An Inversion Algorithm for the Dynamic Modulus of Concrete Pavement Structures Based on a Convolutional Neural Network

Based on the spectral element method (SEM) and a convolutional neural network (CNN), an inversion algorithm for the dynamic modulus of concrete pavement structures is proposed in this paper. In order to evaluate the service performance of pavement structures more systematically and accurately via th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 13; číslo 2; s. 1192
Hlavní autoři: Chen, Gongfa, Chen, Xuedi, Yang, Linqing, Han, Zejun, Bassir, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2023
Multidisciplinary digital publishing institute (MDPI)
Edice:Advances in Non-Destructive Testing Methods
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Based on the spectral element method (SEM) and a convolutional neural network (CNN), an inversion algorithm for the dynamic modulus of concrete pavement structures is proposed in this paper. In order to evaluate the service performance of pavement structures more systematically and accurately via the existing testing techniques using a falling weight deflectometer (FWD), it is necessary to obtain accurate dynamic modulus parameters of the structures. In this work, an inversion algorithm for predicting the dynamic modulus is established by using a CNN which is trained with the dynamic response samples of a multi-layered concrete pavement structure obtained through SEM. The gradient descent method is used to adjust the weight parameters in the network layer by layer in reverse. As a result, the accuracy of the CNN can be improved via iterative training. With the proposed algorithm, more accurate results of the dynamic modulus of pavement structures are obtained. The accuracy and numerical stability of the proposed algorithm are verified by several numerical examples. The dynamic modulus and thickness of concrete pavement structure layers can be accurately predicted by the CNN trained with a certain number of training samples based on the displacement curve of the deflection basin from the falling weight deflectometer. The proposed method can provide a reliable testing tool for the FWD technique of pavement structures.
AbstractList Based on the spectral element method (SEM) and a convolutional neural network (CNN), an inversion algorithm for the dynamic modulus of concrete pavement structures is proposed in this paper. In order to evaluate the service performance of pavement structures more systematically and accurately via the existing testing techniques using a falling weight deflectometer (FWD), it is necessary to obtain accurate dynamic modulus parameters of the structures. In this work, an inversion algorithm for predicting the dynamic modulus is established by using a CNN which is trained with the dynamic response samples of a multi-layered concrete pavement structure obtained through SEM. The gradient descent method is used to adjust the weight parameters in the network layer by layer in reverse. As a result, the accuracy of the CNN can be improved via iterative training. With the proposed algorithm, more accurate results of the dynamic modulus of pavement structures are obtained. The accuracy and numerical stability of the proposed algorithm are verified by several numerical examples. The dynamic modulus and thickness of concrete pavement structure layers can be accurately predicted by the CNN trained with a certain number of training samples based on the displacement curve of the deflection basin from the falling weight deflectometer. The proposed method can provide a reliable testing tool for the FWD technique of pavement structures.
Author Bassir, David
Chen, Gongfa
Yang, Linqing
Chen, Xuedi
Han, Zejun
Author_xml – sequence: 1
  givenname: Gongfa
  orcidid: 0000-0001-7232-9583
  surname: Chen
  fullname: Chen, Gongfa
– sequence: 2
  givenname: Xuedi
  surname: Chen
  fullname: Chen, Xuedi
– sequence: 3
  givenname: Linqing
  surname: Yang
  fullname: Yang, Linqing
– sequence: 4
  givenname: Zejun
  orcidid: 0000-0002-4859-6507
  surname: Han
  fullname: Han, Zejun
– sequence: 5
  givenname: David
  orcidid: 0000-0002-5364-9992
  surname: Bassir
  fullname: Bassir, David
BackLink https://cnrs.hal.science/hal-04006438$$DView record in HAL
BookMark eNptkU1v1DAQQC1UJErbE3_AEieEFuw48cdxWWi70haQgLM1ccbdLNl4sZ1U_fdNuiAVxFxmNHrzNJp5SU760CMhrzh7J4Rh7-Fw4IIVnJviGTktmJILUXJ18qR-QS5S2rEpDBeas1MyLnu67keMqQ09XXa3IbZ5u6c-RJq3SD_e97BvHb0JzdANiQZPV6F3ETPSrzDiHvtMv-U4uDxETPQDJGzopIKZG0M35EkMHf2MQ3xM-S7En-fkuYcu4cXvfEZ-XH76vrpebL5crVfLzcIJo_MCjGyYd6xwyikmNWpV1LVCI7Uy2iDUrBaVkwDSAUPvBVPCgam58aIxTpyR9dHbBNjZQ2z3EO9tgNY-NkK8tRBz6zq0poRal0orX5kSsdA1mKrWFTSykMKpyfXm6NpC95fqermxc4-VjMlS6JFP7Osje4jh14Ap210Y4nSHZAslFVe80jPFj5SLIaWI3ro2w3ywHKHtLGd2_qx98tlp5u0_M39W-R_9AFc8pjc
CitedBy_id crossref_primary_10_1111_mice_13123
crossref_primary_10_1080_10298436_2025_2498618
crossref_primary_10_1051_smdo_2023005
crossref_primary_10_3390_ma17030554
crossref_primary_10_1007_s12665_025_12138_y
Cites_doi 10.1061/(ASCE)TE.1943-5436.0000902
10.1139/L08-118
10.1080/14680629.2015.1056214
10.1016/j.advengsoft.2011.05.039
10.1111/mice.12263
10.1016/j.compgeo.2020.103914
10.1016/j.soildyn.2013.01.008
10.1016/S0020-7683(00)00112-8
10.1016/S0020-7683(01)00109-3
10.1016/j.soildyn.2014.01.010
10.1061/(ASCE)0733-9399(2008)134:9(777)
10.3390/app10124247
10.1007/s11709-021-0777-x
10.1061/(ASCE)0733-9399(1993)119:9(1724)
10.3390/app122010536
10.3390/app10010132
10.3141/2227-10
10.1016/j.ijsolstr.2012.06.022
10.3390/app10144720
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.3390/app13021192
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central (New)
ProQuest One
ProQuest Central
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Mathematics
Statistics
Environmental Sciences
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_94ab84787f594ee28ba95b85ad6263c7
oai:HAL:hal-04006438v1
10_3390_app13021192
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
ID FETCH-LOGICAL-c398t-a96d0fc02c7c7068e872bb7e9687989eab0b35c6aa6ca0eff3073ca9b19f3d9c3
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000914282400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:29:08 EST 2025
Tue Oct 14 20:07:22 EDT 2025
Tue Aug 12 16:42:04 EDT 2025
Tue Nov 18 22:21:52 EST 2025
Sat Nov 29 07:21:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords falling weight deflectometer
inversion algorithm
dynamic modulus
pavement structure
convolution neural network
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-a96d0fc02c7c7068e872bb7e9687989eab0b35c6aa6ca0eff3073ca9b19f3d9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7232-9583
0000-0002-5364-9992
0000-0002-4859-6507
OpenAccessLink https://www.proquest.com/docview/2767171581?pq-origsite=%requestingapplication%
PQID 2767171581
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_94ab84787f594ee28ba95b85ad6263c7
hal_primary_oai_HAL_hal_04006438v1
proquest_journals_2767171581
crossref_citationtrail_10_3390_app13021192
crossref_primary_10_3390_app13021192
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationSeriesTitle Advances in Non-Destructive Testing Methods
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Multidisciplinary digital publishing institute (MDPI)
Publisher_xml – name: MDPI AG
– name: Multidisciplinary digital publishing institute (MDPI)
References Li (ref_18) 2009; 26
Lin (ref_6) 2013; 49
Rajapakse (ref_7) 1993; 119
Scarpas (ref_10) 2001; 38
Junhui (ref_13) 2021; 34
Han (ref_11) 2021; 130
Cao (ref_3) 2018; 31
Wei (ref_19) 2006; 20
ref_17
ref_16
Banerjee (ref_26) 2012; 49
Scarpas (ref_14) 2007; 14
Kasbergen (ref_15) 2001; 38
Zhao (ref_12) 2015; 16
Dubois (ref_4) 2012; 44
Teng (ref_22) 2022; 16
Cha (ref_20) 2017; 32
Wang (ref_5) 2016; 142
ref_23
Kutay (ref_2) 2011; 2227
ref_21
ref_1
Grenier (ref_27) 2009; 36
Hu (ref_24) 2018; 41
Ai (ref_8) 2014; 60
Khojasteh (ref_9) 2008; 134
Zheng (ref_25) 2021; 40
References_xml – volume: 142
  start-page: 4016069
  year: 2016
  ident: ref_5
  article-title: Comparative Study of Asphalt Pavement Responses under FWD and Moving Vehicular Loading
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000902
– volume: 36
  start-page: 944
  year: 2009
  ident: ref_27
  article-title: Dynamic simulation of falling weight deflectometer tests on flexible pavements using the spectral element method: Forward calculations
  publication-title: Can. J. Civ. Eng.
  doi: 10.1139/L08-118
– volume: 16
  start-page: 870
  year: 2015
  ident: ref_12
  article-title: Dynamic backcalculation of asphalt pavement layer properties using spectral element method
  publication-title: Road Mater. Pavement Des.
  doi: 10.1080/14680629.2015.1056214
– volume: 44
  start-page: 35
  year: 2012
  ident: ref_4
  article-title: Finite element model for crack growth process in concrete bituminous
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2011.05.039
– volume: 32
  start-page: 361
  year: 2017
  ident: ref_20
  article-title: Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks
  publication-title: Comput.-Aided Civ. Inf.
  doi: 10.1111/mice.12263
– volume: 130
  start-page: 103914
  year: 2021
  ident: ref_11
  article-title: Dynamic simulation of FWD tests on flexible transversely isotropic pavements with imperfect interfaces
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2020.103914
– volume: 14
  start-page: 1060
  year: 2007
  ident: ref_14
  article-title: Inverse dynamic system for pavement structure based on 3D spectral elements
  publication-title: Chin. J. Geotech. Eng.
– volume: 49
  start-page: 39
  year: 2013
  ident: ref_6
  article-title: An efficient approach for dynamic impedance of surface footing on layered half-space
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2013.01.008
– ident: ref_1
– volume: 38
  start-page: 1605
  year: 2001
  ident: ref_10
  article-title: Spectral element technique for efficient parameter identification of layered media. I. Forward calculation
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(00)00112-8
– volume: 26
  start-page: 50
  year: 2009
  ident: ref_18
  article-title: Improved Particle Swarm Optimization for Elastoplastic Back Analysis in Geotechnical Engineering
  publication-title: J. Min. Saf. Eng.
– volume: 34
  start-page: 11
  year: 2021
  ident: ref_13
  article-title: Analytical Solution for the Dynamic Responses and Parameter Inversion of Pavement Structures Considering the Condition of Interlayer Contact
  publication-title: China J. Highw. Transp.
– volume: 38
  start-page: 8753
  year: 2001
  ident: ref_15
  article-title: Spectral element technique for efficient parameter identification of layered media: Part II: Inverse calculation
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(01)00109-3
– volume: 60
  start-page: 22
  year: 2014
  ident: ref_8
  article-title: Analytical layer-element solution to axisymmetric dynamic response of transversely isotropic multilayered half-space
  publication-title: Soil Dyn. Earthq. Eng.
  doi: 10.1016/j.soildyn.2014.01.010
– volume: 134
  start-page: 777
  year: 2008
  ident: ref_9
  article-title: Asymmetric Dynamic Green’s Functions in a Two-Layered Transversely Isotropic Half-Space
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2008)134:9(777)
– ident: ref_21
  doi: 10.3390/app10124247
– volume: 16
  start-page: 45
  year: 2022
  ident: ref_22
  article-title: Digital image correlation-based structural state detection through deep learning
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-021-0777-x
– volume: 119
  start-page: 1724
  year: 1993
  ident: ref_7
  article-title: Green’s functions for transversely isotropic elastic half space
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(1993)119:9(1724)
– volume: 31
  start-page: 66
  year: 2018
  ident: ref_3
  article-title: Dynamic Backcalculation for Parameters of Asphalt Pavement with Rigid Base
  publication-title: China J. Highw. Transp.
– ident: ref_17
  doi: 10.3390/app122010536
– ident: ref_16
  doi: 10.3390/app10010132
– volume: 2227
  start-page: 87
  year: 2011
  ident: ref_2
  article-title: Backcalculation of Dynamic Modulus Mastercurve from Falling Weight Deflectometer Surface Deflections
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2227-10
– volume: 20
  start-page: 795
  year: 2006
  ident: ref_19
  article-title: Back analysis algorithm in geotechnical engineering based on particle swarm optimization
  publication-title: Rock Soil Mech.
– volume: 49
  start-page: 3233
  year: 2012
  ident: ref_26
  article-title: Theoretical modeling of guided wave propagation in a sandwich plate subjected to transient surface excitations
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2012.06.022
– volume: 41
  start-page: 338
  year: 2018
  ident: ref_24
  article-title: Mechanical property prediction of hot-rolled strip based on convolutional neural network
  publication-title: J. Wuhan Univ. Sci. Technol.
– ident: ref_23
  doi: 10.3390/app10144720
– volume: 40
  start-page: 230
  year: 2021
  ident: ref_25
  article-title: Fault diagnosis of cylindrical roller bearing cage based on 1D convolution neural network
  publication-title: J. Vib. Shock
SSID ssj0000913810
Score 2.2689729
Snippet Based on the spectral element method (SEM) and a convolutional neural network (CNN), an inversion algorithm for the dynamic modulus of concrete pavement...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1192
SubjectTerms Algorithms
convolution neural network
dynamic modulus
Efficiency
Environmental Sciences
falling weight deflectometer
inversion algorithm
Load
Mathematics
Mechanical properties
Neural networks
Nondestructive testing
Optimization
Parameter identification
pavement structure
Propagation
Software
Statistics
Workloads
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-keNCDtFXxaZUgPaiwuNlsNpnja7X0UEvBD3pbkmxiheeu-D7-_s5kt_UpghdPC2EIITOZmd9m8huAQ-5qFKRUhTZBF3VQdYGm8kXlZFIUYLsyV1t8OTPn5_byEi-2Wn1xTdhIDzxu3FusnbfMIJM01jFW1jvU3mrXMY9KyO_IS4NbYCr7YJRMXTU-yFOE6_k-mO_o5Hjp-SsEZaZ-CixXXAf5hzvOMeZkFx5MyaGYj4vagzux34f7W5SB-7A3HcaleDUxRr9-CJt5L5gwI__6EvPF14Eg_9V3QQmpoARPvBvbzosPQ7derJdiSOJ46ClfXEVx4TJj-Ep8zEyya4Lf4ohCWydoKsdym8k6aWVM5ZE_uXb8EXw-ef_p-LSYGioUQaFdFQ6brkyhrIIJpmxstKQWbyI21qDF6HzplQ6Nc01wZUyJHUBw6CUm1WFQj2GnH_r4BISvKfZRqil1iDVBOtpvH9F3yfgalU4zeHOzx22Y2Ma56cWiJdTBCmm3FDKDw1vhHyPJxt_FjlhZtyLMjJ0HyF7ayV7af9nLDF6Sqn-b43R-1vIY-zNK0OxGzuDgxhLa6Uwv28o0hH2ltvLp_1jIM7jHrevH3zkHsENKjs_hbtisvi1_vsjmfA0InviZ
  priority: 102
  providerName: Directory of Open Access Journals
Title An Inversion Algorithm for the Dynamic Modulus of Concrete Pavement Structures Based on a Convolutional Neural Network
URI https://www.proquest.com/docview/2767171581
https://cnrs.hal.science/hal-04006438
https://doaj.org/article/94ab84787f594ee28ba95b85ad6263c7
Volume 13
WOSCitedRecordID wos000914282400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPQAuoC21loR4AKSKOk9g-od0-VKR2FfFSOUW247RI26Rtsvv7mXG824IQF05RnJFlacbzzjeE7ONUI8sYjzJhsyi1PI2USEyUaFZzMLBV7Lstvp-K6VSen6siJNy60Fa51IleUVetxRz5h0TkEHmwTLKP1zcRTo3C6moYofGQrCNSGcj5-uRoWnxeZVkQ9VKyePgxj0N8j3VhrNWxofh5Z4o8Yj8YmEvsh_xDLXtbc_z0f0_5jDwJXiYdD2KxSR64Zots3MMe3CKb4VZ39G2Ann73nCzGDUXkDZ9Do-PZBezdX15R8GwpeIr0cJhfT8_aaj6bd7St6UHbgOPZO1poDz3e0y8eknYOcTydgI2sKGylkW4RxBxOhpgg_uGb0F-Qb8dHXw9OojCZIbJcyT7SKq_i2saJFVbEuXQS-GuEU7kUSiqnTWx4ZnOtc6tjV9eoSaxWhqmaV8ryl2StaRu3TahJwYiCz8oy61KIDYFhxilT1cKkimf1iLxfMqm0AbYcp2fMSghfkKPlPY6OyP6K-HpA6_g72QS5vSJBiG2_0N5elOHGlirVRiJ0UZ2p1LlEGq0yIzNdIYCPFSPyBmTltz1OxqclrqFiBE9PLtiI7CzlpAzKoSvvhOTVvz-_Jo9xuv2Q8dkha8A-t0se2UX_s7vdC7K-59MI8FZ8Oit-_AKJnQrH
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHRLwAGyAKAyw0JAAKSLOp_2AULcxtVpbVWKg8RRsx9kmdclo0qL9KX4j9yZpNxDibQ88RXKurMQ-vvf461yAbcpqZDj3nTA2oRMYP3Bk7GnHUzzzMcCmbn3a4sswHo_F0ZGcrMHP5V0YOla59Im1o04LQ2vk77w4wpkHDwX_cP7doaxRtLu6TKHRwOLAXvzAKVv5frCH_fvK8_Y_Hu72nTargGN8KSpHySh1M-N6JjaxGwkr8Nt0bGUkYimkVdrVfmgipSKjXJtlNAqMkprLzE-l8bHeG7AeENg7sD4ZjCZfV6s6pLIpuNtcBPR96dI-NO0N8maz9TL01RkCMKCd0PnLP8JAHdv27_1vrXIf7rYsmvUa2G_Ams034c4VbcVN2Gi9Vslet9Labx7AopczUhap1whZb3qM_1KdnDFk7gyZMNu7yNXZqWGjIp1P5yUrMrZb5EisK8smqpZWr9inWnJ3PsOqd5ADpAyrUmS3aIcxfhlpntSP-pD9Q_h8La3xCDp5kdvHwHSAJAE5OQ-NDXDuiwDRVuo0i3Ug_TDrwtslKBLTyrJTdpBpgtMzQlByBUFd2F4ZnzdqJH832yF0rUxIQrwuKGbHSeuREhkoLUiaKQtlYK0ntJKhFqFKSaDIxF14idj8rY5-b5hQGTl-ZLJiwbuwtcRl0jq_MrkE5ZN_v34Bt_qHo2EyHIwPnsJtD_ljs7q1BR3sSvsMbppFdVrOnrfjjMG36wbxL8efZ3o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwAFpALBSwUJEAKWresQ8Ibbusuup2FYmHyinYjtNW2iZlk13Uv8avYyaPbUGIWw-cIjmWldifZz7b428AtimrkXYczwoiHVi-9nxLRK6yXOlkHjrY1K6jLb5MoumUHx2JeA1-dndhKKyys4m1oU4LTXvkO24U4srDCbizk7VhEfFw9P78u0UZpOiktUun0UDkwFz8wOVb-W48xLF-5bqjD5_29q02w4ClPcErS4owtTNtuzrSkR1yw_E7VWREyCPBhZHKVl6gQylDLW2TZTQjtBTKEZmXCu1huzdgHSm57_ZgPR4fxl9XOzykuMkdu7kU6HnCpjNpOid0moPXSzdYZwtA53ZCsZh_uITaz43u_c89dB_utuyaDZrpsAFrJt-EO1c0Fzdho7VmJXvdSm6_eQDLQc5IcaTeO2SD2TH-S3VyxpDRM2TIbHiRy7NTzQ6LdDFblKzI2F6RI-GuDItlLblesY-1FO9ijk3vIjdIGTYlqd6ynd74ZaSFUj_q4PuH8PlaeuMR9PIiN4-BKR_JA3J1J9DGxzUxgkUZodIsUr7wgqwPbzuAJLqVa6esIbMEl22EpuQKmvqwvap83qiU_L3aLiFtVYWkxeuCYn6ctJYqEb5UnCSbskD4xrhcSREoHsiUhIt01IeXiNPf2tgfTBIqI4eADJcvnT5sdRhNWqNYJpcAffLv1y_gFiI3mYynB0_htou0stn02oIejqR5Bjf1sjot58_bKcfg23Vj-Be1EXA6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Inversion+Algorithm+for+the+Dynamic+Modulus+of+Concrete+Pavement+Structures+Based+on+a+Convolutional+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Chen%2C+Gongfa&rft.au=Chen%2C+Xuedi&rft.au=Yang%2C+Linqing&rft.au=Han%2C+Zejun&rft.date=2023-01-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=2&rft.spage=1192&rft_id=info:doi/10.3390%2Fapp13021192&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13021192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon