An Inversion Algorithm for the Dynamic Modulus of Concrete Pavement Structures Based on a Convolutional Neural Network
Based on the spectral element method (SEM) and a convolutional neural network (CNN), an inversion algorithm for the dynamic modulus of concrete pavement structures is proposed in this paper. In order to evaluate the service performance of pavement structures more systematically and accurately via th...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 13; číslo 2; s. 1192 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.01.2023
Multidisciplinary digital publishing institute (MDPI) |
| Edice: | Advances in Non-Destructive Testing Methods |
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Based on the spectral element method (SEM) and a convolutional neural network (CNN), an inversion algorithm for the dynamic modulus of concrete pavement structures is proposed in this paper. In order to evaluate the service performance of pavement structures more systematically and accurately via the existing testing techniques using a falling weight deflectometer (FWD), it is necessary to obtain accurate dynamic modulus parameters of the structures. In this work, an inversion algorithm for predicting the dynamic modulus is established by using a CNN which is trained with the dynamic response samples of a multi-layered concrete pavement structure obtained through SEM. The gradient descent method is used to adjust the weight parameters in the network layer by layer in reverse. As a result, the accuracy of the CNN can be improved via iterative training. With the proposed algorithm, more accurate results of the dynamic modulus of pavement structures are obtained. The accuracy and numerical stability of the proposed algorithm are verified by several numerical examples. The dynamic modulus and thickness of concrete pavement structure layers can be accurately predicted by the CNN trained with a certain number of training samples based on the displacement curve of the deflection basin from the falling weight deflectometer. The proposed method can provide a reliable testing tool for the FWD technique of pavement structures. |
|---|---|
| AbstractList | Based on the spectral element method (SEM) and a convolutional neural network (CNN), an inversion algorithm for the dynamic modulus of concrete pavement structures is proposed in this paper. In order to evaluate the service performance of pavement structures more systematically and accurately via the existing testing techniques using a falling weight deflectometer (FWD), it is necessary to obtain accurate dynamic modulus parameters of the structures. In this work, an inversion algorithm for predicting the dynamic modulus is established by using a CNN which is trained with the dynamic response samples of a multi-layered concrete pavement structure obtained through SEM. The gradient descent method is used to adjust the weight parameters in the network layer by layer in reverse. As a result, the accuracy of the CNN can be improved via iterative training. With the proposed algorithm, more accurate results of the dynamic modulus of pavement structures are obtained. The accuracy and numerical stability of the proposed algorithm are verified by several numerical examples. The dynamic modulus and thickness of concrete pavement structure layers can be accurately predicted by the CNN trained with a certain number of training samples based on the displacement curve of the deflection basin from the falling weight deflectometer. The proposed method can provide a reliable testing tool for the FWD technique of pavement structures. |
| Author | Bassir, David Chen, Gongfa Yang, Linqing Chen, Xuedi Han, Zejun |
| Author_xml | – sequence: 1 givenname: Gongfa orcidid: 0000-0001-7232-9583 surname: Chen fullname: Chen, Gongfa – sequence: 2 givenname: Xuedi surname: Chen fullname: Chen, Xuedi – sequence: 3 givenname: Linqing surname: Yang fullname: Yang, Linqing – sequence: 4 givenname: Zejun orcidid: 0000-0002-4859-6507 surname: Han fullname: Han, Zejun – sequence: 5 givenname: David orcidid: 0000-0002-5364-9992 surname: Bassir fullname: Bassir, David |
| BackLink | https://cnrs.hal.science/hal-04006438$$DView record in HAL |
| BookMark | eNptkU1v1DAQQC1UJErbE3_AEieEFuw48cdxWWi70haQgLM1ccbdLNl4sZ1U_fdNuiAVxFxmNHrzNJp5SU760CMhrzh7J4Rh7-Fw4IIVnJviGTktmJILUXJ18qR-QS5S2rEpDBeas1MyLnu67keMqQ09XXa3IbZ5u6c-RJq3SD_e97BvHb0JzdANiQZPV6F3ETPSrzDiHvtMv-U4uDxETPQDJGzopIKZG0M35EkMHf2MQ3xM-S7En-fkuYcu4cXvfEZ-XH76vrpebL5crVfLzcIJo_MCjGyYd6xwyikmNWpV1LVCI7Uy2iDUrBaVkwDSAUPvBVPCgam58aIxTpyR9dHbBNjZQ2z3EO9tgNY-NkK8tRBz6zq0poRal0orX5kSsdA1mKrWFTSykMKpyfXm6NpC95fqermxc4-VjMlS6JFP7Osje4jh14Ap210Y4nSHZAslFVe80jPFj5SLIaWI3ro2w3ywHKHtLGd2_qx98tlp5u0_M39W-R_9AFc8pjc |
| CitedBy_id | crossref_primary_10_1111_mice_13123 crossref_primary_10_1080_10298436_2025_2498618 crossref_primary_10_1051_smdo_2023005 crossref_primary_10_3390_ma17030554 crossref_primary_10_1007_s12665_025_12138_y |
| Cites_doi | 10.1061/(ASCE)TE.1943-5436.0000902 10.1139/L08-118 10.1080/14680629.2015.1056214 10.1016/j.advengsoft.2011.05.039 10.1111/mice.12263 10.1016/j.compgeo.2020.103914 10.1016/j.soildyn.2013.01.008 10.1016/S0020-7683(00)00112-8 10.1016/S0020-7683(01)00109-3 10.1016/j.soildyn.2014.01.010 10.1061/(ASCE)0733-9399(2008)134:9(777) 10.3390/app10124247 10.1007/s11709-021-0777-x 10.1061/(ASCE)0733-9399(1993)119:9(1724) 10.3390/app122010536 10.3390/app10010132 10.3141/2227-10 10.1016/j.ijsolstr.2012.06.022 10.3390/app10144720 |
| ContentType | Journal Article |
| Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 1XC VOOES DOA |
| DOI | 10.3390/app13021192 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central (New) ProQuest One ProQuest Central Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Mathematics Statistics Environmental Sciences |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_94ab84787f594ee28ba95b85ad6263c7 oai:HAL:hal-04006438v1 10_3390_app13021192 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 1XC VOOES |
| ID | FETCH-LOGICAL-c398t-a96d0fc02c7c7068e872bb7e9687989eab0b35c6aa6ca0eff3073ca9b19f3d9c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000914282400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Mon Nov 10 04:29:08 EST 2025 Tue Oct 14 20:07:22 EDT 2025 Tue Aug 12 16:42:04 EDT 2025 Tue Nov 18 22:21:52 EST 2025 Sat Nov 29 07:21:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | falling weight deflectometer inversion algorithm dynamic modulus pavement structure convolution neural network |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c398t-a96d0fc02c7c7068e872bb7e9687989eab0b35c6aa6ca0eff3073ca9b19f3d9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7232-9583 0000-0002-5364-9992 0000-0002-4859-6507 |
| OpenAccessLink | https://www.proquest.com/docview/2767171581?pq-origsite=%requestingapplication% |
| PQID | 2767171581 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_94ab84787f594ee28ba95b85ad6263c7 hal_primary_oai_HAL_hal_04006438v1 proquest_journals_2767171581 crossref_citationtrail_10_3390_app13021192 crossref_primary_10_3390_app13021192 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationSeriesTitle | Advances in Non-Destructive Testing Methods |
| PublicationTitle | Applied sciences |
| PublicationYear | 2023 |
| Publisher | MDPI AG Multidisciplinary digital publishing institute (MDPI) |
| Publisher_xml | – name: MDPI AG – name: Multidisciplinary digital publishing institute (MDPI) |
| References | Li (ref_18) 2009; 26 Lin (ref_6) 2013; 49 Rajapakse (ref_7) 1993; 119 Scarpas (ref_10) 2001; 38 Junhui (ref_13) 2021; 34 Han (ref_11) 2021; 130 Cao (ref_3) 2018; 31 Wei (ref_19) 2006; 20 ref_17 ref_16 Banerjee (ref_26) 2012; 49 Scarpas (ref_14) 2007; 14 Kasbergen (ref_15) 2001; 38 Zhao (ref_12) 2015; 16 Dubois (ref_4) 2012; 44 Teng (ref_22) 2022; 16 Cha (ref_20) 2017; 32 Wang (ref_5) 2016; 142 ref_23 Kutay (ref_2) 2011; 2227 ref_21 ref_1 Grenier (ref_27) 2009; 36 Hu (ref_24) 2018; 41 Ai (ref_8) 2014; 60 Khojasteh (ref_9) 2008; 134 Zheng (ref_25) 2021; 40 |
| References_xml | – volume: 142 start-page: 4016069 year: 2016 ident: ref_5 article-title: Comparative Study of Asphalt Pavement Responses under FWD and Moving Vehicular Loading publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000902 – volume: 36 start-page: 944 year: 2009 ident: ref_27 article-title: Dynamic simulation of falling weight deflectometer tests on flexible pavements using the spectral element method: Forward calculations publication-title: Can. J. Civ. Eng. doi: 10.1139/L08-118 – volume: 16 start-page: 870 year: 2015 ident: ref_12 article-title: Dynamic backcalculation of asphalt pavement layer properties using spectral element method publication-title: Road Mater. Pavement Des. doi: 10.1080/14680629.2015.1056214 – volume: 44 start-page: 35 year: 2012 ident: ref_4 article-title: Finite element model for crack growth process in concrete bituminous publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2011.05.039 – volume: 32 start-page: 361 year: 2017 ident: ref_20 article-title: Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks publication-title: Comput.-Aided Civ. Inf. doi: 10.1111/mice.12263 – volume: 130 start-page: 103914 year: 2021 ident: ref_11 article-title: Dynamic simulation of FWD tests on flexible transversely isotropic pavements with imperfect interfaces publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2020.103914 – volume: 14 start-page: 1060 year: 2007 ident: ref_14 article-title: Inverse dynamic system for pavement structure based on 3D spectral elements publication-title: Chin. J. Geotech. Eng. – volume: 49 start-page: 39 year: 2013 ident: ref_6 article-title: An efficient approach for dynamic impedance of surface footing on layered half-space publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2013.01.008 – ident: ref_1 – volume: 38 start-page: 1605 year: 2001 ident: ref_10 article-title: Spectral element technique for efficient parameter identification of layered media. I. Forward calculation publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(00)00112-8 – volume: 26 start-page: 50 year: 2009 ident: ref_18 article-title: Improved Particle Swarm Optimization for Elastoplastic Back Analysis in Geotechnical Engineering publication-title: J. Min. Saf. Eng. – volume: 34 start-page: 11 year: 2021 ident: ref_13 article-title: Analytical Solution for the Dynamic Responses and Parameter Inversion of Pavement Structures Considering the Condition of Interlayer Contact publication-title: China J. Highw. Transp. – volume: 38 start-page: 8753 year: 2001 ident: ref_15 article-title: Spectral element technique for efficient parameter identification of layered media: Part II: Inverse calculation publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(01)00109-3 – volume: 60 start-page: 22 year: 2014 ident: ref_8 article-title: Analytical layer-element solution to axisymmetric dynamic response of transversely isotropic multilayered half-space publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2014.01.010 – volume: 134 start-page: 777 year: 2008 ident: ref_9 article-title: Asymmetric Dynamic Green’s Functions in a Two-Layered Transversely Isotropic Half-Space publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2008)134:9(777) – ident: ref_21 doi: 10.3390/app10124247 – volume: 16 start-page: 45 year: 2022 ident: ref_22 article-title: Digital image correlation-based structural state detection through deep learning publication-title: Front. Struct. Civ. Eng. doi: 10.1007/s11709-021-0777-x – volume: 119 start-page: 1724 year: 1993 ident: ref_7 article-title: Green’s functions for transversely isotropic elastic half space publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(1993)119:9(1724) – volume: 31 start-page: 66 year: 2018 ident: ref_3 article-title: Dynamic Backcalculation for Parameters of Asphalt Pavement with Rigid Base publication-title: China J. Highw. Transp. – ident: ref_17 doi: 10.3390/app122010536 – ident: ref_16 doi: 10.3390/app10010132 – volume: 2227 start-page: 87 year: 2011 ident: ref_2 article-title: Backcalculation of Dynamic Modulus Mastercurve from Falling Weight Deflectometer Surface Deflections publication-title: Transp. Res. Rec. doi: 10.3141/2227-10 – volume: 20 start-page: 795 year: 2006 ident: ref_19 article-title: Back analysis algorithm in geotechnical engineering based on particle swarm optimization publication-title: Rock Soil Mech. – volume: 49 start-page: 3233 year: 2012 ident: ref_26 article-title: Theoretical modeling of guided wave propagation in a sandwich plate subjected to transient surface excitations publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2012.06.022 – volume: 41 start-page: 338 year: 2018 ident: ref_24 article-title: Mechanical property prediction of hot-rolled strip based on convolutional neural network publication-title: J. Wuhan Univ. Sci. Technol. – ident: ref_23 doi: 10.3390/app10144720 – volume: 40 start-page: 230 year: 2021 ident: ref_25 article-title: Fault diagnosis of cylindrical roller bearing cage based on 1D convolution neural network publication-title: J. Vib. Shock |
| SSID | ssj0000913810 |
| Score | 2.2689729 |
| Snippet | Based on the spectral element method (SEM) and a convolutional neural network (CNN), an inversion algorithm for the dynamic modulus of concrete pavement... |
| SourceID | doaj hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 1192 |
| SubjectTerms | Algorithms convolution neural network dynamic modulus Efficiency Environmental Sciences falling weight deflectometer inversion algorithm Load Mathematics Mechanical properties Neural networks Nondestructive testing Optimization Parameter identification pavement structure Propagation Software Statistics Workloads |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-keNCDtFXxaZUgPaiwuNlsNpnja7X0UEvBD3pbkmxiheeu-D7-_s5kt_UpghdPC2EIITOZmd9m8huAQ-5qFKRUhTZBF3VQdYGm8kXlZFIUYLsyV1t8OTPn5_byEi-2Wn1xTdhIDzxu3FusnbfMIJM01jFW1jvU3mrXMY9KyO_IS4NbYCr7YJRMXTU-yFOE6_k-mO_o5Hjp-SsEZaZ-CixXXAf5hzvOMeZkFx5MyaGYj4vagzux34f7W5SB-7A3HcaleDUxRr9-CJt5L5gwI__6EvPF14Eg_9V3QQmpoARPvBvbzosPQ7derJdiSOJ46ClfXEVx4TJj-Ep8zEyya4Lf4ohCWydoKsdym8k6aWVM5ZE_uXb8EXw-ef_p-LSYGioUQaFdFQ6brkyhrIIJpmxstKQWbyI21qDF6HzplQ6Nc01wZUyJHUBw6CUm1WFQj2GnH_r4BISvKfZRqil1iDVBOtpvH9F3yfgalU4zeHOzx22Y2Ma56cWiJdTBCmm3FDKDw1vhHyPJxt_FjlhZtyLMjJ0HyF7ayV7af9nLDF6Sqn-b43R-1vIY-zNK0OxGzuDgxhLa6Uwv28o0hH2ltvLp_1jIM7jHrevH3zkHsENKjs_hbtisvi1_vsjmfA0InviZ priority: 102 providerName: Directory of Open Access Journals |
| Title | An Inversion Algorithm for the Dynamic Modulus of Concrete Pavement Structures Based on a Convolutional Neural Network |
| URI | https://www.proquest.com/docview/2767171581 https://cnrs.hal.science/hal-04006438 https://doaj.org/article/94ab84787f594ee28ba95b85ad6263c7 |
| Volume | 13 |
| WOSCitedRecordID | wos000914282400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5UAPQAuoC21loR4AKSKOk9g-od0-VKR2FfFSOUW247RI26Rtsvv7mXG824IQF05RnJFlacbzzjeE7ONUI8sYjzJhsyi1PI2USEyUaFZzMLBV7Lstvp-K6VSen6siJNy60Fa51IleUVetxRz5h0TkEHmwTLKP1zcRTo3C6moYofGQrCNSGcj5-uRoWnxeZVkQ9VKyePgxj0N8j3VhrNWxofh5Z4o8Yj8YmEvsh_xDLXtbc_z0f0_5jDwJXiYdD2KxSR64Zots3MMe3CKb4VZ39G2Ann73nCzGDUXkDZ9Do-PZBezdX15R8GwpeIr0cJhfT8_aaj6bd7St6UHbgOPZO1poDz3e0y8eknYOcTydgI2sKGylkW4RxBxOhpgg_uGb0F-Qb8dHXw9OojCZIbJcyT7SKq_i2saJFVbEuXQS-GuEU7kUSiqnTWx4ZnOtc6tjV9eoSaxWhqmaV8ryl2StaRu3TahJwYiCz8oy61KIDYFhxilT1cKkimf1iLxfMqm0AbYcp2fMSghfkKPlPY6OyP6K-HpA6_g72QS5vSJBiG2_0N5elOHGlirVRiJ0UZ2p1LlEGq0yIzNdIYCPFSPyBmTltz1OxqclrqFiBE9PLtiI7CzlpAzKoSvvhOTVvz-_Jo9xuv2Q8dkha8A-t0se2UX_s7vdC7K-59MI8FZ8Oit-_AKJnQrH |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL0aHRLwAGyAKAyw0JAAKSLOp_2AULcxtVpbVWKg8RRsx9kmdclo0qL9KX4j9yZpNxDibQ88RXKurMQ-vvf461yAbcpqZDj3nTA2oRMYP3Bk7GnHUzzzMcCmbn3a4sswHo_F0ZGcrMHP5V0YOla59Im1o04LQ2vk77w4wpkHDwX_cP7doaxRtLu6TKHRwOLAXvzAKVv5frCH_fvK8_Y_Hu72nTargGN8KSpHySh1M-N6JjaxGwkr8Nt0bGUkYimkVdrVfmgipSKjXJtlNAqMkprLzE-l8bHeG7AeENg7sD4ZjCZfV6s6pLIpuNtcBPR96dI-NO0N8maz9TL01RkCMKCd0PnLP8JAHdv27_1vrXIf7rYsmvUa2G_Ams034c4VbcVN2Gi9Vslet9Labx7AopczUhap1whZb3qM_1KdnDFk7gyZMNu7yNXZqWGjIp1P5yUrMrZb5EisK8smqpZWr9inWnJ3PsOqd5ADpAyrUmS3aIcxfhlpntSP-pD9Q_h8La3xCDp5kdvHwHSAJAE5OQ-NDXDuiwDRVuo0i3Ug_TDrwtslKBLTyrJTdpBpgtMzQlByBUFd2F4ZnzdqJH832yF0rUxIQrwuKGbHSeuREhkoLUiaKQtlYK0ntJKhFqFKSaDIxF14idj8rY5-b5hQGTl-ZLJiwbuwtcRl0jq_MrkE5ZN_v34Bt_qHo2EyHIwPnsJtD_ljs7q1BR3sSvsMbppFdVrOnrfjjMG36wbxL8efZ3o |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwAFpALBSwUJEAKWresQ8Ibbusuup2FYmHyinYjtNW2iZlk13Uv8avYyaPbUGIWw-cIjmWldifZz7b428AtimrkXYczwoiHVi-9nxLRK6yXOlkHjrY1K6jLb5MoumUHx2JeA1-dndhKKyys4m1oU4LTXvkO24U4srDCbizk7VhEfFw9P78u0UZpOiktUun0UDkwFz8wOVb-W48xLF-5bqjD5_29q02w4ClPcErS4owtTNtuzrSkR1yw_E7VWREyCPBhZHKVl6gQylDLW2TZTQjtBTKEZmXCu1huzdgHSm57_ZgPR4fxl9XOzykuMkdu7kU6HnCpjNpOid0moPXSzdYZwtA53ZCsZh_uITaz43u_c89dB_utuyaDZrpsAFrJt-EO1c0Fzdho7VmJXvdSm6_eQDLQc5IcaTeO2SD2TH-S3VyxpDRM2TIbHiRy7NTzQ6LdDFblKzI2F6RI-GuDItlLblesY-1FO9ijk3vIjdIGTYlqd6ynd74ZaSFUj_q4PuH8PlaeuMR9PIiN4-BKR_JA3J1J9DGxzUxgkUZodIsUr7wgqwPbzuAJLqVa6esIbMEl22EpuQKmvqwvap83qiU_L3aLiFtVYWkxeuCYn6ctJYqEb5UnCSbskD4xrhcSREoHsiUhIt01IeXiNPf2tgfTBIqI4eADJcvnT5sdRhNWqNYJpcAffLv1y_gFiI3mYynB0_htou0stn02oIejqR5Bjf1sjot58_bKcfg23Vj-Be1EXA6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Inversion+Algorithm+for+the+Dynamic+Modulus+of+Concrete+Pavement+Structures+Based+on+a+Convolutional+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Chen%2C+Gongfa&rft.au=Chen%2C+Xuedi&rft.au=Yang%2C+Linqing&rft.au=Han%2C+Zejun&rft.date=2023-01-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=13&rft.issue=2&rft.spage=1192&rft_id=info:doi/10.3390%2Fapp13021192&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app13021192 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |