Comparative Analysis of Skew-Join Strategies for Large-Scale Datasets with MapReduce and Spark

In the era of data deluge, Big Data gradually offers numerous opportunities, but also poses significant challenges to conventional data processing and analysis methods. MapReduce has become a prominent parallel and distributed programming model for efficiently handling such massive datasets. One of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 12; číslo 13; s. 6554
Hlavní autoři: Phan, Anh-Cang, Phan, Thuong-Cang, Cao, Hung-Phi, Trieu, Thanh-Ngoan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2022
Multidisciplinary digital publishing institute (MDPI)
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In the era of data deluge, Big Data gradually offers numerous opportunities, but also poses significant challenges to conventional data processing and analysis methods. MapReduce has become a prominent parallel and distributed programming model for efficiently handling such massive datasets. One of the most elementary and extensive operations in MapReduce is the join operation. These joins have become ever more complex and expensive in the context of skewed data, in which some common join keys appear with a greater frequency than others. Some of the reduction tasks processing these join keys will finish later than others; thus, the benefits of parallel computation become meaningless. Some studies on the problem of skew joins have been conducted, but an adequate and systematic comparison in the Spark environment has not been presented. They have only provided experimental tests, so there is still a shortage of representations of mathematical models on which skew-join algorithms can be compared. This study is, therefore, designed to provide the theoretical and practical basics for evaluating skew-join strategies for large-scale datasets with MapReduce and Spark—both analytically with cost models and practically with experiments. The objectives of the study are, first, to present the implementation of prominent skew-join algorithms in Spark, second, to evaluate the algorithms by using cost models and experiments, and third, to show the advantages and disadvantages of each one and to recommend strategies for the better use of skew joins in Spark.
AbstractList In the era of data deluge, Big Data gradually offers numerous opportunities, but also poses significant challenges to conventional data processing and analysis methods. MapReduce has become a prominent parallel and distributed programming model for efficiently handling such massive datasets. One of the most elementary and extensive operations in MapReduce is the join operation. These joins have become ever more complex and expensive in the context of skewed data, in which some common join keys appear with a greater frequency than others. Some of the reduction tasks processing these join keys will finish later than others; thus, the benefits of parallel computation become meaningless. Some studies on the problem of skew joins have been conducted, but an adequate and systematic comparison in the Spark environment has not been presented. They have only provided experimental tests, so there is still a shortage of representations of mathematical models on which skew-join algorithms can be compared. This study is, therefore, designed to provide the theoretical and practical basics for evaluating skew-join strategies for large-scale datasets with MapReduce and Spark—both analytically with cost models and practically with experiments. The objectives of the study are, first, to present the implementation of prominent skew-join algorithms in Spark, second, to evaluate the algorithms by using cost models and experiments, and third, to show the advantages and disadvantages of each one and to recommend strategies for the better use of skew joins in Spark.
Author Phan, Thuong-Cang
Trieu, Thanh-Ngoan
Cao, Hung-Phi
Phan, Anh-Cang
Author_xml – sequence: 1
  givenname: Anh-Cang
  orcidid: 0000-0002-1470-5496
  surname: Phan
  fullname: Phan, Anh-Cang
– sequence: 2
  givenname: Thuong-Cang
  orcidid: 0000-0002-4807-2463
  surname: Phan
  fullname: Phan, Thuong-Cang
– sequence: 3
  givenname: Hung-Phi
  orcidid: 0000-0003-4291-433X
  surname: Cao
  fullname: Cao, Hung-Phi
– sequence: 4
  givenname: Thanh-Ngoan
  orcidid: 0000-0002-6837-6181
  surname: Trieu
  fullname: Trieu, Thanh-Ngoan
BackLink https://hal.univ-brest.fr/hal-05043228$$DView record in HAL
BookMark eNptkc1uEzEUhS1UJErpihewxAqhKf6d8Syj8NNWQUgEtlg39p3U6XQ82E6rvj0uQagg7sbW8edvcc9zcjTFCQl5ydmZlD17C_PMBZet1uoJORasaxupeHf06P6MnOa8Y3V6Lg1nx-T7Mt7MkKCEW6SLCcb7HDKNA11f411zGcNE16U-4zZgpkNMdAVpi83awYj0HRTIWDK9C-WKfoL5C_q9QwqTp-uqvX5Bng4wZjz9fZ6Qbx_ef12eN6vPHy-Wi1XjZG9KA7JjXnqtjeP9ZtMr7QywAZlrB9RSgOpaxY30vZDeeMUHyVBs0KORA4NWnpCLg9dH2Nk5hRtI9zZCsL-CmLYWUgluRNtuQAreA2p0iglTR9YMJDDNjYLqen1wXcH4l-p8sbIPGdNMSSHMLa_sqwM7p_hjj7nYXdynusZsRWt03wmjWaXeHCiXYs4Jhz9azuxDd_ZRd5Xm_9AulFpQnGoRYfzvn58qjZwL
CitedBy_id crossref_primary_10_1016_j_ins_2023_120022
crossref_primary_10_2478_amns_2024_2977
Cites_doi 10.1109/TPDS.2014.2350972
10.1145/1739041.1739056
10.1186/s40537-014-0008-6
10.1016/j.aci.2018.11.001
10.1016/j.eswa.2015.12.024
10.1145/1327452.1327492
10.1109/GET.2016.7916740
10.1109/TKDE.2020.3006446
10.1007/978-3-662-49534-6_2
10.1145/1989323.1989423
10.14778/2733004.2733020
10.1016/j.procs.2014.05.014
10.1145/509289.509292
10.1109/INMIC.2011.6151466
10.1109/IPDPS.2019.00111
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
DOA
DOI 10.3390/app12136554
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_6ba3219ae5ec402888836baa3a05184a
oai:HAL:hal-05043228v1
10_3390_app12136554
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
1XC
VOOES
ID FETCH-LOGICAL-c398t-a370d3d558c19bb945c8a0fe0c6fe532a4764183d923d8d41f30e2bede83f0a63
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000823666600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Mon Nov 10 04:32:31 EST 2025
Tue Oct 14 20:56:47 EDT 2025
Mon Jun 30 10:57:56 EDT 2025
Tue Nov 18 21:40:55 EST 2025
Sat Nov 29 07:13:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords big data analytics
skew join
Apache Spark
MapReduce
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-a370d3d558c19bb945c8a0fe0c6fe532a4764183d923d8d41f30e2bede83f0a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1470-5496
0000-0002-4807-2463
0000-0002-6837-6181
0000-0003-4291-433X
OpenAccessLink https://doaj.org/article/6ba3219ae5ec402888836baa3a05184a
PQID 2685972850
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_6ba3219ae5ec402888836baa3a05184a
hal_primary_oai_HAL_hal_05043228v1
proquest_journals_2685972850
crossref_primary_10_3390_app12136554
crossref_citationtrail_10_3390_app12136554
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Multidisciplinary digital publishing institute (MDPI)
Publisher_xml – name: MDPI AG
– name: Multidisciplinary digital publishing institute (MDPI)
References Dean (ref_1) 2008; 51
ref_14
Nawale (ref_15) 2015; 6
Chen (ref_9) 2015; 26
ref_11
ref_19
ref_18
Bruno (ref_10) 2014; 7
Zhang (ref_12) 2020; 34
ref_16
Myung (ref_6) 2016; 51
Singh (ref_17) 2014; 2
ref_25
ref_24
ref_23
ref_22
ref_21
ref_3
ref_2
Hassan (ref_7) 2014; 29
Meena (ref_13) 2020; 18
ref_8
Kwon (ref_20) 2013; 36
ref_5
ref_4
References_xml – volume: 26
  start-page: 2520
  year: 2015
  ident: ref_9
  article-title: LIBRA: Lightweight Data Skew Mitigation in MapReduce
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2014.2350972
– ident: ref_5
– ident: ref_3
– ident: ref_4
  doi: 10.1145/1739041.1739056
– volume: 2
  start-page: 8
  year: 2014
  ident: ref_17
  article-title: A survey on platforms for big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0008-6
– ident: ref_24
– volume: 18
  start-page: 22
  year: 2020
  ident: ref_13
  article-title: Handling data-skewness in character based string similarity join using Hadoop
  publication-title: Appl. Comput. Inform.
  doi: 10.1016/j.aci.2018.11.001
– volume: 51
  start-page: 286
  year: 2016
  ident: ref_6
  article-title: Handling data skew in join algorithms using MapReduce
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.12.024
– volume: 36
  start-page: 24
  year: 2013
  ident: ref_20
  article-title: Managing Skew in Hadoop
  publication-title: IEEE Data Eng. Bull.
– volume: 51
  start-page: 107
  year: 2008
  ident: ref_1
  article-title: MapReduce: Simplified data processing on large clusters
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– ident: ref_16
– ident: ref_14
  doi: 10.1109/GET.2016.7916740
– ident: ref_18
– volume: 34
  start-page: 2176
  year: 2020
  ident: ref_12
  article-title: Exploiting data skew for improved query performance
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3006446
– ident: ref_23
– ident: ref_2
  doi: 10.1007/978-3-662-49534-6_2
– ident: ref_21
– ident: ref_8
  doi: 10.1145/1989323.1989423
– volume: 7
  start-page: 1484
  year: 2014
  ident: ref_10
  article-title: Advanced join strategies for large-scale distributed computation
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2733004.2733020
– volume: 29
  start-page: 145
  year: 2014
  ident: ref_7
  article-title: Handling Data-skew Effects in Join Operations Using MapReduce
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2014.05.014
– ident: ref_22
  doi: 10.1145/509289.509292
– ident: ref_25
  doi: 10.1109/INMIC.2011.6151466
– ident: ref_19
– ident: ref_11
  doi: 10.1109/IPDPS.2019.00111
– volume: 6
  start-page: 32
  year: 2015
  ident: ref_15
  article-title: Survey on load balancing and data skew mitigation in MapReduce application
  publication-title: Int. J. Comput. Eng. Technol.
SSID ssj0000913810
Score 2.2377706
Snippet In the era of data deluge, Big Data gradually offers numerous opportunities, but also poses significant challenges to conventional data processing and analysis...
SourceID doaj
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 6554
SubjectTerms Algorithms
Apache Spark
Big Data
big data analytics
Data processing
Datasets
Distributed processing
Engineering Sciences
MapReduce
Queries
skew join
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgy4EegBYQCwVZiAMgWdixnTgn1JZWFSqrqgtST0QTP6BqlSybUP4-46zTB0JcyNFxrEgz_ubh8TeEvLLCObC8Zg7DNqYMDww4CAa-FNqAk8GHodlEMZuZk5PyKCXculRWOWLiANSutTFH_i7LDfq-mdH8_eIHi12j4ulqaqFxm6xFpjI1IWs7e7Oj48ssS2S9NIKvLuZJjO_juXBkMcu1VjdM0cDYjwbme6yH_AOWB1uzf_9___IBuZe8TLq9UosNcss3m2T9GvfgJtlIu7qjrxP19JuH5OvuFRk4HflKaBvo_Mz_Yh_b04aOdLb4Ifq79DBWkrM5StrTD9CjTew7GpO79BMsjiMvrKfQODrHZc8ekS_7e593D1jqwMCsLE3PQBbcSae1saKs61Jpa4AHz20evJYZqCJXCAoO3URnnBJBcp_V3nkjA4dcPiaTpm38E0J1URtbaAgYEqka_U4QqtABAcABF-Cm5O0ojMomevLYJeO8wjAlSq66JrkpKtk4ebFi5fj7tJ0o1cspkUp7GGiX36q0M6u8BomwDV57i8G0wUfiGEhAvDIKpuQl6sSNNQ62D6s4xiP9W5aZCzElW6M-VAkEuupKGZ7--_UzcjeLtyqGKuAtMumXP_1zcsde9Kfd8kXS6d_MRwCJ
  priority: 102
  providerName: ProQuest
Title Comparative Analysis of Skew-Join Strategies for Large-Scale Datasets with MapReduce and Spark
URI https://www.proquest.com/docview/2685972850
https://hal.univ-brest.fr/hal-05043228
https://doaj.org/article/6ba3219ae5ec402888836baa3a05184a
Volume 12
WOSCitedRecordID wos000823666600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-ketBDsVXx1VqCeFAhmGyS3eyxrS1V2sejT6FeXGbzgaWyr_St9d93sh_6WoRePG7IhjAfmfntTn4D8NpJ79GJmnuCbVxbETkKlBxDKY1Fr2KIXbOJYjq1Z2flbKXVV6oJ6-mBe8G9z2tU5FUYTHCEdQiwWUVjqJDMyeouNaKsZwVMdWdwKRN1VX8hTxGuT_-DE3tZboy-EYI6pn4KLN9THeSt47iLMYePYX1IDtluv6kNuBeaTXi0Qhm4CRuDMy7Zm4Ex-u0T-Lb_l8ObjTQjbBHZ_CL84p8W5w0bWWjpRUpT2XEqAOdzUlBgH7ClUNYuWfomy07w8jTRuQaGjWdzWvbiKXw5PPi8f8SHxgncqdK2HFUhvPLGWCfLui61cRZFDMLlMRiVoS5yTb7sKbvz1msZlQhZHXywKgrM1TNYaxZNeA7MFLV1hcFISEbXlC6i1IWJ5LcehUQ_gXejLCs3sIqn5hY_KkIXSfDViuAnZBvj5MueTOPf0_aSUv5MSQzY3QDZRTXYRXWXXUzgFan0xhpHu8dVGhOJtS3L7LWcwPao8Wrw3WWV5ZZQVmaN2PofG3kBD7N0ZaIr8d2GtfbqZ3gJD9x1e7682oH7ewfT2elOZ770NPt4Mvv6Gxlm894
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl4ADZAFAZYCCRAinBiO3EeEBobU8vaqqJDGi-Ei-3ANNSUpmzin-Jv5Jwm-4EQb3sgj45jKfGX7-7s83cAT0xoLRqeB5bCtkBqXgTIMQzQpaHSaEXhirrYRDIa6f39dLwCv9qzMD6tsuXEmqhtafwa-cso1uT7Rlrx17Pvga8a5XdX2xIaS1jsup_HFLJVr_rbNL9Po2jn7d5WL2iqCgRGpHoRoEi4FVYpbcI0z1OpjEZeOG7iwikRoUxiSUC35PpYbWVYCO6i3FmnRcExFjTuJViVBHbdgdVxfzj-eLKq41U2dciXBwGFSLnfh_aqabFS8pzpqysEkEH76vMv_zADtW3bufG_fZWbcL3xotnmEvZrsOKm63DtjLbiOqw1rFWxZ4209vNb8GnrVOyctXosrCzY5NAdB-_Kgylr5XrpQfLn2cBnygcTQrJj27ggm7-omF-8ZkOcvfe6t47h1LIJDXt4Gz5cyFvfgc60nLq7wFSSa5MoLCjkkzn51RjKRBVEcBZ5iLYLL9rJz0wjv-6rgHzLKAzzSMnOIKVLP1HbebZUHfl7tzceRSddvFR43VDOv2QN82RxjoLMEjrljCRvki5BbSiQ-FhL7MJjwuC5MXqbg8y3cS9vF0X6KOzCRou_rCG5KjsF371_334EV3p7w0E26I9278PVyJ8gqTOeN6CzmP9wD-CyOVocVPOHzf_E4PNFg_U3veNd9A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELVKi1A5AC1ULBSwEEiAFNWJ7cQ5IFS6rLp0u1qxIJULYeIPqIqSZRNa8df4dYyzST8Q4tYDOTqOpSRvZp7t8RtCnujQGNAsDwxO2wKhmAuAQRiATUOpwHBnXVNsIhmP1cFBOlkiv7qzMD6tsvOJjaM2pfZr5FtRrJD7RkqyLdemRUz6g1ez74GvIOV3WrtyGguI7NmfJzh9q14O-_ivn0bR4M37nd2grTAQaJ6qOgCeMMONlEqHaZ6nQmoFzFmmY2clj0AksUDQG6RBRhkROs5slFtjFXcMYo7jXiErSMkF2tjKZLg_-Xi6wuMVN1XIFocCOU-Z35P2CmqxlOJCGGyqBWBw--pzMf8ICU2cG9z8n7_QLXKjZdd0e2EOa2TJFuvk-jnNxXWy1nqzij5rJbef3yafds5E0Gmn00JLR6dH9iR4Wx4WtJPxxQeR59ORz6APpohwS_tQIxeoK-oXtek-zN55PVxLoTB0isMe3SEfLuWtN8hyURb2LqEyyZVOJDicCooc-TaEIpEOHZ8BFoLpkRcdEDLdyrL76iDfMpyeedRk51DTQ-PqOs8WaiR_7_baI-q0i5cQbxrK-Zes9UhZnAPHcAVWWi2QZeLFsQ04oJ9WAnrkMeLxwhi726PMtzEvexdF6jjskc0Oi1nr_KrsDIj3_n37EbmGCM1Gw_HefbIa-YMlTSL0Jlmu5z_sA3JVH9eH1fxha1qUfL5srP4GCUdmtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Skew-Join+Strategies+for+Large-Scale+Datasets+with+MapReduce+and+Spark&rft.jtitle=Applied+sciences&rft.au=Anh-Cang+Phan&rft.au=Thuong-Cang+Phan&rft.au=Hung-Phi+Cao&rft.au=Thanh-Ngoan+Trieu&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=13&rft.spage=6554&rft_id=info:doi/10.3390%2Fapp12136554&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6ba3219ae5ec402888836baa3a05184a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon