Comparative Analysis of Skew-Join Strategies for Large-Scale Datasets with MapReduce and Spark
In the era of data deluge, Big Data gradually offers numerous opportunities, but also poses significant challenges to conventional data processing and analysis methods. MapReduce has become a prominent parallel and distributed programming model for efficiently handling such massive datasets. One of...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 12; číslo 13; s. 6554 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.07.2022
Multidisciplinary digital publishing institute (MDPI) |
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the era of data deluge, Big Data gradually offers numerous opportunities, but also poses significant challenges to conventional data processing and analysis methods. MapReduce has become a prominent parallel and distributed programming model for efficiently handling such massive datasets. One of the most elementary and extensive operations in MapReduce is the join operation. These joins have become ever more complex and expensive in the context of skewed data, in which some common join keys appear with a greater frequency than others. Some of the reduction tasks processing these join keys will finish later than others; thus, the benefits of parallel computation become meaningless. Some studies on the problem of skew joins have been conducted, but an adequate and systematic comparison in the Spark environment has not been presented. They have only provided experimental tests, so there is still a shortage of representations of mathematical models on which skew-join algorithms can be compared. This study is, therefore, designed to provide the theoretical and practical basics for evaluating skew-join strategies for large-scale datasets with MapReduce and Spark—both analytically with cost models and practically with experiments. The objectives of the study are, first, to present the implementation of prominent skew-join algorithms in Spark, second, to evaluate the algorithms by using cost models and experiments, and third, to show the advantages and disadvantages of each one and to recommend strategies for the better use of skew joins in Spark. |
|---|---|
| AbstractList | In the era of data deluge, Big Data gradually offers numerous opportunities, but also poses significant challenges to conventional data processing and analysis methods. MapReduce has become a prominent parallel and distributed programming model for efficiently handling such massive datasets. One of the most elementary and extensive operations in MapReduce is the join operation. These joins have become ever more complex and expensive in the context of skewed data, in which some common join keys appear with a greater frequency than others. Some of the reduction tasks processing these join keys will finish later than others; thus, the benefits of parallel computation become meaningless. Some studies on the problem of skew joins have been conducted, but an adequate and systematic comparison in the Spark environment has not been presented. They have only provided experimental tests, so there is still a shortage of representations of mathematical models on which skew-join algorithms can be compared. This study is, therefore, designed to provide the theoretical and practical basics for evaluating skew-join strategies for large-scale datasets with MapReduce and Spark—both analytically with cost models and practically with experiments. The objectives of the study are, first, to present the implementation of prominent skew-join algorithms in Spark, second, to evaluate the algorithms by using cost models and experiments, and third, to show the advantages and disadvantages of each one and to recommend strategies for the better use of skew joins in Spark. |
| Author | Phan, Thuong-Cang Trieu, Thanh-Ngoan Cao, Hung-Phi Phan, Anh-Cang |
| Author_xml | – sequence: 1 givenname: Anh-Cang orcidid: 0000-0002-1470-5496 surname: Phan fullname: Phan, Anh-Cang – sequence: 2 givenname: Thuong-Cang orcidid: 0000-0002-4807-2463 surname: Phan fullname: Phan, Thuong-Cang – sequence: 3 givenname: Hung-Phi orcidid: 0000-0003-4291-433X surname: Cao fullname: Cao, Hung-Phi – sequence: 4 givenname: Thanh-Ngoan orcidid: 0000-0002-6837-6181 surname: Trieu fullname: Trieu, Thanh-Ngoan |
| BackLink | https://hal.univ-brest.fr/hal-05043228$$DView record in HAL |
| BookMark | eNptkc1uEzEUhS1UJErpihewxAqhKf6d8Syj8NNWQUgEtlg39p3U6XQ82E6rvj0uQagg7sbW8edvcc9zcjTFCQl5ydmZlD17C_PMBZet1uoJORasaxupeHf06P6MnOa8Y3V6Lg1nx-T7Mt7MkKCEW6SLCcb7HDKNA11f411zGcNE16U-4zZgpkNMdAVpi83awYj0HRTIWDK9C-WKfoL5C_q9QwqTp-uqvX5Bng4wZjz9fZ6Qbx_ef12eN6vPHy-Wi1XjZG9KA7JjXnqtjeP9ZtMr7QywAZlrB9RSgOpaxY30vZDeeMUHyVBs0KORA4NWnpCLg9dH2Nk5hRtI9zZCsL-CmLYWUgluRNtuQAreA2p0iglTR9YMJDDNjYLqen1wXcH4l-p8sbIPGdNMSSHMLa_sqwM7p_hjj7nYXdynusZsRWt03wmjWaXeHCiXYs4Jhz9azuxDd_ZRd5Xm_9AulFpQnGoRYfzvn58qjZwL |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_120022 crossref_primary_10_2478_amns_2024_2977 |
| Cites_doi | 10.1109/TPDS.2014.2350972 10.1145/1739041.1739056 10.1186/s40537-014-0008-6 10.1016/j.aci.2018.11.001 10.1016/j.eswa.2015.12.024 10.1145/1327452.1327492 10.1109/GET.2016.7916740 10.1109/TKDE.2020.3006446 10.1007/978-3-662-49534-6_2 10.1145/1989323.1989423 10.14778/2733004.2733020 10.1016/j.procs.2014.05.014 10.1145/509289.509292 10.1109/INMIC.2011.6151466 10.1109/IPDPS.2019.00111 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 1XC VOOES DOA |
| DOI | 10.3390/app12136554 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_6ba3219ae5ec402888836baa3a05184a oai:HAL:hal-05043228v1 10_3390_app12136554 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 1XC VOOES |
| ID | FETCH-LOGICAL-c398t-a370d3d558c19bb945c8a0fe0c6fe532a4764183d923d8d41f30e2bede83f0a63 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000823666600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Mon Nov 10 04:32:31 EST 2025 Tue Oct 14 20:56:47 EDT 2025 Mon Jun 30 10:57:56 EDT 2025 Tue Nov 18 21:40:55 EST 2025 Sat Nov 29 07:13:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | big data analytics skew join Apache Spark MapReduce |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c398t-a370d3d558c19bb945c8a0fe0c6fe532a4764183d923d8d41f30e2bede83f0a63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1470-5496 0000-0002-4807-2463 0000-0002-6837-6181 0000-0003-4291-433X |
| OpenAccessLink | https://doaj.org/article/6ba3219ae5ec402888836baa3a05184a |
| PQID | 2685972850 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6ba3219ae5ec402888836baa3a05184a hal_primary_oai_HAL_hal_05043228v1 proquest_journals_2685972850 crossref_primary_10_3390_app12136554 crossref_citationtrail_10_3390_app12136554 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | MDPI AG Multidisciplinary digital publishing institute (MDPI) |
| Publisher_xml | – name: MDPI AG – name: Multidisciplinary digital publishing institute (MDPI) |
| References | Dean (ref_1) 2008; 51 ref_14 Nawale (ref_15) 2015; 6 Chen (ref_9) 2015; 26 ref_11 ref_19 ref_18 Bruno (ref_10) 2014; 7 Zhang (ref_12) 2020; 34 ref_16 Myung (ref_6) 2016; 51 Singh (ref_17) 2014; 2 ref_25 ref_24 ref_23 ref_22 ref_21 ref_3 ref_2 Hassan (ref_7) 2014; 29 Meena (ref_13) 2020; 18 ref_8 Kwon (ref_20) 2013; 36 ref_5 ref_4 |
| References_xml | – volume: 26 start-page: 2520 year: 2015 ident: ref_9 article-title: LIBRA: Lightweight Data Skew Mitigation in MapReduce publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2014.2350972 – ident: ref_5 – ident: ref_3 – ident: ref_4 doi: 10.1145/1739041.1739056 – volume: 2 start-page: 8 year: 2014 ident: ref_17 article-title: A survey on platforms for big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0008-6 – ident: ref_24 – volume: 18 start-page: 22 year: 2020 ident: ref_13 article-title: Handling data-skewness in character based string similarity join using Hadoop publication-title: Appl. Comput. Inform. doi: 10.1016/j.aci.2018.11.001 – volume: 51 start-page: 286 year: 2016 ident: ref_6 article-title: Handling data skew in join algorithms using MapReduce publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.12.024 – volume: 36 start-page: 24 year: 2013 ident: ref_20 article-title: Managing Skew in Hadoop publication-title: IEEE Data Eng. Bull. – volume: 51 start-page: 107 year: 2008 ident: ref_1 article-title: MapReduce: Simplified data processing on large clusters publication-title: Commun. ACM doi: 10.1145/1327452.1327492 – ident: ref_16 – ident: ref_14 doi: 10.1109/GET.2016.7916740 – ident: ref_18 – volume: 34 start-page: 2176 year: 2020 ident: ref_12 article-title: Exploiting data skew for improved query performance publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.3006446 – ident: ref_23 – ident: ref_2 doi: 10.1007/978-3-662-49534-6_2 – ident: ref_21 – ident: ref_8 doi: 10.1145/1989323.1989423 – volume: 7 start-page: 1484 year: 2014 ident: ref_10 article-title: Advanced join strategies for large-scale distributed computation publication-title: Proc. VLDB Endow. doi: 10.14778/2733004.2733020 – volume: 29 start-page: 145 year: 2014 ident: ref_7 article-title: Handling Data-skew Effects in Join Operations Using MapReduce publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2014.05.014 – ident: ref_22 doi: 10.1145/509289.509292 – ident: ref_25 doi: 10.1109/INMIC.2011.6151466 – ident: ref_19 – ident: ref_11 doi: 10.1109/IPDPS.2019.00111 – volume: 6 start-page: 32 year: 2015 ident: ref_15 article-title: Survey on load balancing and data skew mitigation in MapReduce application publication-title: Int. J. Comput. Eng. Technol. |
| SSID | ssj0000913810 |
| Score | 2.2377706 |
| Snippet | In the era of data deluge, Big Data gradually offers numerous opportunities, but also poses significant challenges to conventional data processing and analysis... |
| SourceID | doaj hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 6554 |
| SubjectTerms | Algorithms Apache Spark Big Data big data analytics Data processing Datasets Distributed processing Engineering Sciences MapReduce Queries skew join |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4EegBYQCwVZiAMgWdixnTgn1JZWFSqrqgtST0QTP6BqlSybUP4-46zTB0JcyNFxrEgz_ubh8TeEvLLCObC8Zg7DNqYMDww4CAa-FNqAk8GHodlEMZuZk5PyKCXculRWOWLiANSutTFH_i7LDfq-mdH8_eIHi12j4ulqaqFxm6xFpjI1IWs7e7Oj48ssS2S9NIKvLuZJjO_juXBkMcu1VjdM0cDYjwbme6yH_AOWB1uzf_9___IBuZe8TLq9UosNcss3m2T9GvfgJtlIu7qjrxP19JuH5OvuFRk4HflKaBvo_Mz_Yh_b04aOdLb4Ifq79DBWkrM5StrTD9CjTew7GpO79BMsjiMvrKfQODrHZc8ekS_7e593D1jqwMCsLE3PQBbcSae1saKs61Jpa4AHz20evJYZqCJXCAoO3URnnBJBcp_V3nkjA4dcPiaTpm38E0J1URtbaAgYEqka_U4QqtABAcABF-Cm5O0ojMomevLYJeO8wjAlSq66JrkpKtk4ebFi5fj7tJ0o1cspkUp7GGiX36q0M6u8BomwDV57i8G0wUfiGEhAvDIKpuQl6sSNNQ62D6s4xiP9W5aZCzElW6M-VAkEuupKGZ7--_UzcjeLtyqGKuAtMumXP_1zcsde9Kfd8kXS6d_MRwCJ priority: 102 providerName: ProQuest |
| Title | Comparative Analysis of Skew-Join Strategies for Large-Scale Datasets with MapReduce and Spark |
| URI | https://www.proquest.com/docview/2685972850 https://hal.univ-brest.fr/hal-05043228 https://doaj.org/article/6ba3219ae5ec402888836baa3a05184a |
| Volume | 12 |
| WOSCitedRecordID | wos000823666600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-ketBDsVXx1VqCeFAhmGyS3eyxrS1V2sejT6FeXGbzgaWyr_St9d93sh_6WoRePG7IhjAfmfntTn4D8NpJ79GJmnuCbVxbETkKlBxDKY1Fr2KIXbOJYjq1Z2flbKXVV6oJ6-mBe8G9z2tU5FUYTHCEdQiwWUVjqJDMyeouNaKsZwVMdWdwKRN1VX8hTxGuT_-DE3tZboy-EYI6pn4KLN9THeSt47iLMYePYX1IDtluv6kNuBeaTXi0Qhm4CRuDMy7Zm4Ex-u0T-Lb_l8ObjTQjbBHZ_CL84p8W5w0bWWjpRUpT2XEqAOdzUlBgH7ClUNYuWfomy07w8jTRuQaGjWdzWvbiKXw5PPi8f8SHxgncqdK2HFUhvPLGWCfLui61cRZFDMLlMRiVoS5yTb7sKbvz1msZlQhZHXywKgrM1TNYaxZNeA7MFLV1hcFISEbXlC6i1IWJ5LcehUQ_gXejLCs3sIqn5hY_KkIXSfDViuAnZBvj5MueTOPf0_aSUv5MSQzY3QDZRTXYRXWXXUzgFan0xhpHu8dVGhOJtS3L7LWcwPao8Wrw3WWV5ZZQVmaN2PofG3kBD7N0ZaIr8d2GtfbqZ3gJD9x1e7682oH7ewfT2elOZ770NPt4Mvv6Gxlm894 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl4ADZAFAZYCCRAinBiO3EeEBobU8vaqqJDGi-Ei-3ANNSUpmzin-Jv5Jwm-4EQb3sgj45jKfGX7-7s83cAT0xoLRqeB5bCtkBqXgTIMQzQpaHSaEXhirrYRDIa6f39dLwCv9qzMD6tsuXEmqhtafwa-cso1uT7Rlrx17Pvga8a5XdX2xIaS1jsup_HFLJVr_rbNL9Po2jn7d5WL2iqCgRGpHoRoEi4FVYpbcI0z1OpjEZeOG7iwikRoUxiSUC35PpYbWVYCO6i3FmnRcExFjTuJViVBHbdgdVxfzj-eLKq41U2dciXBwGFSLnfh_aqabFS8pzpqysEkEH76vMv_zADtW3bufG_fZWbcL3xotnmEvZrsOKm63DtjLbiOqw1rFWxZ4209vNb8GnrVOyctXosrCzY5NAdB-_Kgylr5XrpQfLn2cBnygcTQrJj27ggm7-omF-8ZkOcvfe6t47h1LIJDXt4Gz5cyFvfgc60nLq7wFSSa5MoLCjkkzn51RjKRBVEcBZ5iLYLL9rJz0wjv-6rgHzLKAzzSMnOIKVLP1HbebZUHfl7tzceRSddvFR43VDOv2QN82RxjoLMEjrljCRvki5BbSiQ-FhL7MJjwuC5MXqbg8y3cS9vF0X6KOzCRou_rCG5KjsF371_334EV3p7w0E26I9278PVyJ8gqTOeN6CzmP9wD-CyOVocVPOHzf_E4PNFg_U3veNd9A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKi1A5AC1ULBSwEEiAFNWJ7cQ5IFS6rLp0u1qxIJULYeIPqIqSZRNa8df4dYyzST8Q4tYDOTqOpSRvZp7t8RtCnujQGNAsDwxO2wKhmAuAQRiATUOpwHBnXVNsIhmP1cFBOlkiv7qzMD6tsvOJjaM2pfZr5FtRrJD7RkqyLdemRUz6g1ez74GvIOV3WrtyGguI7NmfJzh9q14O-_ivn0bR4M37nd2grTAQaJ6qOgCeMMONlEqHaZ6nQmoFzFmmY2clj0AksUDQG6RBRhkROs5slFtjFXcMYo7jXiErSMkF2tjKZLg_-Xi6wuMVN1XIFocCOU-Z35P2CmqxlOJCGGyqBWBw--pzMf8ICU2cG9z8n7_QLXKjZdd0e2EOa2TJFuvk-jnNxXWy1nqzij5rJbef3yafds5E0Gmn00JLR6dH9iR4Wx4WtJPxxQeR59ORz6APpohwS_tQIxeoK-oXtek-zN55PVxLoTB0isMe3SEfLuWtN8hyURb2LqEyyZVOJDicCooc-TaEIpEOHZ8BFoLpkRcdEDLdyrL76iDfMpyeedRk51DTQ-PqOs8WaiR_7_baI-q0i5cQbxrK-Zes9UhZnAPHcAVWWi2QZeLFsQ04oJ9WAnrkMeLxwhi726PMtzEvexdF6jjskc0Oi1nr_KrsDIj3_n37EbmGCM1Gw_HefbIa-YMlTSL0Jlmu5z_sA3JVH9eH1fxha1qUfL5srP4GCUdmtA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Skew-Join+Strategies+for+Large-Scale+Datasets+with+MapReduce+and+Spark&rft.jtitle=Applied+sciences&rft.au=Anh-Cang+Phan&rft.au=Thuong-Cang+Phan&rft.au=Hung-Phi+Cao&rft.au=Thanh-Ngoan+Trieu&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=13&rft.spage=6554&rft_id=info:doi/10.3390%2Fapp12136554&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6ba3219ae5ec402888836baa3a05184a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |