt.2010.1866
10.1007/s11157-020-09533-1
10.1016/j.wasman.2022.11.008
10.1016/j.jece.2020.105019
10.1139/s03-082
10.1016/S0043-1354(02)00126-4
10.1016/S1004-9541(08)60212-8
10.1016/j.resconrec.2014.03.012
10.2166/wst.2010.060
10.1021/op050109x
10.1016/j.watres.2009.08.054
10.1021/es500188t
10.1016/j.chemosphere.2020.126245
10.2166/wst.2008.722
10.1016/j.jenvman.2019.07.025
10.1016/j.jenvman.2015.12.006
10.1021/es300864t
10.1016/j.jclepro.2020.124222
10.1080/09593332808618885
10.1021/acssuschemeng.8b04393
10.1016/j.scitotenv.2022.153750
10.1016/j.cej.2015.02.057
10.1016/j.jenvman.2014.06.021
10.1016/j.watres.2014.08.008
10.1016/j.biortech.2015.09.070
10.1016/j.scitotenv.2017.11.128
10.4236/jep.2010.12023
10.1021/acsestwater.0c00234
10.1016/j.jes.2015.10.008
10.1080/15422119.2015.1119699
10.1021/es302296m
10.1016/j.jcrysgro.2013.03.010
10.1016/j.biortech.2022.126976
10.1016/j.jclepro.2013.01.001
10.1016/j.seppur.2013.02.002
10.1016/j.jenvman.2023.117552
10.1016/S0043-1354(01)00391-8
10.1016/S0022-0248(00)00351-1
10.1016/j.ultsonch.2016.11.019
10.1061/(ASCE)0733-9372(1999)125:8(730)
10.1016/j.jhazmat.2007.12.067
10.1021/acssuschemeng.6b00247
10.1016/j.watres.2019.115449
10.1016/j.envres.2020.109774
10.1016/j.jclepro.2016.07.012
10.1016/j.biortech.2008.05.024
10.1016/j.chemosphere.2017.01.088
10.1080/09593330802075452
10.1021/cg3005882
10.1016/S1001-0742(13)60536-7
10.1016/j.jece.2021.105579
10.1016/j.scitotenv.2018.04.129
10.1016/j.cej.2007.10.023
10.1016/j.jclepro.2016.04.002
10.1002/crat.201100049
10.1016/j.scitotenv.2019.134240
10.1016/j.jhazmat.2010.12.103
10.1016/j.chemosphere.2005.08.021
10.1016/j.chemosphere.2017.12.004
10.1002/jctb.3936
10.1016/j.watres.2012.09.036
10.1039/D0NR03642K
10.1016/j.watres.2021.118001
10.1002/jctb.5009
10.1016/j.apt.2013.10.014
10.1139/s03-040
10.1061/(ASCE)0733-9372(2000)126:4(361)
10.1016/j.mattod.2023.02.013
10.1016/j.watres.2022.118678
10.1016/j.jclepro.2021.129588
10.1016/j.jece.2020.104488
10.1007/s11356-015-4504-9
10.1080/10643380701640573
10.1016/j.watres.2005.12.041
10.1016/j.jenvman.2022.117143
10.1007/s10098-010-0321-5
10.1016/j.watres.2018.07.016
10.1080/09593330.2014.921732
10.1016/j.desal.2014.06.005
10.1016/j.chemosphere.2020.126968
10.2166/wst.2011.720
10.1021/ie50229a008
10.1016/j.resconrec.2015.12.009
10.1016/j.chemosphere.2013.11.019
10.1016/j.cej.2010.02.026
10.1002/kin.21362
10.1016/j.jcrysgro.2013.04.027
10.2166/wst.2012.092
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2023.118383
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
ExternalDocumentID 37348306
10_1016_j_jenvman_2023_118383
S0301479723011714
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHBH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
9DU
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
D-I
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
~HD
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-b1afcba3e241cbe2a80dbcfe6baa6f514ce9f14e19dcf9c93a4ea654f32614ae3
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001042141900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0301-4797
1095-8630
IngestDate Thu Oct 02 10:27:40 EDT 2025
Mon Sep 29 05:42:09 EDT 2025
Wed Feb 19 02:23:17 EST 2025
Tue Nov 18 22:22:42 EST 2025
Sat Nov 29 03:51:38 EST 2025
Sat Jul 27 15:43:26 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Struvite crystallization
Assistive technology
Slow-release fertilizer
Nutrient recovery
Process parameters
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-b1afcba3e241cbe2a80dbcfe6baa6f514ce9f14e19dcf9c93a4ea654f32614ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 37348306
PQID 2829425808
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3040439292
proquest_miscellaneous_2829425808
pubmed_primary_37348306
crossref_citationtrail_10_1016_j_jenvman_2023_118383
crossref_primary_10_1016_j_jenvman_2023_118383
elsevier_sciencedirect_doi_10_1016_j_jenvman_2023_118383
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References McMurtry, Qian, Teglasi, Swarnakar, De Roo, Owen (bib95) 2020; 32
Marti, Bouzas, Seco, Ferrer (bib91) 2008; 141
Li, Yao, Dong, Zhao, Zhou, Fu (bib76) 2019; 7
Ronteltap, Maurer, Hausherr, Gujer (bib116) 2010; 44
Thompson, Doraiswamy (bib136) 2000; 55
Ye, Chen, Wang, Shen, Wu, Huang (bib152) 2021; 188
Huang, Zhang, Li, Guo, Tang (bib48) 2017; 168
Lahav, Telzhensky, Zewuhn, Gendel, Gerth, Calmano, Birnhack (bib67) 2013; 108
Wang, Ye, Gao, Wang, Li, Ding, Li, Ren, Chen, Wang, Ye (bib142) 2023; 330
Li, Boiarkina, Yu, Huang, Munir, Wang, Young (bib73) 2019; 648
Wagterveld, Miedema, Witkamp (bib138) 2012; 12
Bayuseno, Schmahl (bib12) 2020; 250
Ye, Shen, Ye, Zhang, Chen, Shi (bib155) 2014; 26
Li, Zhang, Shaheen, Abdelrahman, Ali, Bolan, Li, Rinklebe (bib77) 2022; 351
Zhang, Ding, Ren, Xiong (bib163) 2009; 43
Hutnik, Kozik, Mazienczuk, Piotrowski, Wierzbowska, Matynia (bib53) 2013; 247
Tansel, Lunn, Monje (bib133) 2018; 194
Prasad, Dalvi (bib107) 2020; 226
Bradford-Hartke, Lane, Lant, Leslie (bib15) 2015; 49
Song, Weidler, Berg, Nüesch, Donnert (bib129) 2006; 63
Avagyan (bib8) 2010; 1
McCabe (bib94) 1929; 21
Wang, Da, Deng, Wang, Liu, Chang (bib145) 2023; 335
Ye, Zhang, Cai, Chen (bib154) 2020; 385
Bouropoulos, Koutsoukos (bib14) 2000; 213
Kékedy-Nagy, English, Anari, Abolhassani, Pollet, Popp, Greenlee (bib61) 2022; 210
Thorat, Dalvi (bib137) 2016; 30
Fattah, Sabrina, Mavinic, Koch (bib31) 2008; 58
Ohlinger, Young, Schroeder (bib101) 2000; 126
Wu, Bishop (bib149) 2004; 3
Abbona, Boistelle (bib1) 1979; 46
Song, Li, Wang, Tian, Yang (bib127) 2021; 336
Davis, Siccardi, Huysman, Wyatt, Hewson, Lane (bib25) 2015; 198
Stratful, Scrimshaw, Lester (bib130) 2001; 35
Di Capua, de Sario, Ferraro, Petrella, Race, Pirozzi, Fratino, Spasiano (bib29) 2022; 823
Borgerding (bib13) 1972; 44
Gu, Zhang, Li, Zhou (bib34) 2015; 9
Huang, Zhang, Zhang, Liu, Xiao, Gao (bib51) 2016; 127
Jarvie, Smith, Norton, Edwards, Bowes, King, Scarlett, Davies, Dils, Bachiller-Jareno (bib57) 2018; 621
Peng, Chai, Song, Min, Tang (bib103) 2018; 25
Mbanaso, Theophilus, Sam-Ateki, Nnadi, Umoren, Umeokafor (bib93) 2023; 5
Huang, Zhang, Yang, Zhang, Guo, Liu (bib50) 2017; 317
De, Lindeboom, Vanoppen, De Paepe, Demey, Coessens, Lamaze, Verliefde, Clauwaert, Vlaeminck (bib26) 2018; 144
Qiu, Shi, Liu, Xie, Wang, Zhang, Song, Lu (bib110) 2017; 36
Rahman, Salleh, Rashid, Ahsan, Hossain, Ra (bib114) 2014; 7
Avagyan (bib10) 2018
Cafolla, Voïtchovsky (bib17) 2020; 12
Dai, Wen, Huang, Bao, Xi, Liao, Shi, Ou, Qin (bib23) 2022; 446
Rubio-Rincón, Lopez-Vazquez, Ronteltap, Brdjanovic (bib119) 2014; 348
Wang, Zhang, Zhang, She, Xiang, Xia (bib148) 2023; 454
Xiao, Huang, Jiang, Ding (bib150) 2017; 24
Chen, Yang, Zheng, Cheng, Xu, Dou (bib19) 2020; 188
Ma, Xue, Zhang, Kobayashi, Kubota, Li (bib88) 2020; 172
Krishnamoorthy, Dey, Unpaprom, Ramaraj, Maniam, Govindan, Jayaraman, Arunachalam, Paramasivan (bib65) 2021; 9
Lee, Yoo, Kim, Lim, Kim, Kim (bib71) 2013; 261
Iqbal, Bhuiyan, Mavinic (bib55) 2008; 29
Carrillo, Fuentes, Gómez, Vidal (bib18) 2020; 19
Ohlinger, Young, Schroeder (bib100) 1999; 125
Devarakonda, Evans, Myerson (bib28) 2004; 4
Mullin (bib98) 2001
Song, Dai, Hu, Yu, Qian (bib128) 2014; 101
Kumar, Pal (bib66) 2013; 43
Rouff (bib117) 2012; 46
Narducci, Jones, Kougoulos (bib99) 2011; 11
Zang, Li, Wang, Zhang, Xiong (bib158) 2015; 107
Zhang, Shan, Wang, Zhu, Yu, Ma (bib161) 2021; 25
Li, Huang, Sun, Zhao, Munir, Yu, Young (bib74) 2020; 272
Liu, Kumar, Kwag, Ra (bib84) 2013; 88
Zhou, Hu, Ren, Zhao, Jiang, Wang (bib166) 2015; 141
Ryu, Kim, Lee (bib121) 2008; 156
Kemacheevakul, Chuangchote, Otani, Matsuda, Shimizu (bib62) 2014; 35
Rahman, Liu, Kwag, Ra (bib113) 2011; 186
Aguado, Barat, Bouzas, Seco, Ferrer (bib5) 2019; 672
Darwish, Aris, Puteh, Abideen, Othman (bib24) 2016; 45
Romero-Güiza, Astals, Mata-Alvarez, Chimenos (bib115) 2015; 270
Zhang, Ding, Ren (bib162) 2009; 166
Foletto, Santos, Jahn, Bassaco, Mazutti, Cancelier, Gundel (bib32) 2013; 51
Koralewska, Piotrowski, Wierzbowska, Matynia (bib64) 2009; 17
Li, Huang, Boiarkina, Yu, Huang, Wang (bib75) 2019; 248
Ruecroft, Hipkiss, Ly, Maxted, Cains (bib120) 2005; 9
Atrens, Song, Liu, Shi, Cao, Dargusch (bib7) 2015; 17
Prywer, Olszynski (bib108) 2013; 375
Lu, Zhong, Liu, Li, Yang, Wang (bib87) 2020; 276
Mihelcic, Fry, Shaw (bib96) 2011; 84
Alan (bib167) 2002
Huang, Xiao, Yang, Yan (bib46) 2010; 61
Le Corre, Valsami-Jones, Hobbs, Parsons (bib68) 2007; 28
Zhang, Chen, Jilani, Wu, Liu, Han (bib160) 2012; 116
Jiang, Wu (bib58) 2010; 23
Wang, Xiao, Zhong, Zheng, Wei (bib147) 2016; 39
Bradford-Hartke, Razmjou, Gregory (bib16) 2021; 504
Huang, Zhang, Wang, Li, Zhao, Li, Dai (bib49) 2019; 655
Guan, Fang, Wu, Ou, Zhang, Xie, Tang, Zeng (bib35) 2023; 64
Muhmood, Wu, Lu, Ajmal, Luo, Dong (bib97) 2018; 635
Kim, Kim, Ryu, Lee (bib63) 2009; 100
Tao, Fattah, Huchzermeier (bib134) 2016; 169
Avagyan (bib9) 2011; 13
Sultana, Greenlee (bib131) 2023; 459
Sun, Gao, Hou, Zuo, Chen, Liang, Zhang, Ren, Huang (bib132) 2018; 384
Park, Chang, Jang, Lim, Jung, Kim (bib102) 2021; 21
Yetilmezsoy, Sapci-Zengin (bib156) 2009; 166
Hounslow, Ryall, Marshall (bib42) 1988; 34
Guan, Zeng, Gong, Li, Ji, Zhang, Song, Liu, Wang, Deng (bib37) 2021; 328
Peng, Chai, Tang, Min, Ali, Song, Qi (bib104) 2017; 92
Rabinovich, Rouff (bib112) 2021; 1
Shih, Abarca, de Luna, Huang, Lu (bib126) 2017; 173
Ha, Mahasti, Lu, Huang (bib41) 2022; 303
Liu, Å (bib81) 2013; 13
Li, Zhao, Zhang, Hao, Zhang (bib78) 2022; 221
Lu, Huang, Liang, Li, Yang, Wang, Wang (bib86) 2021; 764
Hutnik, Piotrowski, Wierzbowska, Matynia (bib54) 2011; 46
Maaß, Grundmann, von Bock und Polach (bib90) 2014; 87
Mavhungu, Masindi, Foteinis, Mbaya, Tekere, Kortidis, Chatzisymeon (bib92) 2020; 8
Ye, Chen, Lu, Shi, Lin, Wang (bib153) 2011; 64
Gunay, Karadag, Tosun, Ozturk (bib40) 2008; 156
Le, Vo, Nguyen, Shih, Vu, Liao, Huang (bib70) 2021; 9
Chen, Kong, Wu, Wang, Lin (bib20) 2009; 21
Fu, Kurniawan, Avtar, Xu, Othman (bib33) 2021; 271
Guan, Zeng, Song, Liu, Wang, Wu (bib39) 2021; 293
Barbosa, Peixoto, Meulman, Alves, Pereira (bib11) 2016; 298
Guan, Zeng, Song, Li, Yang, Wang, Liu (bib38) 2021; 9
Sena, Rodriguez Morris, Seib, Hicks (bib123) 2020; 172
Sena, Seib, Noguera, Hicks (bib124) 2021; 280
Zheng, Wan, Zhang, Huang, Yang, Tsang, Wang, Chen, Gao (bib165) 2022; 53
Abbona, Boistelle (bib2) 1985; 20
Wang, Dong, Yang, Toor, Zhang (bib140) 2013; 25
Kataki, West, Clarke, Baruah (bib60) 2016; 107
Wang, Wang, Li, Li, Liu, Wang, Zhao (bib146) 2020; 8
Ma, Rouff (bib89) 2012; 46
Dai, Tang, Zheng, Mackey, Chui, van Loosdrecht, Chen (bib22) 2014; 66
Xiao, Huang, Zhang, Gao, Zhao (bib151) 2018; 337
Karapinar, Hoffmann, Hahn (bib59) 2006; 40
Liu, Wang, Chang (bib83) 2021; 207
Ariyanto, Sen, Ang (bib6) 2014; 25
Rouff, Juarez (bib118) 2014; 48
Chowdhury, Moore, Weatherley, Arora (bib21) 2017; 140
Pepè Sciarria, Zangarini, Tambone, Trombino, Puig, Adani (bib106) 2023; 155
Hug, Udert (bib52) 2013; 47
Peng, Chai, Tang, Min, Song, Duan, Yu (bib105) 2017; 51
Adnan, Mavinic, Koch (bib4) 2003; 2
Liu, Hu, Mu, Zang, Liu (bib82) 2014; 35
Lou, Ye, Ye, Chiang, Chen (bib85) 2018; 201
Wang, Xin, Li, Huang, Liu, Song, Wu, Huang (bib144) 2020; 360
Zangarini, Pepè Sciarria, Tambone, Adani (bib159) 2020; 27
Shaddel, Grini, Andreassen, Østerhus, Ucar (bib125) 2020; 256
Wang, Hao, Guo, van Loosdrecht (bib139) 2010; 159
Lin, Chen, Pan (bib80) 2013; 47
Li, Zhou, Yang, Wen (bib79) 2021; 262
Desmidt, Ghyselbrecht, Monballiu, Verstraete, Meesschaert (bib27) 2012; 65
Hövelmann, Putnis (bib43) 2016; 50
Guan, Liu, Ling, Zeng, Ji, Zhang, Zhang (bib36) 2020; 52
Huang, Xu, Zhang (bib47) 2011; 102
Jaffer, Clark, Pearce, Parsons (bib56) 2002; 36
Doyle, Parsons (bib30) 2002; 36
Qureshi, Lo, Liao (bib111) 2008; 43
Sakthivel, Tilley, Udert (bib122) 2012; 419
Wang, Ye, Zhang, Ye, Chen (bib141) 2018; 70
Huang, Xiao, Zhang, Ding (bib45) 2014; 145
Prywer, Sadowski, Torzewska (bib109) 2015; 15
Tarragó, Puig, Ruscalleda, Balaguer, Colprim (bib135) 2016; 302
Adnan, Dastur, Mavinic, Koch (bib3) 2004; 3
Lee, Yoo, Lim, Kim, Kim, Kim (bib72) 2013; 372
Wang, Sun, Xiang, Zhao, Shi, Su, Tan, Zhang (bib143) 2022; 10
Yousuf, Frawley (bib157) 2018; 18
Zhang, He, Deng, Tsang, Jiang, Becker, Kruse (bib164) 2020; 698
Le Corre, Valsami-Jones, Hobbs, Parsons (bib69) 2009; 39
Huang, Liu, Xiao, Zhang, Gao (bib44) 2016; 4
Cafolla (10.1016/j.jenvman.2023.118383_bib17) 2020; 12
Sakthivel (10.1016/j.jenvman.2023.118383_bib122) 2012; 419
Hutnik (10.1016/j.jenvman.2023.118383_bib54) 2011; 46
Zhang (10.1016/j.jenvman.2023.118383_bib163) 2009; 43
Stratful (10.1016/j.jenvman.2023.118383_bib130) 2001; 35
Avagyan (10.1016/j.jenvman.2023.118383_bib8) 2010; 1
Gunay (10.1016/j.jenvman.2023.118383_bib40) 2008; 156
Huang (10.1016/j.jenvman.2023.118383_bib51) 2016; 127
Sun (10.1016/j.jenvman.2023.118383_bib132) 2018; 384
Chen (10.1016/j.jenvman.2023.118383_bib20) 2009; 21
Adnan (10.1016/j.jenvman.2023.118383_bib3) 2004; 3
Atrens (10.1016/j.jenvman.2023.118383_bib7) 2015; 17
McMurtry (10.1016/j.jenvman.2023.118383_bib95) 2020; 32
Huang (10.1016/j.jenvman.2023.118383_bib45) 2014; 145
Doyle (10.1016/j.jenvman.2023.118383_bib30) 2002; 36
Le Corre (10.1016/j.jenvman.2023.118383_bib68) 2007; 28
Mullin (10.1016/j.jenvman.2023.118383_bib98) 2001
Kim (10.1016/j.jenvman.2023.118383_bib63) 2009; 100
Huang (10.1016/j.jenvman.2023.118383_bib48) 2017; 168
Liu (10.1016/j.jenvman.2023.118383_bib82) 2014; 35
Jiang (10.1016/j.jenvman.2023.118383_bib58) 2010; 23
Avagyan (10.1016/j.jenvman.2023.118383_bib9) 2011; 13
Bayuseno (10.1016/j.jenvman.2023.118383_bib12) 2020; 250
Borgerding (10.1016/j.jenvman.2023.118383_bib13) 1972; 44
Kemacheevakul (10.1016/j.jenvman.2023.118383_bib62) 2014; 35
Ye (10.1016/j.jenvman.2023.118383_bib152) 2021; 188
Ma (10.1016/j.jenvman.2023.118383_bib89) 2012; 46
Jarvie (10.1016/j.jenvman.2023.118383_bib57) 2018; 621
Foletto (10.1016/j.jenvman.2023.118383_bib32) 2013; 51
Thompson (10.1016/j.jenvman.2023.118383_bib136) 2000; 55
Guan (10.1016/j.jenvman.2023.118383_bib37) 2021; 328
Ye (10.1016/j.jenvman.2023.118383_bib155) 2014; 26
Bradford-Hartke (10.1016/j.jenvman.2023.118383_bib15) 2015; 49
Ruecroft (10.1016/j.jenvman.2023.118383_bib120) 2005; 9
Li (10.1016/j.jenvman.2023.118383_bib74) 2020; 272
Fu (10.1016/j.jenvman.2023.118383_bib33) 2021; 271
Peng (10.1016/j.jenvman.2023.118383_bib104) 2017; 92
Kumar (10.1016/j.jenvman.2023.118383_bib66) 2013; 43
Xiao (10.1016/j.jenvman.2023.118383_bib150) 2017; 24
Guan (10.1016/j.jenvman.2023.118383_bib38) 2021; 9
Wang (10.1016/j.jenvman.2023.118383_bib141) 2018; 70
Li (10.1016/j.jenvman.2023.118383_bib75) 2019; 248
Karapinar (10.1016/j.jenvman.2023.118383_bib59) 2006; 40
Li (10.1016/j.jenvman.2023.118383_bib79) 2021; 262
Wang (10.1016/j.jenvman.2023.118383_bib148) 2023; 454
Lee (10.1016/j.jenvman.2023.118383_bib71) 2013; 261
Wang (10.1016/j.jenvman.2023.118383_bib145) 2023; 335
Li (10.1016/j.jenvman.2023.118383_bib76) 2019; 7
Jaffer (10.1016/j.jenvman.2023.118383_bib56) 2002; 36
Maaß (10.1016/j.jenvman.2023.118383_bib90) 2014; 87
Marti (10.1016/j.jenvman.2023.118383_bib91) 2008; 141
Ye (10.1016/j.jenvman.2023.118383_bib154) 2020; 385
Chowdhury (10.1016/j.jenvman.2023.118383_bib21) 2017; 140
Shaddel (10.1016/j.jenvman.2023.118383_bib125) 2020; 256
Zhang (10.1016/j.jenvman.2023.118383_bib164) 2020; 698
Wang (10.1016/j.jenvman.2023.118383_bib146) 2020; 8
Peng (10.1016/j.jenvman.2023.118383_bib105) 2017; 51
Huang (10.1016/j.jenvman.2023.118383_bib46) 2010; 61
Krishnamoorthy (10.1016/j.jenvman.2023.118383_bib65) 2021; 9
Peng (10.1016/j.jenvman.2023.118383_bib103) 2018; 25
Shih (10.1016/j.jenvman.2023.118383_bib126) 2017; 173
Wang (10.1016/j.jenvman.2023.118383_bib142) 2023; 330
Iqbal (10.1016/j.jenvman.2023.118383_bib55) 2008; 29
Lahav (10.1016/j.jenvman.2023.118383_bib67) 2013; 108
Bradford-Hartke (10.1016/j.jenvman.2023.118383_bib16) 2021; 504
Zang (10.1016/j.jenvman.2023.118383_bib158) 2015; 107
Avagyan (10.1016/j.jenvman.2023.118383_bib10) 2018
Prasad (10.1016/j.jenvman.2023.118383_bib107) 2020; 226
Ryu (10.1016/j.jenvman.2023.118383_bib121) 2008; 156
Sena (10.1016/j.jenvman.2023.118383_bib123) 2020; 172
Wang (10.1016/j.jenvman.2023.118383_bib139) 2010; 159
Aguado (10.1016/j.jenvman.2023.118383_bib5) 2019; 672
Le (10.1016/j.jenvman.2023.118383_bib70) 2021; 9
Rouff (10.1016/j.jenvman.2023.118383_bib118) 2014; 48
Ha (10.1016/j.jenvman.2023.118383_bib41) 2022; 303
Wang (10.1016/j.jenvman.2023.118383_bib147) 2016; 39
Prywer (10.1016/j.jenvman.2023.118383_bib109) 2015; 15
Zheng (10.1016/j.jenvman.2023.118383_bib165) 2022; 53
McCabe (10.1016/j.jenvman.2023.118383_bib94) 1929; 21
Lu (10.1016/j.jenvman.2023.118383_bib87) 2020; 276
Yousuf (10.1016/j.jenvman.2023.118383_bib157) 2018; 18
Le Corre (10.1016/j.jenvman.2023.118383_bib69) 2009; 39
Abbona (10.1016/j.jenvman.2023.118383_bib2) 1985; 20
Guan (10.1016/j.jenvman.2023.118383_bib36) 2020; 52
Rabinovich (10.1016/j.jenvman.2023.118383_bib112) 2021; 1
Prywer (10.1016/j.jenvman.2023.118383_bib108) 2013; 375
Tansel (10.1016/j.jenvman.2023.118383_bib133) 2018; 194
Ohlinger (10.1016/j.jenvman.2023.118383_bib100) 1999; 125
Rubio-Rincón (10.1016/j.jenvman.2023.118383_bib119) 2014; 348
Wu (10.1016/j.jenvman.2023.118383_bib149) 2004; 3
Tarragó (10.1016/j.jenvman.2023.118383_bib135) 2016; 302
Ohlinger (10.1016/j.jenvman.2023.118383_bib101) 2000; 126
Bouropoulos (10.1016/j.jenvman.2023.118383_bib14) 2000; 213
Lu (10.1016/j.jenvman.2023.118383_bib86) 2021; 764
Hug (10.1016/j.jenvman.2023.118383_bib52) 2013; 47
Rahman (10.1016/j.jenvman.2023.118383_bib113) 2011; 186
Chen (10.1016/j.jenvman.2023.118383_bib19) 2020; 188
Narducci (10.1016/j.jenvman.2023.118383_bib99) 2011; 11
Qiu (10.1016/j.jenvman.2023.118383_bib110) 2017; 36
Song (10.1016/j.jenvman.2023.118383_bib127) 2021; 336
Rouff (10.1016/j.jenvman.2023.118383_bib117) 2012; 46
Guan (10.1016/j.jenvman.2023.118383_bib35) 2023; 64
Wagterveld (10.1016/j.jenvman.2023.118383_bib138) 2012; 12
Qureshi (10.1016/j.jenvman.2023.118383_bib111) 2008; 43
Ma (10.1016/j.jenvman.2023.118383_bib88) 2020; 172
Wang (10.1016/j.jenvman.2023.118383_bib140) 2013; 25
Ye (10.1016/j.jenvman.2023.118383_bib153) 2011; 64
De (10.1016/j.jenvman.2023.118383_bib26) 2018; 144
Sultana (10.1016/j.jenvman.2023.118383_bib131) 2023; 459
Mbanaso (10.1016/j.jenvman.2023.118383_bib93) 2023; 5
Xiao (10.1016/j.jenvman.2023.118383_bib151) 2018; 337
Adnan (10.1016/j.jenvman.2023.118383_bib4) 2003; 2
Liu (10.1016/j.jenvman.2023.118383_bib81) 2013; 13
Park (10.1016/j.jenvman.2023.118383_bib102) 2021; 21
Huang (10.1016/j.jenvman.2023.118383_bib44) 2016; 4
Lee (10.1016/j.jenvman.2023.118383_bib72) 2013; 372
Barbosa (10.1016/j.jenvman.2023.118383_bib11) 2016; 298
Hövelmann (10.1016/j.jenvman.2023.118383_bib43) 2016; 50
Wang (10.1016/j.jenvman.2023.118383_bib143) 2022; 10
Lin (10.1016/j.jenvman.2023.118383_bib80) 2013; 47
Rahman (10.1016/j.jenvman.2023.118383_bib114) 2014; 7
Huang (10.1016/j.jenvman.2023.118383_bib50) 2017; 317
Kataki (10.1016/j.jenvman.2023.118383_bib60) 2016; 107
Muhmood (10.1016/j.jenvman.2023.118383_bib97) 2018; 635
Zhou (10.1016/j.jenvman.2023.118383_bib166) 2015; 141
Ariyanto (10.1016/j.jenvman.2023.118383_bib6) 2014; 25
Dai (10.1016/j.jenvman.2023.118383_bib23) 2022; 446
Huang (10.1016/j.jenvman.2023.118383_bib49) 2019; 655
Zhang (10.1016/j.jenvman.2023.118383_bib160) 2012; 116
Desmidt (10.1016/j.jenvman.2023.118383_bib27) 2012; 65
Huang (10.1016/j.jenvman.2023.118383_bib47) 2011; 102
Mavhungu (10.1016/j.jenvman.2023.118383_bib92) 2020; 8
Ronteltap (10.1016/j.jenvman.2023.118383_bib116) 2010; 44
Zhang (10.1016/j.jenvman.2023.118383_bib162) 2009; 166
Hutnik (10.1016/j.jenvman.2023.118383_bib53) 2013; 247
Li (10.1016/j.jenvman.2023.118383_bib77) 2022; 351
Wang (10.1016/j.jenvman.2023.118383_bib144) 2020; 360
Fattah (10.1016/j.jenvman.2023.118383_bib31) 2008; 58
Song (10.1016/j.jenvman.2023.118383_bib128) 2014; 101
Devarakonda (10.1016/j.jenvman.2023.118383_bib28) 2004; 4
Davis (10.1016/j.jenvman.2023.118383_bib25) 2015; 198
Darwish (10.1016/j.jenvman.2023.118383_bib24) 2016; 45
Yetilmezsoy (10.1016/j.jenvman.2023.118383_bib156) 2009; 166
Li (10.1016/j.jenvman.2023.118383_bib73) 2019; 648
Zhang (10.1016/j.jenvman.2023.118383_bib161) 2021; 25
Sena (10.1016/j.jenvman.2023.118383_bib124) 2021; 280
Zangarini (10.1016/j.jenvman.2023.118383_bib159) 2020; 27
Di Capua (10.1016/j.jenvman.2023.118383_bib29) 2022; 823
Hounslow (10.1016/j.jenvman.2023.118383_bib42) 1988; 34
Romero-Güiza (10.1016/j.jenvman.2023.118383_bib115) 2015; 270
Pepè Sciarria (10.1016/j.jenvman.2023.118383_bib106) 2023; 155
Li (10.1016/j.jenvman.2023.118383_bib78) 2022; 221
Gu (10.1016/j.jenvman.2023.118383_bib34) 2015; 9
Lou (10.1016/j.jenvman.2023.118383_bib85) 2018; 201
Dai (10.1016/j.jenvman.2023.118383_bib22) 2014; 66
Guan (10.1016/j.jenvman.2023.118383_bib39) 2021; 293
Thorat (10.1016/j.jenvman.2023.118383_bib137) 2016; 30
Carrillo (10.1016/j.jenvman.2023.118383_bib18) 2020; 19
Abbona (10.1016/j.jenvman.2023.118383_bib1) 1979; 46
Koralewska (10.1016/j.jenvman.2023.118383_bib64) 2009; 17
Song (10.1016/j.jenvman.2023.118383_bib129) 2006; 63
Tao (10.1016/j.jenvman.2023.118383_bib134) 2016; 169
Kékedy-Nagy (10.1016/j.jenvman.2023.118383_bib61) 2022; 210
Mihelcic (10.1016/j.jenvman.2023.118383_bib96) 2011; 84
Alan (10.1016/j.jenvman.2023.118383_bib167) 2002
Liu (10.1016/j.jenvman.2023.118383_bib84) 2013; 88
Liu (10.1016/j.jenvman.2023.118383_bib83) 2021; 207
References_xml – volume: 372
  start-page: 129
  year: 2013
  end-page: 137
  ident: bib72
  article-title: Development and validation of an equilibrium model for struvite formation with calcium co-precipitation
  publication-title: J. Cryst. Growth
– volume: 7
  start-page: 139
  year: 2014
  end-page: 155
  ident: bib114
  article-title: Production of slow release crystal fertilizer from wastewaters through struvite crystallization – a review
  publication-title: Arab. J. Chem.
– volume: 46
  start-page: 12493
  year: 2012
  end-page: 12501
  ident: bib117
  article-title: Sorption of chromium with struvite during phosphorus recovery
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 350
  year: 2008
  end-page: 357
  ident: bib111
  article-title: Microwave treatment and struvite recovery potential of dairy manure
  publication-title: J. Environ. Sci. Heal., Part B
– volume: 336
  year: 2021
  ident: bib127
  article-title: Supersaturation control of struvite growth by operating pH
  publication-title: J. Mol. Liq.
– volume: 198
  start-page: 577
  year: 2015
  end-page: 585
  ident: bib25
  article-title: Growth of mono- and mixed cultures of nannochloropsis salina and phaeodactylum tricornutum on struvite as a nutrient source
  publication-title: Bioresour. Technol.
– volume: 61
  start-page: 2741
  year: 2010
  end-page: 2748
  ident: bib46
  article-title: Recovery of nitrogen from saponification wastewater by struvite precipitation
  publication-title: Water Sci. Technol.
– volume: 823
  year: 2022
  ident: bib29
  article-title: Phosphorous removal and recovery from urban wastewater: current practices and new directions
  publication-title: Sci. Total Environ.
– volume: 328
  year: 2021
  ident: bib37
  article-title: Phosphorus recovery and iron, copper precipitation from swine wastewater via struvite crystallization using various magnesium compounds
  publication-title: J. Clean. Prod.
– volume: 46
  start-page: 443
  year: 2011
  end-page: 449
  ident: bib54
  article-title: Continuous reaction crystallization of struvite from phosphate(V) solutions containing calcium ions
  publication-title: Cryst. Res. Technol.
– volume: 24
  start-page: 26901
  year: 2017
  end-page: 26909
  ident: bib150
  article-title: Recovery of phosphate from the supernatant of activated sludge pretreated by microwave irradiation through chemical precipitation
  publication-title: Environ. Sci. Pollut. Res.
– volume: 276
  year: 2020
  ident: bib87
  article-title: The incorporation of Pb2+ during struvite precipitation: quantitative, morphological and structural analysis
  publication-title: J. Environ. Manag.
– volume: 15
  start-page: 1446
  year: 2015
  end-page: 1451
  ident: bib109
  article-title: Aggregation of struvite, carbonate apatite, and proteus mirabilis as a key factor of infectious urinary stone formation
  publication-title: Cryst. Growth Des.
– volume: 17
  start-page: 330
  year: 2009
  end-page: 339
  ident: bib64
  article-title: Kinetics of reaction-crystallization of struvite in the continuous draft tube magma type crystallizers—influence of different internal hydrodynamics
  publication-title: Chin. J. Chem. Eng.
– volume: 39
  start-page: 433
  year: 2009
  end-page: 477
  ident: bib69
  article-title: Phosphorus recovery from wastewater by struvite crystallization: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 52
  start-page: 463
  year: 2020
  end-page: 471
  ident: bib36
  article-title: Effect of magnetic field on sodium arsenate metastable zone width and crystal nucleation kinetics for crystallization
  publication-title: Int. J. Chem. Kinet.
– volume: 9
  year: 2021
  ident: bib65
  article-title: Engineering principles and process designs for phosphorus recovery as struvite: a comprehensive review
  publication-title: J. Environ. Chem. Eng.
– volume: 70
  start-page: 144
  year: 2018
  end-page: 153
  ident: bib141
  article-title: Selection of cost-effective magnesium sources for fluidized struvite crystallization
  publication-title: J. Environ. Sci. (China)
– volume: 25
  start-page: 1496
  year: 2021
  end-page: 1511
  ident: bib161
  article-title: Progress and opportunities for utilizing seeding techniques in crystallization processes
  publication-title: Org. Process Res. Dev.
– volume: 672
  start-page: 88
  year: 2019
  end-page: 96
  ident: bib5
  article-title: P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources
  publication-title: Sci. Total Environ.
– volume: 272
  year: 2020
  ident: bib74
  article-title: Minimizing heavy metals in recovered struvite from swine wastewater after anaerobic biochemical treatment: reaction mechanisms and pilot test
  publication-title: J. Clean. Prod.
– volume: 207
  year: 2021
  ident: bib83
  article-title: A review on the incorporation and potential mechanism of heavy metals on the recovered struvite from wastewater
  publication-title: Water Res.
– volume: 351
  year: 2022
  ident: bib77
  article-title: Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: multivariate and multiscale investigations
  publication-title: Bioresour. Technol.
– volume: 303
  year: 2022
  ident: bib41
  article-title: Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology
  publication-title: Sep. Purif. Technol.
– volume: 102
  start-page: 2523
  year: 2011
  end-page: 2528
  ident: bib47
  article-title: Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology
  publication-title: Bioresour. Technol.
– volume: 188
  year: 2021
  ident: bib152
  article-title: Dissolving the high-cost with acidity: a happy encounter between fluidized struvite crystallization and wastewater from activated carbon manufacture
  publication-title: Water Res.
– volume: 101
  start-page: 41
  year: 2014
  end-page: 48
  ident: bib128
  article-title: Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater
  publication-title: Chemosphere
– volume: 30
  start-page: 35
  year: 2016
  end-page: 43
  ident: bib137
  article-title: Ultrasound-assisted modulation of concomitant polymorphism of curcumin during liquid antisolvent precipitation
  publication-title: Ultrason. Sonochem.
– volume: 11
  start-page: 1742
  year: 2011
  end-page: 1749
  ident: bib99
  article-title: An assessment of the use of ultrasound in the particle engineering of micrometer-scale adipic acid crystals
  publication-title: Cryst. Growth Des.
– volume: 40
  start-page: 1210
  year: 2006
  end-page: 1216
  ident: bib59
  article-title: P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral
  publication-title: Water Res.
– volume: 25
  start-page: 2435
  year: 2013
  end-page: 2442
  ident: bib140
  article-title: Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China
  publication-title: J. Environ. Sci. (China)
– volume: 384
  start-page: 160
  year: 2018
  end-page: 164
  ident: bib132
  article-title: Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell
  publication-title: J. Power Sources
– volume: 65
  start-page: 1954
  year: 2012
  end-page: 1962
  ident: bib27
  article-title: Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale
  publication-title: Water Sci. Technol.
– volume: 271
  year: 2021
  ident: bib33
  article-title: Recovering heavy metals from electroplating wastewater and their conversion into Zn2Cr-layered double hydroxide (LDH) for pyrophosphate removal from industrial wastewater
  publication-title: Chemosphere
– volume: 12
  start-page: 14504
  year: 2020
  end-page: 14513
  ident: bib17
  article-title: Impact of water on the lubricating properties of hexadecane at the nanoscale
  publication-title: Nanoscale
– volume: 126
  start-page: 361
  year: 2000
  end-page: 368
  ident: bib101
  article-title: Postdigestion struvite precipitation using a fluidized bed reactor
  publication-title: J. Environ. Eng.
– volume: 250
  year: 2020
  ident: bib12
  article-title: Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions
  publication-title: Chemosphere
– volume: 159
  start-page: 280
  year: 2010
  end-page: 283
  ident: bib139
  article-title: Formation of pure struvite at neutral pH by electrochemical deposition
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 183
  year: 2010
  ident: bib8
  article-title: New design & build biological system through the use of microalgae addressed to sustainable development
  publication-title: J. Environ. Prot. Ecol.
– volume: 504
  year: 2021
  ident: bib16
  article-title: Factors affecting phosphorus recovery as struvite: effects of alternative magnesium sources
  publication-title: Desalination
– volume: 621
  start-page: 849
  year: 2018
  end-page: 862
  ident: bib57
  article-title: Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: a national perspective on eutrophication
  publication-title: Sci. Total Environ.
– volume: 36
  start-page: 123
  year: 2017
  end-page: 128
  ident: bib110
  article-title: Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate
  publication-title: Ultrason. Sonochem.
– volume: 648
  start-page: 1244
  year: 2019
  end-page: 1256
  ident: bib73
  article-title: Phosphorous recovery through struvite crystallization: challenges for future design
  publication-title: Sci. Total Environ.
– year: 2018
  ident: bib10
  publication-title: Algae to Energy and Sustainable Development. Technologies, Resources, Economics and System analyses. New Design of Global Environmental Policy and Live Conserve Industry
– volume: 58
  start-page: 957
  year: 2008
  end-page: 962
  ident: bib31
  article-title: Reducing operating costs for struvite formation with a carbon dioxide stripper
  publication-title: Water Sci. Technol.
– volume: 28
  start-page: 1245
  year: 2007
  end-page: 1256
  ident: bib68
  article-title: Impact of reactor operation on success of struvite precipitation from synthetic liquors
  publication-title: Environ. Technol.
– volume: 35
  start-page: 3011
  year: 2014
  end-page: 3019
  ident: bib62
  article-title: Phosphorus recovery: minimization of amount of pharmaceuticals and improvement of purity in struvite recovered from hydrolysed urine
  publication-title: Environ. Technol.
– volume: 293
  year: 2021
  ident: bib39
  article-title: Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process
  publication-title: J. Environ. Manag.
– volume: 459
  year: 2023
  ident: bib131
  article-title: The implications of pulsating anode potential on the electrochemical recovery of phosphate as magnesium ammonium phosphate hexahydrate (struvite)
  publication-title: Chem. Eng. J.
– volume: 635
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib97
  article-title: Nutrient recovery from anaerobically digested chicken slurry via struvite: performance optimization and interactions with heavy metals and pathogens
  publication-title: Sci. Total Environ.
– volume: 27
  start-page: 5730
  year: 2020
  end-page: 5743
  ident: bib159
  article-title: Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies
  publication-title: Environ. Sci. Pollut. Res.
– volume: 50
  start-page: 13032
  year: 2016
  end-page: 13041
  ident: bib43
  article-title: In situ nanoscale imaging of struvite formation during the dissolution of natural brucite: implications for phosphorus recovery from wastewaters
  publication-title: Environ. Sci. Technol.
– volume: 25
  start-page: 1033
  year: 2018
  end-page: 1042
  ident: bib103
  article-title: Thermodynamics, kinetics and mechanism analysis of Cu(II) adsorption by in-situ synthesized struvite crystal
  publication-title: J. Cent. South Univ.
– volume: 35
  start-page: 2781
  year: 2014
  end-page: 2787
  ident: bib82
  article-title: Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor
  publication-title: Environ. Technol.
– volume: 39
  start-page: 29
  year: 2016
  end-page: 36
  ident: bib147
  article-title: Effect of organic matter on phosphorus recovery from sewage sludge subjected to microwave hybrid pretreatment
  publication-title: J. Environ. Sci. (China)
– volume: 7
  start-page: 2035
  year: 2019
  end-page: 2043
  ident: bib76
  article-title: Controlled synthesis of struvite nanowires in synthetic wastewater
  publication-title: ACS Sustain. Chem. Eng.
– volume: 92
  start-page: 325
  year: 2017
  end-page: 333
  ident: bib104
  article-title: Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation: a comparative research
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 169
  start-page: 46
  year: 2016
  end-page: 57
  ident: bib134
  article-title: Struvite recovery from anaerobically digested dairy manure: a review of application potential and hindrances
  publication-title: J. Environ. Manag.
– volume: 46
  start-page: 8791
  year: 2012
  end-page: 8798
  ident: bib89
  article-title: Influence of pH and oxidation state on the interaction of arsenic with struvite during mineralformation
  publication-title: Environ. Sci. Technol.
– volume: 2
  start-page: 315
  year: 2003
  end-page: 324
  ident: bib4
  article-title: Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility
  publication-title: J. Environ. Eng. Sci.
– volume: 698
  year: 2020
  ident: bib164
  article-title: Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer
  publication-title: Sci. Total Environ.
– volume: 17
  start-page: 400
  year: 2015
  end-page: 453
  ident: bib7
  article-title: Review of recent developments in the field of magnesium corrosion
  publication-title: Adv. Eng. Mater.
– volume: 64
  start-page: 334
  year: 2011
  end-page: 340
  ident: bib153
  article-title: Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source
  publication-title: Water Sci. Technol.
– volume: 35
  start-page: 4191
  year: 2001
  end-page: 4199
  ident: bib130
  article-title: Conditions influencing the precipitation of magnesium ammonium phosphate
  publication-title: Water Res.
– volume: 226
  year: 2020
  ident: bib107
  article-title: Sonocrystallization: monitoring and controlling crystallization using ultrasound
  publication-title: Chem. Eng. Sci.
– volume: 64
  start-page: 138
  year: 2023
  end-page: 164
  ident: bib35
  article-title: Stimuli responsive metal organic framework materials towards advanced smart application
  publication-title: Mater. Today
– volume: 4
  start-page: 687
  year: 2004
  end-page: 690
  ident: bib28
  article-title: Impact of ultrasonic energy on the flow crystallization of dextrose monohydrate
  publication-title: Cryst. Growth Des.
– volume: 51
  start-page: 2776
  year: 2013
  end-page: 2780
  ident: bib32
  article-title: Organic pollutants removal and recovery from animal wastewater by mesoporous struvite precipitation
  publication-title: Desalination Water Treat.
– volume: 655
  start-page: 211
  year: 2019
  end-page: 219
  ident: bib49
  article-title: Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources
  publication-title: Sci. Total Environ.
– volume: 330
  year: 2023
  ident: bib142
  article-title: Applying struvite as a N-fertilizer to mitigate N2O emissions in agriculture: feasibility and mechanism
  publication-title: J. Environ. Manag.
– volume: 5
  year: 2023
  ident: bib93
  article-title: Investigation of impact of slow-release fertilizer and struvite on biodegradation rate of diesel-contaminated soils
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 385
  year: 2020
  ident: bib154
  article-title: Investigation of tetracyclines transport in the presence of dissolved organic matters during struvite recovery from swine wastewater
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 4385
  year: 2013
  end-page: 4394
  ident: bib81
  article-title: Influence of agitation and fluid shear on primary nucleation in solution
  publication-title: Cryst. Growth Des.
– volume: 26
  start-page: 991
  year: 2014
  end-page: 1000
  ident: bib155
  article-title: Phosphorus recovery from wastewater by struvite crystallization: property of aggregates
  publication-title: J. Environ. Sci. (China)
– volume: 247
  start-page: 3635
  year: 2013
  end-page: 3643
  ident: bib53
  article-title: Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process
  publication-title: Water Res.
– volume: 84
  start-page: 832
  year: 2011
  end-page: 839
  ident: bib96
  article-title: Global potential of phosphorus recovery from human urine and feces
  publication-title: Chemosphere
– volume: 63
  start-page: 236
  year: 2006
  end-page: 243
  ident: bib129
  article-title: Calcite-seeded crystallization of calcium phosphate for phosphorus recovery
  publication-title: Chemosphere
– volume: 360
  year: 2020
  ident: bib144
  article-title: Effect of organics on Cu and Cr in recovered struvite from synthetic swine wastewater
  publication-title: J. Clean. Prod.
– volume: 348
  start-page: 49
  year: 2014
  end-page: 56
  ident: bib119
  article-title: Seawater for phosphorus recovery from urine
  publication-title: Desalination
– volume: 419
  start-page: 68
  year: 2012
  end-page: 75
  ident: bib122
  article-title: Wood ash as a magnesium source for phosphorus recovery from source-separated urine
  publication-title: Sci. Total Environ.
– volume: 20
  start-page: 133
  year: 1985
  end-page: 140
  ident: bib2
  article-title: Nucleation of struvite (MgNH4PO4• 6H2O) single crystals and aggregates
  publication-title: Cryst. Res. Technol.
– year: 2002
  ident: bib167
  publication-title: Crystallization process systems
– volume: 141
  start-page: 67
  year: 2008
  end-page: 74
  ident: bib91
  article-title: Struvite precipitation assessment in anaerobic digestion processes
  publication-title: Chem. Eng. J.
– volume: 166
  start-page: 260
  year: 2009
  end-page: 269
  ident: bib156
  article-title: Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer
  publication-title: J. Hazard Mater.
– volume: 156
  start-page: 163
  year: 2008
  end-page: 169
  ident: bib121
  article-title: Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater
  publication-title: J. Hazard Mater.
– volume: 1
  start-page: 910
  year: 2021
  end-page: 918
  ident: bib112
  article-title: Effect of phenolic organics on the precipitation of struvite from simulated dairy wastewater
  publication-title: ACS ES&T Water
– volume: 127
  start-page: 302
  year: 2016
  end-page: 310
  ident: bib51
  article-title: Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology
  publication-title: J. Clean. Prod.
– volume: 66
  start-page: 75
  year: 2014
  end-page: 84
  ident: bib22
  article-title: An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR)
  publication-title: Water Res.
– volume: 125
  start-page: 730
  year: 1999
  end-page: 737
  ident: bib100
  article-title: Kinetics effects on preferential struvite accumulation in wastewater
  publication-title: J. Environ. Eng.
– volume: 337
  start-page: 265
  year: 2018
  end-page: 274
  ident: bib151
  article-title: Utilizing the supernatant of waste sulfuric acid after dolomite neutralization to recover nutrients from swine wastewater
  publication-title: Chem. Eng. J.
– volume: 36
  start-page: 3925
  year: 2002
  end-page: 3940
  ident: bib30
  article-title: Struvite formation, control and recovery
  publication-title: Water Res.
– volume: 173
  start-page: 466
  year: 2017
  end-page: 473
  ident: bib126
  article-title: Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions
  publication-title: Chemosphere
– volume: 107
  start-page: 676
  year: 2015
  end-page: 692
  ident: bib158
  article-title: Towards more accurate life cycle assessment of biological wastewater treatment plants: a review
  publication-title: J. Clean. Prod.
– volume: 116
  start-page: 386
  year: 2012
  end-page: 395
  ident: bib160
  article-title: Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 3688
  year: 2016
  end-page: 3696
  ident: bib44
  article-title: Highly efficient recovery of ammonium nitrogen from coking wastewater by coupling struvite precipitation and microwave radiation technology
  publication-title: ACS Sustain. Chem. Eng.
– volume: 317
  start-page: 640
  year: 2017
  end-page: 650
  ident: bib50
  article-title: A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 339
  year: 1979
  end-page: 354
  ident: bib1
  article-title: Growth morphology and crystal habit of struvite crystals (MgNH4PO4 · 6 H2O)
  publication-title: J. Cryst. Growth
– volume: 34
  start-page: 1821
  year: 1988
  end-page: 1832
  ident: bib42
  article-title: A discretized population balance for nucleation, growth, and aggregation
  publication-title: AIChE J.
– year: 2001
  ident: bib98
  article-title: Crystallization
– volume: 108
  start-page: 103
  year: 2013
  end-page: 110
  ident: bib67
  article-title: Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(II) source
  publication-title: Sep. Purif. Technol.
– volume: 213
  start-page: 381
  year: 2000
  end-page: 388
  ident: bib14
  article-title: Spontaneous precipitation of struvite from aqueous solutions
  publication-title: J. Cryst. Growth
– volume: 32
  start-page: 4358
  year: 2020
  end-page: 4368
  ident: bib95
  article-title: Continuous nucleation and size dependent growth kinetics of indium phosphide nanocrystals
  publication-title: Chem. Mater.
– volume: 43
  start-page: 59
  year: 2013
  end-page: 70
  ident: bib66
  article-title: Turning hazardous waste into value-added products: production and characterization of struvite from ammoniacal waste with new approaches
  publication-title: J. Clean. Prod.
– volume: 201
  start-page: 678
  year: 2018
  end-page: 685
  ident: bib85
  article-title: Occurrence and ecological risks of veterinary antibiotics in struvite recovered from swine wastewater
  publication-title: J. Clean. Prod.
– volume: 51
  start-page: 222
  year: 2017
  end-page: 233
  ident: bib105
  article-title: Study on the mechanism of copper–ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal
  publication-title: J. Environ. Sci. (China)
– volume: 270
  start-page: 542
  year: 2015
  end-page: 548
  ident: bib115
  article-title: Feasibility of coupling anaerobic digestion and struvite precipitation in the same reactor: evaluation of different magnesium sources
  publication-title: Chem. Eng. J.
– volume: 454
  year: 2023
  ident: bib148
  article-title: Concurrent recovery of ammonia and phosphate by an electrochemical nutrients recovery system with authigenic acid and base
  publication-title: Chem. Eng. J.
– volume: 43
  start-page: 5209
  year: 2009
  end-page: 5215
  ident: bib163
  article-title: Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology
  publication-title: Water Res.
– volume: 9
  start-page: 3127
  year: 2015
  end-page: 3133
  ident: bib34
  article-title: Phosphorus recovery from sludge fermentation broth by cow-bone powder-seeded crystallization of calcium phosphate
  publication-title: Chinese J. Environ. Eng.
– volume: 145
  start-page: 191
  year: 2014
  end-page: 198
  ident: bib45
  article-title: Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources
  publication-title: J. Environ. Manag.
– volume: 155
  start-page: 252
  year: 2023
  end-page: 259
  ident: bib106
  article-title: Phosphorus recovery from high solid content liquid fraction of digestate using seawater bittern as the magnesium source
  publication-title: Waste Manage. (Tucson, Ariz.)
– volume: 335
  year: 2023
  ident: bib145
  article-title: Competitive adsorption of heavy metals between Ca–P and Mg–P products from wastewater during struvite crystallization
  publication-title: J. Environ. Manag.
– volume: 25
  start-page: 682
  year: 2014
  end-page: 694
  ident: bib6
  article-title: The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation
  publication-title: Adv. Powder Technol.
– volume: 446
  year: 2022
  ident: bib23
  article-title: Preparation and application of MgO-loaded tobermorite to simultaneously remove nitrogen and phosphorus from wastewater
  publication-title: Chem. Eng. J.
– volume: 9
  start-page: 923
  year: 2005
  end-page: 932
  ident: bib120
  article-title: Sonocrystallization: the use of ultrasound for improved industrial crystallization
  publication-title: Org. Process Res. Dev.
– volume: 298
  start-page: 146
  year: 2016
  end-page: 153
  ident: bib11
  article-title: A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources
  publication-title: Chem. Eng. J.
– volume: 256
  year: 2020
  ident: bib125
  article-title: Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization
  publication-title: Chemosphere
– volume: 141
  start-page: 94
  year: 2015
  end-page: 99
  ident: bib166
  article-title: Effect of humic substances on phosphorus removal by struvite precipitation
  publication-title: Chemosphere
– volume: 48
  start-page: 6342
  year: 2014
  end-page: 6349
  ident: bib118
  article-title: Zinc interaction with struvite during and after mineral formation
  publication-title: Environ. Sci. Technol.
– volume: 100
  start-page: 74
  year: 2009
  end-page: 78
  ident: bib63
  article-title: Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater
  publication-title: Bioresour. Technol.
– volume: 168
  start-page: 338
  year: 2017
  end-page: 345
  ident: bib48
  article-title: Phosphate recovery from swine wastewater using plant ash in chemical crystallization
  publication-title: J. Clean. Prod.
– volume: 47
  start-page: 289
  year: 2013
  end-page: 299
  ident: bib52
  article-title: Struvite precipitation from urine with electrochemical magnesium dosage
  publication-title: Water Res.
– volume: 12
  start-page: 4403
  year: 2012
  end-page: 4410
  ident: bib138
  article-title: Effect of ultrasonic treatment on early growth during CaCO3 precipitation
  publication-title: Cryst. Growth Des.
– volume: 88
  start-page: 181
  year: 2013
  end-page: 189
  ident: bib84
  article-title: Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 44
  start-page: 813
  year: 1972
  end-page: 819
  ident: bib13
  article-title: Phosphate deposits in digestion systems
  publication-title: J. Water Pollut. Control Fed.
– volume: 87
  start-page: 126
  year: 2014
  end-page: 136
  ident: bib90
  article-title: Added-value from innovative value chains by establishing nutrient cycles via struvite
  publication-title: Resour. Conserv. Recycl.
– volume: 10
  year: 2022
  ident: bib143
  article-title: Biochar-seeded struvite precipitation for simultaneous nutrient recovery and chemical oxygen demand removal in leachate: from laboratory to pilot scale
  publication-title: Front. Chem.
– volume: 764
  year: 2021
  ident: bib86
  article-title: Co-precipitation of Cu and Zn in precipitation of struvite
  publication-title: Sci. Total Environ.
– volume: 172
  year: 2020
  ident: bib88
  article-title: Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C
  publication-title: Water Res.
– volume: 8
  year: 2020
  ident: bib146
  article-title: Adsorption and precipitation behaviors of zinc, copper and tetracycline with struvite products obtained by phosphorus recovery from swine wastewater
  publication-title: J. Environ. Chem. Eng.
– volume: 221
  year: 2022
  ident: bib78
  article-title: Struvite crystallization by using active serpentine: an innovative application for the economical and efficient recovery of phosphorus from black water
  publication-title: Water Res.
– volume: 29
  start-page: 1157
  year: 2008
  end-page: 1167
  ident: bib55
  article-title: An Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer
  publication-title: Environ. Technol.
– volume: 261
  start-page: 29
  year: 2013
  end-page: 37
  ident: bib71
  article-title: Enhancement of struvite purity by re-dissolution of calcium ions in synthetic wastewaters
  publication-title: J. Hazard Mater.
– volume: 45
  start-page: 261
  year: 2016
  end-page: 274
  ident: bib24
  article-title: Ammonium-nitrogen recovery from wastewater by struvite crystallization technology
  publication-title: Separ. Purif. Rev.
– volume: 210
  year: 2022
  ident: bib61
  article-title: Electrochemical nutrient removal from natural wastewater sources and its impact on water quality
  publication-title: Water Res.
– volume: 166
  start-page: 911
  year: 2009
  end-page: 915
  ident: bib162
  article-title: Pretreatment of ammonium removal from landfill leachate by chemical precipitation
  publication-title: J. Hazard Mater.
– volume: 13
  start-page: 431
  year: 2011
  end-page: 445
  ident: bib9
  article-title: Water global recourse management through the use of microalgae addressed to sustainable development
  publication-title: Clean Technol. Environ. Policy
– volume: 49
  start-page: 8611
  year: 2015
  end-page: 8622
  ident: bib15
  article-title: Environmental benefits and burdens of phosphorus recovery from municipal wastewater
  publication-title: Environ. Sci. Technol.
– volume: 194
  start-page: 504
  year: 2018
  end-page: 514
  ident: bib133
  article-title: Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia-phosphate interactions
  publication-title: Chemosphere
– volume: 55
  start-page: 3085
  year: 2000
  end-page: 3090
  ident: bib136
  article-title: The rate enhancing effect of ultrasound by inducing supersaturation in a solid–liquid system
  publication-title: Chem. Eng. Sci.
– volume: 19
  start-page: 389
  year: 2020
  end-page: 418
  ident: bib18
  article-title: Characterization and recovery of phosphorus from wastewater by combined technologies
  publication-title: Rev. Environ. Sci. Biotechnol.
– volume: 53
  start-page: 1
  year: 2022
  end-page: 25
  ident: bib165
  article-title: Recovery of phosphorus from wastewater: a review based on current phosphorous removal technologies
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 156
  start-page: 619
  year: 2008
  end-page: 623
  ident: bib40
  article-title: Use of magnesit as a magnesium source for ammonium removal from leachate
  publication-title: J. Hazard Mater.
– volume: 36
  start-page: 1834
  year: 2002
  end-page: 1842
  ident: bib56
  article-title: Potential phosphorus recovery by struvite formation
  publication-title: Water Res.
– volume: 172
  year: 2020
  ident: bib123
  article-title: An exploration of economic valuation of phosphorus in the environment and its implications in decision making for resource recovery
  publication-title: Water Res.
– volume: 188
  year: 2020
  ident: bib19
  article-title: Thermal decomposition of struvite pellet by microwave radiation and recycling of its product to remove ammonium and phosphate from urine
  publication-title: Environ. Res.
– volume: 144
  start-page: 76
  year: 2018
  end-page: 86
  ident: bib26
  article-title: Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification
  publication-title: Water Res.
– volume: 107
  start-page: 142
  year: 2016
  end-page: 156
  ident: bib60
  article-title: Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential
  publication-title: Resour. Conserv. Recycl.
– volume: 21
  year: 2021
  ident: bib102
  article-title: Prediction of adequate pH and Mg2+ dosage using an empirical MgO solubility model for struvite crystallization
  publication-title: Environ. Technol. Innov.
– volume: 23
  start-page: 49
  year: 2010
  end-page: 54
  ident: bib58
  article-title: Preliminary study of calcium silicate hydrate (tobermorite) as crystal material to recovery phosphate from wastewater
  publication-title: Desalination Water Treat.
– volume: 47
  start-page: 12728
  year: 2013
  end-page: 12735
  ident: bib80
  article-title: Arsenic incorporation in synthetic struvite (NH4MgPO4·6H2O): a synchrotron XAS and single-crystal EPR study
  publication-title: Environ. Sci. Technol.
– volume: 9
  year: 2021
  ident: bib38
  article-title: Highly efficient phosphorus and potassium recovery from urine via crystallization process in a fluidized bed reactor system
  publication-title: J. Environ. Chem. Eng.
– volume: 375
  start-page: 108
  year: 2013
  end-page: 114
  ident: bib108
  article-title: Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite
  publication-title: J. Cryst. Growth
– volume: 44
  start-page: 2038
  year: 2010
  end-page: 2046
  ident: bib116
  article-title: Struvite precipitation from urine – influencing factors on particle size
  publication-title: Water Res.
– volume: 302
  start-page: 819
  year: 2016
  end-page: 827
  ident: bib135
  article-title: Controlling struvite particles' size using the up-flow velocity
  publication-title: Chem. Eng. J.
– volume: 3
  start-page: 21
  year: 2004
  end-page: 29
  ident: bib149
  article-title: Enhancing struvite crystallization from anaerobic supernatant
  publication-title: J. Environ. Eng. Sci.
– volume: 140
  start-page: 945
  year: 2017
  end-page: 963
  ident: bib21
  article-title: Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation
  publication-title: J. Clean. Prod.
– volume: 18
  start-page: 6843
  year: 2018
  end-page: 6852
  ident: bib157
  article-title: Experimental evaluation of fluid shear stress impact on secondary nucleation in a solution crystallization of paracetamol
  publication-title: Cryst. Growth Des.
– volume: 3
  start-page: 195
  year: 2004
  end-page: 202
  ident: bib3
  article-title: Preliminary investigation into factors affecting controlled struvite crystallization at the bench scale
  publication-title: J. Environ. Eng. Sci.
– volume: 248
  year: 2019
  ident: bib75
  article-title: Phosphorus recovery through struvite crystallisation: recent developments in the understanding of operational factors
  publication-title: J. Environ. Manag.
– volume: 9
  year: 2021
  ident: bib70
  article-title: Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process
  publication-title: J. Environ. Chem. Eng.
– volume: 8
  year: 2020
  ident: bib92
  article-title: Advocating circular economy in wastewater treatment: struvite formation and drinking water reclamation from real municipal effluents
  publication-title: J. Environ. Chem. Eng.
– volume: 21
  start-page: 30
  year: 1929
  end-page: 33
  ident: bib94
  article-title: Crystal growth in aqueous solutions1: I—theory
  publication-title: Ind. Eng. Chem.
– volume: 262
  year: 2021
  ident: bib79
  article-title: Recovery phosphate and ammonium from aqueous solution by the process of electrochemically decomposing dolomite
  publication-title: Chemosphere
– volume: 186
  start-page: 2026
  year: 2011
  end-page: 2030
  ident: bib113
  article-title: Recovery of struvite from animal wastewater and its nutrient leaching loss in soil
  publication-title: J. Hazard Mater.
– volume: 280
  year: 2021
  ident: bib124
  article-title: Environmental impacts of phosphorus recovery through struvite precipitation in wastewater treatment
  publication-title: J. Clean. Prod.
– volume: 21
  start-page: 575
  year: 2009
  end-page: 580
  ident: bib20
  article-title: Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal
  publication-title: J. Environ. Sci. (China)
– volume: 303
  year: 2022
  ident: 10.1016/j.jenvman.2023.118383_bib41
  article-title: Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2022.122192
– volume: 84
  start-page: 832
  year: 2011
  ident: 10.1016/j.jenvman.2023.118383_bib96
  article-title: Global potential of phosphorus recovery from human urine and feces
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.02.046
– volume: 107
  start-page: 676
  year: 2015
  ident: 10.1016/j.jenvman.2023.118383_bib158
  article-title: Towards more accurate life cycle assessment of biological wastewater treatment plants: a review
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.05.060
– volume: 20
  start-page: 133
  year: 1985
  ident: 10.1016/j.jenvman.2023.118383_bib2
  article-title: Nucleation of struvite (MgNH4PO4• 6H2O) single crystals and aggregates
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.2170200204
– volume: 32
  start-page: 4358
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib95
  article-title: Continuous nucleation and size dependent growth kinetics of indium phosphide nanocrystals
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c01561
– volume: 504
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib16
  article-title: Factors affecting phosphorus recovery as struvite: effects of alternative magnesium sources
  publication-title: Desalination
  doi: 10.1016/j.desal.2021.114949
– volume: 141
  start-page: 94
  year: 2015
  ident: 10.1016/j.jenvman.2023.118383_bib166
  article-title: Effect of humic substances on phosphorus removal by struvite precipitation
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.06.089
– volume: 672
  start-page: 88
  year: 2019
  ident: 10.1016/j.jenvman.2023.118383_bib5
  article-title: P-recovery in a pilot-scale struvite crystallisation reactor for source separated urine systems using seawater and magnesium chloride as magnesium sources
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.485
– volume: 271
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib33
  article-title: Recovering heavy metals from electroplating wastewater and their conversion into Zn2Cr-layered double hydroxide (LDH) for pyrophosphate removal from industrial wastewater
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129861
– volume: 25
  start-page: 1496
  issue: 7
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib161
  article-title: Progress and opportunities for utilizing seeding techniques in crystallization processes
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/acs.oprd.1c00103
– volume: 46
  start-page: 339
  year: 1979
  ident: 10.1016/j.jenvman.2023.118383_bib1
  article-title: Growth morphology and crystal habit of struvite crystals (MgNH4PO4 · 6 H2O)
  publication-title: J. Cryst. Growth
  doi: 10.1016/0022-0248(79)90082-4
– volume: 8
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib92
  article-title: Advocating circular economy in wastewater treatment: struvite formation and drinking water reclamation from real municipal effluents
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.103957
– year: 2002
  ident: 10.1016/j.jenvman.2023.118383_bib167
– volume: 459
  year: 2023
  ident: 10.1016/j.jenvman.2023.118383_bib131
  article-title: The implications of pulsating anode potential on the electrochemical recovery of phosphate as magnesium ammonium phosphate hexahydrate (struvite)
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.141522
– volume: 261
  start-page: 29
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib71
  article-title: Enhancement of struvite purity by re-dissolution of calcium ions in synthetic wastewaters
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2013.06.072
– volume: 18
  start-page: 6843
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib157
  article-title: Experimental evaluation of fluid shear stress impact on secondary nucleation in a solution crystallization of paracetamol
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b01074
– volume: 44
  start-page: 2038
  year: 2010
  ident: 10.1016/j.jenvman.2023.118383_bib116
  article-title: Struvite precipitation from urine – influencing factors on particle size
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.12.015
– volume: 21
  start-page: 575
  year: 2009
  ident: 10.1016/j.jenvman.2023.118383_bib20
  article-title: Phosphate removal and recovery through crystallization of hydroxyapatite using xonotlite as seed crystal
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/S1001-0742(08)62310-4
– volume: 188
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib152
  article-title: Dissolving the high-cost with acidity: a happy encounter between fluidized struvite crystallization and wastewater from activated carbon manufacture
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.116521
– volume: 15
  start-page: 1446
  year: 2015
  ident: 10.1016/j.jenvman.2023.118383_bib109
  article-title: Aggregation of struvite, carbonate apatite, and proteus mirabilis as a key factor of infectious urinary stone formation
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg5018032
– volume: 21
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib102
  article-title: Prediction of adequate pH and Mg2+ dosage using an empirical MgO solubility model for struvite crystallization
  publication-title: Environ. Technol. Innov.
  doi: 10.1016/j.eti.2020.101347
– volume: 7
  start-page: 139
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib114
  article-title: Production of slow release crystal fertilizer from wastewaters through struvite crystallization – a review
  publication-title: Arab. J. Chem.
  doi: 10.1016/j.arabjc.2013.10.007
– volume: 337
  start-page: 265
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib151
  article-title: Utilizing the supernatant of waste sulfuric acid after dolomite neutralization to recover nutrients from swine wastewater
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.12.097
– volume: 3
  start-page: 21
  year: 2004
  ident: 10.1016/j.jenvman.2023.118383_bib149
  article-title: Enhancing struvite crystallization from anaerobic supernatant
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/s03-050
– volume: 4
  start-page: 687
  year: 2004
  ident: 10.1016/j.jenvman.2023.118383_bib28
  article-title: Impact of ultrasonic energy on the flow crystallization of dextrose monohydrate
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg034173m
– volume: 27
  start-page: 5730
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib159
  article-title: Phosphorus removal from livestock effluents: recent technologies and new perspectives on low-cost strategies
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-019-07542-4
– volume: 11
  start-page: 1742
  year: 2011
  ident: 10.1016/j.jenvman.2023.118383_bib99
  article-title: An assessment of the use of ultrasound in the particle engineering of micrometer-scale adipic acid crystals
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg1016593
– volume: 226
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib107
  article-title: Sonocrystallization: monitoring and controlling crystallization using ultrasound
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115911
– volume: 336
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib127
  article-title: Supersaturation control of struvite growth by operating pH
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.116293
– volume: 272
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib74
  article-title: Minimizing heavy metals in recovered struvite from swine wastewater after anaerobic biochemical treatment: reaction mechanisms and pilot test
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.122649
– volume: 34
  start-page: 1821
  year: 1988
  ident: 10.1016/j.jenvman.2023.118383_bib42
  article-title: A discretized population balance for nucleation, growth, and aggregation
  publication-title: AIChE J.
  doi: 10.1002/aic.690341108
– volume: 317
  start-page: 640
  year: 2017
  ident: 10.1016/j.jenvman.2023.118383_bib50
  article-title: A pilot-scale investigation on the recovery of zinc and phosphate from phosphating wastewater by step precipitation and crystallization
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.02.112
– volume: 43
  start-page: 350
  year: 2008
  ident: 10.1016/j.jenvman.2023.118383_bib111
  article-title: Microwave treatment and struvite recovery potential of dairy manure
  publication-title: J. Environ. Sci. Heal., Part B
  doi: 10.1080/03601230801941709
– volume: 298
  start-page: 146
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib11
  article-title: A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.148
– volume: 302
  start-page: 819
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib135
  article-title: Controlling struvite particles' size using the up-flow velocity
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.06.036
– volume: 655
  start-page: 211
  year: 2019
  ident: 10.1016/j.jenvman.2023.118383_bib49
  article-title: Alleviating Na+ effect on phosphate and potassium recovery from synthetic urine by K-struvite crystallization using different magnesium sources
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.259
– volume: 276
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib87
  article-title: The incorporation of Pb2+ during struvite precipitation: quantitative, morphological and structural analysis
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2020.111359
– volume: 51
  start-page: 222
  year: 2017
  ident: 10.1016/j.jenvman.2023.118383_bib105
  article-title: Study on the mechanism of copper–ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/j.jes.2016.06.020
– volume: 166
  start-page: 911
  year: 2009
  ident: 10.1016/j.jenvman.2023.118383_bib162
  article-title: Pretreatment of ammonium removal from landfill leachate by chemical precipitation
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2008.11.101
– volume: 50
  start-page: 13032
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib43
  article-title: In situ nanoscale imaging of struvite formation during the dissolution of natural brucite: implications for phosphorus recovery from wastewaters
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04623
– volume: 648
  start-page: 1244
  year: 2019
  ident: 10.1016/j.jenvman.2023.118383_bib73
  article-title: Phosphorous recovery through struvite crystallization: challenges for future design
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.166
– volume: 30
  start-page: 35
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib137
  article-title: Ultrasound-assisted modulation of concomitant polymorphism of curcumin during liquid antisolvent precipitation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2015.11.025
– volume: 5
  year: 2023
  ident: 10.1016/j.jenvman.2023.118383_bib93
  article-title: Investigation of impact of slow-release fertilizer and struvite on biodegradation rate of diesel-contaminated soils
  publication-title: Curr. Opin. Environ. Sustain.
– volume: 55
  start-page: 3085
  year: 2000
  ident: 10.1016/j.jenvman.2023.118383_bib136
  article-title: The rate enhancing effect of ultrasound by inducing supersaturation in a solid–liquid system
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(99)00481-9
– volume: 385
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib154
  article-title: Investigation of tetracyclines transport in the presence of dissolved organic matters during struvite recovery from swine wastewater
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123950
– volume: 172
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib88
  article-title: Simultaneous nitrogen removal and phosphorus recovery using an anammox expanded reactor operated at 25 °C
  publication-title: Water Res.
  doi: 10.1016/j.watres.2020.115510
– volume: 166
  start-page: 260
  year: 2009
  ident: 10.1016/j.jenvman.2023.118383_bib156
  article-title: Recovery of ammonium nitrogen from the effluent of UASB treating poultry manure wastewater by MAP precipitation as a slow release fertilizer
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2008.11.025
– volume: 360
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib144
  article-title: Effect of organics on Cu and Cr in recovered struvite from synthetic swine wastewater
  publication-title: J. Clean. Prod.
– volume: 47
  start-page: 12728
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib80
  article-title: Arsenic incorporation in synthetic struvite (NH4MgPO4·6H2O): a synchrotron XAS and single-crystal EPR study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es402710y
– volume: 49
  start-page: 8611
  year: 2015
  ident: 10.1016/j.jenvman.2023.118383_bib15
  article-title: Environmental benefits and burdens of phosphorus recovery from municipal wastewater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es505102v
– volume: 262
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib79
  article-title: Recovery phosphate and ammonium from aqueous solution by the process of electrochemically decomposing dolomite
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128357
– volume: 207
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib83
  article-title: A review on the incorporation and potential mechanism of heavy metals on the recovered struvite from wastewater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117823
– volume: 247
  start-page: 3635
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib53
  article-title: Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.04.026
– volume: 9
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib38
  article-title: Highly efficient phosphorus and potassium recovery from urine via crystallization process in a fluidized bed reactor system
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105623
– volume: 116
  start-page: 386
  year: 2012
  ident: 10.1016/j.jenvman.2023.118383_bib160
  article-title: Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.03.107
– volume: 384
  start-page: 160
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib132
  article-title: Energy-neutral sustainable nutrient recovery incorporated with the wastewater purification process in an enlarged microbial nutrient recovery cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.02.049
– volume: 293
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib39
  article-title: Ultrasonic power combined with seed materials for recovery of phosphorus from swine wastewater via struvite crystallization process
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2021.112961
– volume: 51
  start-page: 2776
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib32
  article-title: Organic pollutants removal and recovery from animal wastewater by mesoporous struvite precipitation
  publication-title: Desalination Water Treat.
  doi: 10.1080/19443994.2012.749378
– volume: 446
  year: 2022
  ident: 10.1016/j.jenvman.2023.118383_bib23
  article-title: Preparation and application of MgO-loaded tobermorite to simultaneously remove nitrogen and phosphorus from wastewater
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136809
– volume: 102
  start-page: 2523
  year: 2011
  ident: 10.1016/j.jenvman.2023.118383_bib47
  article-title: Removal of nutrients from piggery wastewater using struvite precipitation and pyrogenation technology
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.054
– volume: 25
  start-page: 2435
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib140
  article-title: Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/S1001-0742(13)60473-8
– volume: 25
  start-page: 1033
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib103
  article-title: Thermodynamics, kinetics and mechanism analysis of Cu(II) adsorption by in-situ synthesized struvite crystal
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-018-3803-y
– volume: 156
  start-page: 163
  year: 2008
  ident: 10.1016/j.jenvman.2023.118383_bib121
  article-title: Application of struvite precipitation in treating ammonium nitrogen from semiconductor wastewater
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2007.12.010
– volume: 419
  start-page: 68
  year: 2012
  ident: 10.1016/j.jenvman.2023.118383_bib122
  article-title: Wood ash as a magnesium source for phosphorus recovery from source-separated urine
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.12.065
– volume: 35
  start-page: 3011
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib62
  article-title: Phosphorus recovery: minimization of amount of pharmaceuticals and improvement of purity in struvite recovered from hydrolysed urine
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2014.929179
– volume: 17
  start-page: 400
  year: 2015
  ident: 10.1016/j.jenvman.2023.118383_bib7
  article-title: Review of recent developments in the field of magnesium corrosion
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.201400434
– volume: 201
  start-page: 678
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib85
  article-title: Occurrence and ecological risks of veterinary antibiotics in struvite recovered from swine wastewater
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.012
– volume: 764
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib86
  article-title: Co-precipitation of Cu and Zn in precipitation of struvite
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.144269
– volume: 13
  start-page: 4385
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib81
  article-title: Influence of agitation and fluid shear on primary nucleation in solution
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg4007636
– volume: 35
  start-page: 4191
  year: 2001
  ident: 10.1016/j.jenvman.2023.118383_bib130
  article-title: Conditions influencing the precipitation of magnesium ammonium phosphate
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00143-9
– volume: 70
  start-page: 144
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib141
  article-title: Selection of cost-effective magnesium sources for fluidized struvite crystallization
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/j.jes.2017.11.029
– volume: 168
  start-page: 338
  year: 2017
  ident: 10.1016/j.jenvman.2023.118383_bib48
  article-title: Phosphate recovery from swine wastewater using plant ash in chemical crystallization
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.09.042
– volume: 23
  start-page: 49
  year: 2010
  ident: 10.1016/j.jenvman.2023.118383_bib58
  article-title: Preliminary study of calcium silicate hydrate (tobermorite) as crystal material to recovery phosphate from wastewater
  publication-title: Desalination Water Treat.
  doi: 10.5004/dwt.2010.1866
– volume: 19
  start-page: 389
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib18
  article-title: Characterization and recovery of phosphorus from wastewater by combined technologies
  publication-title: Rev. Environ. Sci. Biotechnol.
  doi: 10.1007/s11157-020-09533-1
– volume: 155
  start-page: 252
  year: 2023
  ident: 10.1016/j.jenvman.2023.118383_bib106
  article-title: Phosphorus recovery from high solid content liquid fraction of digestate using seawater bittern as the magnesium source
  publication-title: Waste Manage. (Tucson, Ariz.)
  doi: 10.1016/j.wasman.2022.11.008
– volume: 9
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib70
  article-title: Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.105019
– volume: 3
  start-page: 195
  year: 2004
  ident: 10.1016/j.jenvman.2023.118383_bib3
  article-title: Preliminary investigation into factors affecting controlled struvite crystallization at the bench scale
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/s03-082
– volume: 53
  start-page: 1
  issue: 11
  year: 2022
  ident: 10.1016/j.jenvman.2023.118383_bib165
  article-title: Recovery of phosphorus from wastewater: a review based on current phosphorous removal technologies
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 36
  start-page: 3925
  year: 2002
  ident: 10.1016/j.jenvman.2023.118383_bib30
  article-title: Struvite formation, control and recovery
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00126-4
– volume: 17
  start-page: 330
  year: 2009
  ident: 10.1016/j.jenvman.2023.118383_bib64
  article-title: Kinetics of reaction-crystallization of struvite in the continuous draft tube magma type crystallizers—influence of different internal hydrodynamics
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(08)60212-8
– volume: 87
  start-page: 126
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib90
  article-title: Added-value from innovative value chains by establishing nutrient cycles via struvite
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2014.03.012
– volume: 61
  start-page: 2741
  year: 2010
  ident: 10.1016/j.jenvman.2023.118383_bib46
  article-title: Recovery of nitrogen from saponification wastewater by struvite precipitation
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2010.060
– volume: 9
  start-page: 923
  year: 2005
  ident: 10.1016/j.jenvman.2023.118383_bib120
  article-title: Sonocrystallization: the use of ultrasound for improved industrial crystallization
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/op050109x
– volume: 43
  start-page: 5209
  year: 2009
  ident: 10.1016/j.jenvman.2023.118383_bib163
  article-title: Ammonium nitrogen removal from coking wastewater by chemical precipitation recycle technology
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.08.054
– volume: 48
  start-page: 6342
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib118
  article-title: Zinc interaction with struvite during and after mineral formation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500188t
– volume: 250
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib12
  article-title: Crystallization of struvite in a hydrothermal solution with and without calcium and carbonate ions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126245
– volume: 58
  start-page: 957
  year: 2008
  ident: 10.1016/j.jenvman.2023.118383_bib31
  article-title: Reducing operating costs for struvite formation with a carbon dioxide stripper
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2008.722
– volume: 248
  year: 2019
  ident: 10.1016/j.jenvman.2023.118383_bib75
  article-title: Phosphorus recovery through struvite crystallisation: recent developments in the understanding of operational factors
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2019.07.025
– volume: 169
  start-page: 46
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib134
  article-title: Struvite recovery from anaerobically digested dairy manure: a review of application potential and hindrances
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.12.006
– volume: 46
  start-page: 8791
  year: 2012
  ident: 10.1016/j.jenvman.2023.118383_bib89
  article-title: Influence of pH and oxidation state on the interaction of arsenic with struvite during mineralformation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300864t
– volume: 280
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib124
  article-title: Environmental impacts of phosphorus recovery through struvite precipitation in wastewater treatment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124222
– volume: 28
  start-page: 1245
  year: 2007
  ident: 10.1016/j.jenvman.2023.118383_bib68
  article-title: Impact of reactor operation on success of struvite precipitation from synthetic liquors
  publication-title: Environ. Technol.
  doi: 10.1080/09593332808618885
– volume: 7
  start-page: 2035
  year: 2019
  ident: 10.1016/j.jenvman.2023.118383_bib76
  article-title: Controlled synthesis of struvite nanowires in synthetic wastewater
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b04393
– volume: 823
  year: 2022
  ident: 10.1016/j.jenvman.2023.118383_bib29
  article-title: Phosphorous removal and recovery from urban wastewater: current practices and new directions
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.153750
– volume: 270
  start-page: 542
  year: 2015
  ident: 10.1016/j.jenvman.2023.118383_bib115
  article-title: Feasibility of coupling anaerobic digestion and struvite precipitation in the same reactor: evaluation of different magnesium sources
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.02.057
– volume: 145
  start-page: 191
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib45
  article-title: Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2014.06.021
– volume: 66
  start-page: 75
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib22
  article-title: An exploratory study on seawater-catalysed urine phosphorus recovery (SUPR)
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.08.008
– volume: 198
  start-page: 577
  year: 2015
  ident: 10.1016/j.jenvman.2023.118383_bib25
  article-title: Growth of mono- and mixed cultures of nannochloropsis salina and phaeodactylum tricornutum on struvite as a nutrient source
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.09.070
– volume: 621
  start-page: 849
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib57
  article-title: Phosphorus and nitrogen limitation and impairment of headwater streams relative to rivers in Great Britain: a national perspective on eutrophication
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.128
– volume: 1
  start-page: 183
  year: 2010
  ident: 10.1016/j.jenvman.2023.118383_bib8
  article-title: New design & build biological system through the use of microalgae addressed to sustainable development
  publication-title: J. Environ. Prot. Ecol.
  doi: 10.4236/jep.2010.12023
– volume: 1
  start-page: 910
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib112
  article-title: Effect of phenolic organics on the precipitation of struvite from simulated dairy wastewater
  publication-title: ACS ES&T Water
  doi: 10.1021/acsestwater.0c00234
– volume: 39
  start-page: 29
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib147
  article-title: Effect of organic matter on phosphorus recovery from sewage sludge subjected to microwave hybrid pretreatment
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/j.jes.2015.10.008
– volume: 45
  start-page: 261
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib24
  article-title: Ammonium-nitrogen recovery from wastewater by struvite crystallization technology
  publication-title: Separ. Purif. Rev.
  doi: 10.1080/15422119.2015.1119699
– volume: 46
  start-page: 12493
  year: 2012
  ident: 10.1016/j.jenvman.2023.118383_bib117
  article-title: Sorption of chromium with struvite during phosphorus recovery
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302296m
– volume: 372
  start-page: 129
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib72
  article-title: Development and validation of an equilibrium model for struvite formation with calcium co-precipitation
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2013.03.010
– volume: 351
  year: 2022
  ident: 10.1016/j.jenvman.2023.118383_bib77
  article-title: Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: multivariate and multiscale investigations
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2022.126976
– volume: 43
  start-page: 59
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib66
  article-title: Turning hazardous waste into value-added products: production and characterization of struvite from ammoniacal waste with new approaches
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2013.01.001
– volume: 108
  start-page: 103
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib67
  article-title: Struvite recovery from municipal-wastewater sludge centrifuge supernatant using seawater NF concentrate as a cheap Mg(II) source
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2013.02.002
– volume: 335
  year: 2023
  ident: 10.1016/j.jenvman.2023.118383_bib145
  article-title: Competitive adsorption of heavy metals between Ca–P and Mg–P products from wastewater during struvite crystallization
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2023.117552
– volume: 36
  start-page: 1834
  year: 2002
  ident: 10.1016/j.jenvman.2023.118383_bib56
  article-title: Potential phosphorus recovery by struvite formation
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(01)00391-8
– volume: 213
  start-page: 381
  year: 2000
  ident: 10.1016/j.jenvman.2023.118383_bib14
  article-title: Spontaneous precipitation of struvite from aqueous solutions
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(00)00351-1
– volume: 36
  start-page: 123
  year: 2017
  ident: 10.1016/j.jenvman.2023.118383_bib110
  article-title: Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2016.11.019
– year: 2001
  ident: 10.1016/j.jenvman.2023.118383_bib98
– volume: 125
  start-page: 730
  year: 1999
  ident: 10.1016/j.jenvman.2023.118383_bib100
  article-title: Kinetics effects on preferential struvite accumulation in wastewater
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(1999)125:8(730)
– year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib10
– volume: 44
  start-page: 813
  year: 1972
  ident: 10.1016/j.jenvman.2023.118383_bib13
  article-title: Phosphate deposits in digestion systems
  publication-title: J. Water Pollut. Control Fed.
– volume: 156
  start-page: 619
  year: 2008
  ident: 10.1016/j.jenvman.2023.118383_bib40
  article-title: Use of magnesit as a magnesium source for ammonium removal from leachate
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2007.12.067
– volume: 4
  start-page: 3688
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib44
  article-title: Highly efficient recovery of ammonium nitrogen from coking wastewater by coupling struvite precipitation and microwave radiation technology
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.6b00247
– volume: 172
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib123
  article-title: An exploration of economic valuation of phosphorus in the environment and its implications in decision making for resource recovery
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.115449
– volume: 188
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib19
  article-title: Thermal decomposition of struvite pellet by microwave radiation and recycling of its product to remove ammonium and phosphate from urine
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.109774
– volume: 140
  start-page: 945
  year: 2017
  ident: 10.1016/j.jenvman.2023.118383_bib21
  article-title: Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.07.012
– volume: 100
  start-page: 74
  year: 2009
  ident: 10.1016/j.jenvman.2023.118383_bib63
  article-title: Effect of mixing on spontaneous struvite precipitation from semiconductor wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2008.05.024
– volume: 173
  start-page: 466
  year: 2017
  ident: 10.1016/j.jenvman.2023.118383_bib126
  article-title: Recovery of phosphorus from synthetic wastewaters by struvite crystallization in a fluidized-bed reactor: effects of pH, phosphate concentration and coexisting ions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.01.088
– volume: 29
  start-page: 1157
  year: 2008
  ident: 10.1016/j.jenvman.2023.118383_bib55
  article-title: An Assessing struvite precipitation in a pilot-scale fluidized bed crystallizer
  publication-title: Environ. Technol.
  doi: 10.1080/09593330802075452
– volume: 12
  start-page: 4403
  year: 2012
  ident: 10.1016/j.jenvman.2023.118383_bib138
  article-title: Effect of ultrasonic treatment on early growth during CaCO3 precipitation
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg3005882
– volume: 26
  start-page: 991
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib155
  article-title: Phosphorus recovery from wastewater by struvite crystallization: property of aggregates
  publication-title: J. Environ. Sci. (China)
  doi: 10.1016/S1001-0742(13)60536-7
– volume: 9
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib65
  article-title: Engineering principles and process designs for phosphorus recovery as struvite: a comprehensive review
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105579
– volume: 635
  start-page: 1
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib97
  article-title: Nutrient recovery from anaerobically digested chicken slurry via struvite: performance optimization and interactions with heavy metals and pathogens
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.129
– volume: 141
  start-page: 67
  year: 2008
  ident: 10.1016/j.jenvman.2023.118383_bib91
  article-title: Struvite precipitation assessment in anaerobic digestion processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2007.10.023
– volume: 127
  start-page: 302
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib51
  article-title: Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.04.002
– volume: 46
  start-page: 443
  year: 2011
  ident: 10.1016/j.jenvman.2023.118383_bib54
  article-title: Continuous reaction crystallization of struvite from phosphate(V) solutions containing calcium ions
  publication-title: Cryst. Res. Technol.
  doi: 10.1002/crat.201100049
– volume: 698
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib164
  article-title: Phosphorus recovered from digestate by hydrothermal processes with struvite crystallization and its potential as a fertilizer
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134240
– volume: 186
  start-page: 2026
  year: 2011
  ident: 10.1016/j.jenvman.2023.118383_bib113
  article-title: Recovery of struvite from animal wastewater and its nutrient leaching loss in soil
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2010.12.103
– volume: 63
  start-page: 236
  year: 2006
  ident: 10.1016/j.jenvman.2023.118383_bib129
  article-title: Calcite-seeded crystallization of calcium phosphate for phosphorus recovery
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.08.021
– volume: 194
  start-page: 504
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib133
  article-title: Struvite formation and decomposition characteristics for ammonia and phosphorus recovery: a review of magnesium-ammonia-phosphate interactions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.004
– volume: 88
  start-page: 181
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib84
  article-title: Magnesium ammonium phosphate formation, recovery and its application as valuable resources: a review
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.3936
– volume: 47
  start-page: 289
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib52
  article-title: Struvite precipitation from urine with electrochemical magnesium dosage
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.09.036
– volume: 454
  year: 2023
  ident: 10.1016/j.jenvman.2023.118383_bib148
  article-title: Concurrent recovery of ammonia and phosphate by an electrochemical nutrients recovery system with authigenic acid and base
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 14504
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib17
  article-title: Impact of water on the lubricating properties of hexadecane at the nanoscale
  publication-title: Nanoscale
  doi: 10.1039/D0NR03642K
– volume: 210
  year: 2022
  ident: 10.1016/j.jenvman.2023.118383_bib61
  article-title: Electrochemical nutrient removal from natural wastewater sources and its impact on water quality
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.118001
– volume: 92
  start-page: 325
  year: 2017
  ident: 10.1016/j.jenvman.2023.118383_bib104
  article-title: Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation: a comparative research
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5009
– volume: 25
  start-page: 682
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib6
  article-title: The influence of various physico-chemical process parameters on kinetics and growth mechanism of struvite crystallisation
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2013.10.014
– volume: 2
  start-page: 315
  year: 2003
  ident: 10.1016/j.jenvman.2023.118383_bib4
  article-title: Pilot-scale study of phosphorus recovery through struvite crystallization examining the process feasibility
  publication-title: J. Environ. Eng. Sci.
  doi: 10.1139/s03-040
– volume: 126
  start-page: 361
  year: 2000
  ident: 10.1016/j.jenvman.2023.118383_bib101
  article-title: Postdigestion struvite precipitation using a fluidized bed reactor
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2000)126:4(361)
– volume: 64
  start-page: 138
  year: 2023
  ident: 10.1016/j.jenvman.2023.118383_bib35
  article-title: Stimuli responsive metal organic framework materials towards advanced smart application
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.02.013
– volume: 221
  year: 2022
  ident: 10.1016/j.jenvman.2023.118383_bib78
  article-title: Struvite crystallization by using active serpentine: an innovative application for the economical and efficient recovery of phosphorus from black water
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118678
– volume: 328
  year: 2021
  ident: 10.1016/j.jenvman.2023.118383_bib37
  article-title: Phosphorus recovery and iron, copper precipitation from swine wastewater via struvite crystallization using various magnesium compounds
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.129588
– volume: 8
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib146
  article-title: Adsorption and precipitation behaviors of zinc, copper and tetracycline with struvite products obtained by phosphorus recovery from swine wastewater
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.104488
– volume: 24
  start-page: 26901
  year: 2017
  ident: 10.1016/j.jenvman.2023.118383_bib150
  article-title: Recovery of phosphate from the supernatant of activated sludge pretreated by microwave irradiation through chemical precipitation
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4504-9
– volume: 39
  start-page: 433
  year: 2009
  ident: 10.1016/j.jenvman.2023.118383_bib69
  article-title: Phosphorus recovery from wastewater by struvite crystallization: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643380701640573
– volume: 40
  start-page: 1210
  year: 2006
  ident: 10.1016/j.jenvman.2023.118383_bib59
  article-title: P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.12.041
– volume: 330
  year: 2023
  ident: 10.1016/j.jenvman.2023.118383_bib142
  article-title: Applying struvite as a N-fertilizer to mitigate N2O emissions in agriculture: feasibility and mechanism
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2022.117143
– volume: 13
  start-page: 431
  year: 2011
  ident: 10.1016/j.jenvman.2023.118383_bib9
  article-title: Water global recourse management through the use of microalgae addressed to sustainable development
  publication-title: Clean Technol. Environ. Policy
  doi: 10.1007/s10098-010-0321-5
– volume: 9
  start-page: 3127
  year: 2015
  ident: 10.1016/j.jenvman.2023.118383_bib34
  article-title: Phosphorus recovery from sludge fermentation broth by cow-bone powder-seeded crystallization of calcium phosphate
  publication-title: Chinese J. Environ. Eng.
– volume: 144
  start-page: 76
  year: 2018
  ident: 10.1016/j.jenvman.2023.118383_bib26
  article-title: Refinery and concentration of nutrients from urine with electrodialysis enabled by upstream precipitation and nitrification
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.07.016
– volume: 35
  start-page: 2781
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib82
  article-title: Phosphorus recovery from urine with different magnesium resources in an air-agitated reactor
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2014.921732
– volume: 348
  start-page: 49
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib119
  article-title: Seawater for phosphorus recovery from urine
  publication-title: Desalination
  doi: 10.1016/j.desal.2014.06.005
– volume: 256
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib125
  article-title: Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126968
– volume: 64
  start-page: 334
  year: 2011
  ident: 10.1016/j.jenvman.2023.118383_bib153
  article-title: Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2011.720
– volume: 10
  year: 2022
  ident: 10.1016/j.jenvman.2023.118383_bib143
  article-title: Biochar-seeded struvite precipitation for simultaneous nutrient recovery and chemical oxygen demand removal in leachate: from laboratory to pilot scale
  publication-title: Front. Chem.
– volume: 21
  start-page: 30
  year: 1929
  ident: 10.1016/j.jenvman.2023.118383_bib94
  article-title: Crystal growth in aqueous solutions1: I—theory
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50229a008
– volume: 107
  start-page: 142
  year: 2016
  ident: 10.1016/j.jenvman.2023.118383_bib60
  article-title: Phosphorus recovery as struvite: recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2015.12.009
– volume: 101
  start-page: 41
  year: 2014
  ident: 10.1016/j.jenvman.2023.118383_bib128
  article-title: Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.11.019
– volume: 159
  start-page: 280
  year: 2010
  ident: 10.1016/j.jenvman.2023.118383_bib139
  article-title: Formation of pure struvite at neutral pH by electrochemical deposition
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.02.026
– volume: 52
  start-page: 463
  year: 2020
  ident: 10.1016/j.jenvman.2023.118383_bib36
  article-title: Effect of magnetic field on sodium arsenate metastable zone width and crystal nucleation kinetics for crystallization
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.21362
– volume: 375
  start-page: 108
  year: 2013
  ident: 10.1016/j.jenvman.2023.118383_bib108
  article-title: Influence of disodium EDTA on the nucleation and growth of struvite and carbonate apatite
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2013.04.027
– volume: 65
  start-page: 1954
  year: 2012
  ident: 10.1016/j.jenvman.2023.118383_bib27
  article-title: Evaluation and thermodynamic calculation of ureolytic magnesium ammonium phosphate precipitation from UASB effluent at pilot scale
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2012.092
SSID ssj0003217
Score 2.598448
SecondaryResourceType review_article
Snippet Nutrient recovery from wastewater not only reduces the nutrient load on water resources but also alleviates the environmental problems in aquatic ecosystems,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 118383
SubjectTerms Assistive technology
crystallization
environmental management
magnesium ammonium phosphate
Nutrient recovery
pollution load
Process parameters
Slow-release fertilizer
slow-release fertilizers
Struvite crystallization
sustainable communities
wastewater
Title A review of struvite crystallization for nutrient source recovery from wastewater
URI https://dx.doi.org/10.1016/j.jenvman.2023.118383
https://www.ncbi.nlm.nih.gov/pubmed/37348306
https://www.proquest.com/docview/2829425808
https://www.proquest.com/docview/3040439292
Volume 344
WOSCitedRecordID wos001042141900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZYh2AvCAaDcpmMxNuUkMROYj9WqAgQmpg0pO4pchxbWtWl1bKO7d9zfGujlWrwwEsUJXYS5_tyLs45xwh9YAqs9jprItJoFtGc00jkgkY5L8pSgcJlqbCLTZTHx2wy4T98rGpnlxMo25bd3PDFf4UajgHYJnX2H-BeXRQOwD6ADluAHbZ_Bfyol45iqsNeg1F5JC9vwQyczXzWpQ0ubE0hfhMK4Cbwj4xvDKO9dSknv0Rn5tVC9O6m_dpLkTMZKBthNEA-K9FOegT8bmMHzkBdLpRXmXbS2scFny17LZc2_E-d9-clMhvh5jIzY-VkKVhvESv8bxcvbAmlPXEJ3g1x69hsSHI3qTCNpzAaGEJsbhFvtod3v7iwSBJTp4ckd-pqO03tT-2g3azMORug3dHX8eTbSmUTcMzW6V0f_3jXPfQoXGebDbPNR7G2yulT9MSDhEeOHM_QA9Xuo8chB73bRwfjPnjYC_juOToZYccePNc4sAffYQ8G9uDAHuzYgwN7sGEPXrPnBfr5eXz66UvkV92IJOHsKqpToWUtiALbTtYqEyxpaqlVUQtRaLCvpeI6pSrljdRcciKoEkVONTgCKRWKHKBBO2_VK4SJ4pmgDSV1nVCdyDopRAoM0BlRmjE6RDS8x0r6kvRmZZRZFWIPp5VHojJIVA6JIYpX3RauJst9HVgAqfKGpTMYK2DbfV3fB1ArELzmb5po1XzZVSYEARQeS9j2NiQxxavAA8mG6KVjxOqJA5lebz3zBu2tP6y3aACgq3fooby-Ou8uD9FOOWGHnsm_AbfYuiQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+struvite+crystallization+for+nutrient+source+recovery+from+wastewater&rft.jtitle=Journal+of+environmental+management&rft.au=Guan%2C+Qian&rft.au=Li%2C+Yingpeng&rft.au=Zhong%2C+Yun&rft.au=Liu%2C+Wei&rft.date=2023-10-15&rft.eissn=1095-8630&rft.volume=344&rft.spage=118383&rft_id=info:doi/10.1016%2Fj.jenvman.2023.118383&rft_id=info%3Apmid%2F37348306&rft.externalDocID=37348306
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon