Targeting NUPR1-dependent stress granules formation to induce synthetic lethality in KrasG12D-driven tumors

We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid–liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibitio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:EMBO molecular medicine Ročník 16; číslo 3; s. 475 - 505
Hlavní autoři: Santofimia-Castaño, Patricia, Fraunhoffer, Nicolas, Liu, Xi, Bessone, Ivan Fernandez, di Magliano, Marina Pasca, Audebert, Stephane, Camoin, Luc, Estaras, Matias, Brenière, Manon, Modesti, Mauro, Lomberk, Gwen, Urrutia, Raul, Soubeyran, Philippe, Neira, Jose Luis, Iovanna, Juan
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 14.03.2024
Wiley Open Access
Springer Nature
Témata:
ISSN:1757-4684, 1757-4676, 1757-4684
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid–liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The Kras G12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated Kras G12D . Mechanistically, Kras G12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-Kras G12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in Kras G12D -expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in Kras G12D -dependent tumors. Synopsis Activation of kras oncogene induces, on one hand, a strong oncogenic stress, and on the other hand, a concomitant stress response, including the activation of the stress protein NUPR1, which in turn induces the formation of SGs through its ability to undergo LLPS. Enforced NUPR1 expression induced SGs formation, independently of mutated KrasG12D, which played a protective role in the cell. Inhibition of ZZW-115-mediated SGs-formation hampered the development of PanINs in Pdx1-cre;LSL-KrasG12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of apoptotic bodies, leading to cell death, specifically in KrasG12D-expressing cells. Targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in KrasG12D-dependent tumors. Activation of kras oncogene induces, on one hand, a strong oncogenic stress, and on the other hand, a concomitant stress response, including the activation of the stress protein NUPR1, which in turn induces the formation of SGs through its ability to undergo LLPS.
AbstractList We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid-liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The KrasG12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated KrasG12D. Mechanistically, KrasG12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-KrasG12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in KrasG12D-expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in KrasG12D-dependent tumors.We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid-liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The KrasG12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated KrasG12D. Mechanistically, KrasG12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-KrasG12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in KrasG12D-expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in KrasG12D-dependent tumors.
We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid–liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The Kras G12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated Kras G12D . Mechanistically, Kras G12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-Kras G12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in Kras G12D -expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in Kras G12D -dependent tumors.
Abstract We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid–liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The KrasG12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated KrasG12D. Mechanistically, KrasG12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-Kras G12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in KrasG12D-expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in KrasG12D-dependent tumors.
We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid–liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The Kras G12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated Kras G12D . Mechanistically, Kras G12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-Kras G12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in Kras G12D -expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in Kras G12D -dependent tumors. Synopsis Activation of kras oncogene induces, on one hand, a strong oncogenic stress, and on the other hand, a concomitant stress response, including the activation of the stress protein NUPR1, which in turn induces the formation of SGs through its ability to undergo LLPS. Enforced NUPR1 expression induced SGs formation, independently of mutated KrasG12D, which played a protective role in the cell. Inhibition of ZZW-115-mediated SGs-formation hampered the development of PanINs in Pdx1-cre;LSL-KrasG12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of apoptotic bodies, leading to cell death, specifically in KrasG12D-expressing cells. Targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in KrasG12D-dependent tumors. Activation of kras oncogene induces, on one hand, a strong oncogenic stress, and on the other hand, a concomitant stress response, including the activation of the stress protein NUPR1, which in turn induces the formation of SGs through its ability to undergo LLPS.
Abstract We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid–liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The Kras G12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated Kras G12D . Mechanistically, Kras G12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-Kras G12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in Kras G12D -expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in Kras G12D -dependent tumors.
Author Bessone, Ivan Fernandez
Soubeyran, Philippe
Brenière, Manon
Santofimia-Castaño, Patricia
Audebert, Stephane
Neira, Jose Luis
di Magliano, Marina Pasca
Camoin, Luc
Estaras, Matias
Fraunhoffer, Nicolas
Liu, Xi
Lomberk, Gwen
Urrutia, Raul
Modesti, Mauro
Iovanna, Juan
Author_xml – sequence: 1
  givenname: Patricia
  orcidid: 0000-0003-2506-5567
  surname: Santofimia-Castaño
  fullname: Santofimia-Castaño, Patricia
  email: patricia.santofimia@inserm.fr
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy
– sequence: 2
  givenname: Nicolas
  surname: Fraunhoffer
  fullname: Fraunhoffer, Nicolas
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Universidad de Buenos Aires, Consejo Nacional de investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Facultad de Medicina
– sequence: 3
  givenname: Xi
  surname: Liu
  fullname: Liu, Xi
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy
– sequence: 4
  givenname: Ivan Fernandez
  surname: Bessone
  fullname: Bessone, Ivan Fernandez
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy
– sequence: 5
  givenname: Marina Pasca
  surname: di Magliano
  fullname: di Magliano, Marina Pasca
  organization: Department of Surgery, University of Michigan
– sequence: 6
  givenname: Stephane
  orcidid: 0000-0002-9409-2588
  surname: Audebert
  fullname: Audebert, Stephane
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy
– sequence: 7
  givenname: Luc
  orcidid: 0000-0002-1230-4787
  surname: Camoin
  fullname: Camoin, Luc
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy
– sequence: 8
  givenname: Matias
  surname: Estaras
  fullname: Estaras, Matias
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy
– sequence: 9
  givenname: Manon
  surname: Brenière
  fullname: Brenière, Manon
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy
– sequence: 10
  givenname: Mauro
  orcidid: 0000-0002-4964-331X
  surname: Modesti
  fullname: Modesti, Mauro
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy
– sequence: 11
  givenname: Gwen
  orcidid: 0000-0001-5463-789X
  surname: Lomberk
  fullname: Lomberk, Gwen
  organization: Division of Research, Department of Surgery, Medical College of Wisconsin
– sequence: 12
  givenname: Raul
  surname: Urrutia
  fullname: Urrutia, Raul
  organization: Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin
– sequence: 13
  givenname: Philippe
  orcidid: 0000-0002-5876-3217
  surname: Soubeyran
  fullname: Soubeyran, Philippe
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy
– sequence: 14
  givenname: Jose Luis
  orcidid: 0000-0002-4933-0428
  surname: Neira
  fullname: Neira, Jose Luis
  organization: IDIBE, Universidad Miguel Hernández, Edificio Torregaitán, Avda. del Ferrocarril s/n, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza
– sequence: 15
  givenname: Juan
  orcidid: 0000-0003-1822-2237
  surname: Iovanna
  fullname: Iovanna, Juan
  email: juan.iovanna@inserm.fr
  organization: Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Equipe Labellisée La Ligue, Hospital de Alta Complejidad El Cruce, Florencio Varela, University Arturo Jauretche, Florencio Varela
BackLink https://hal.science/hal-04799801$$DView record in HAL
BookMark eNp9kctuFDEQRVsoiDzgB1j1EhZN_Bo_llGAJMoIEErWltuu7njosQfbHWn-HmcaJGCRVZXK91yV6542RyEGaJq3GH3AiMrzzBgluEOEdQghSjryojnBYiU6xiU7-qs_bk5z3iDEVxzLV80xlZQjpdRJ8-POpBGKD2P75f7bd9w52EFwEEqbS4Kc2zGZME-Q2yGmrSk-hrbE1gc3W2jzPpSHitt2gvJgJl_29am9TSZfYfKxc8k_QgXmbUz5dfNyMFOGN7_rWXP_-dPd5XW3_np1c3mx7ixVsnTCrZCglmNFemoGJzhjhmFsOO2Vo4wR2ysJvSCy9iAEx9YNQHrEiMHC0LPmZvF10Wz0LvmtSXsdjdeHQUyjNqnuPIF2nAo5YKRACmawM8xKQogTztKeClu93i9e9XP_WF1frPXTDDGhlET4EVftu0W7S_HnDLnorc8WpskEiHPWRBFJmCBcVKlcpDbFnBMM2vpyOG5Jxk8aI_0UsV4i1jVifYhYk4qS_9A_az0L0QXKVRxGSHoT5xRqCs9RvwAAL7hV
CitedBy_id crossref_primary_10_1002_pro_70236
crossref_primary_10_1016_j_abb_2025_110513
crossref_primary_10_1111_cpr_70027
crossref_primary_10_1186_s12943_025_02428_1
crossref_primary_10_1016_j_critrevonc_2025_104900
crossref_primary_10_1016_j_heliyon_2024_e38918
crossref_primary_10_1038_s44321_024_00040_2
crossref_primary_10_3389_fonc_2025_1540427
crossref_primary_10_1016_j_cpan_2025_01_004
crossref_primary_10_1097_MD_0000000000042857
crossref_primary_10_1002_mog2_70018
Cites_doi 10.1371/journal.pone.0049707
10.1186/s13059-021-02498-6
10.1136/gutjnl-2013-305221
10.3390/cells8111453
10.1016/S1535-6108(03)00309-X
10.1101/cshperspect.a031518
10.1080/1061186X.2018.1523415
10.1073/pnas.1619932114
10.1007/s10637-019-00776-6
10.1016/j.molcel.2017.12.020
10.1038/s41419-020-03229-8
10.7554/eLife.18413
10.3322/caac.21708
10.1016/j.cell.2015.12.038
10.1172/JCI127223
10.1016/j.cell.2017.12.032
10.1038/ncb1791
10.3390/cancers14122837
10.3390/cells11142183
10.1091/mbc.e05-02-0124
10.1078/0171-9335-00209
10.1038/s42003-022-03705-1
10.15252/embr.201642195
10.1038/s41467-020-18734-9
10.1016/j.cell.2016.11.035
10.1038/s41416-020-01067-1
10.1016/j.bbamcr.2020.118876
10.1093/molbev/msr263
10.1158/0008-5472.CAN-12-4384
10.1016/j.molcel.2016.05.042
10.1016/j.molcel.2015.01.013
10.1016/j.cis.2016.05.012
10.1016/j.molcel.2022.05.014
10.15252/embj.201798049
10.1172/JCI60144
10.1172/jci.insight.138117
10.1146/annurev-biochem-072711-164947
10.1016/j.cell.2020.03.046
10.1016/0003-2697(89)90602-7
10.1038/nrc3106
10.3389/fmolb.2021.684622
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID C6C
AAYXX
CITATION
7X8
1XC
DOA
DOI 10.1038/s44321-024-00032-2
DatabaseName Springer Nature OA Free Journals
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1757-4684
EndPage 505
ExternalDocumentID oai_doaj_org_article_d6378f109e874a1da4c8222d7dc3b37c
oai:HAL:hal-04799801v1
10_1038_s44321_024_00032_2
GrantInformation_xml – fundername: Fondation ARC pour la Recherche sur le Cancer (ARC)
  grantid: 015
  funderid: http://dx.doi.org/10.13039/501100004097
– fundername: Comunidad Valenciana
  grantid: CIAICO 2021/0135
– fundername: Institut National de la Santé et de la Recherche Médicale (Inserm)
  grantid: 1068
  funderid: http://dx.doi.org/10.13039/501100001677
– fundername: La Ligue contre le Cancer
  grantid: 0021; 0019
– fundername: Institut National Du Cancer (INCa)
  grantid: 2020-098
  funderid: http://dx.doi.org/10.13039/501100006364
– fundername: HHS | NIH | All of Us Research Program (Precision Medicine Initiative Cohort Program)
  grantid: R01DK052913
  funderid: http://dx.doi.org/10.13039/100023885
GroupedDBID ---
0R~
1OC
24P
4.4
53G
5DZ
5GY
5VS
7X7
8-0
8-1
8AO
8FE
8FH
8FI
8FJ
AAHHS
AAJSJ
AAZKR
ABOCM
ABUWG
ACCFJ
ACCMX
ACGFO
ACGFS
ACPRK
ACXQS
ADBBV
ADKYN
ADPDF
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AFBPY
AFKRA
AHMBA
AIAGR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BTFSW
BVXVI
C6C
CCPQU
D-9
DIK
DU5
EBD
EBLON
EBS
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HK~
HMCUK
HYE
HZ~
IAO
IHR
KQ8
LH4
LK8
M48
M7P
M~E
NNB
O9-
OIG
OK1
OVD
OVEED
P2P
PIMPY
PQQKQ
PROAC
RHF
RHI
RNS
ROL
RPM
SV3
TEORI
UKHRP
WIN
XV2
AASML
AAYXX
AFFHD
CITATION
NAO
PHGZM
PHGZT
PQGLB
7X8
PUEGO
1XC
ID FETCH-LOGICAL-c398t-7d5073c6192b3afd7644a411a63b9d3442cb98eb728442e7761cdfe2b042a17a3
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001220484700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1757-4684
1757-4676
IngestDate Fri Oct 03 12:53:25 EDT 2025
Tue Nov 25 06:21:14 EST 2025
Fri Sep 05 09:37:25 EDT 2025
Sat Nov 29 03:08:58 EST 2025
Tue Nov 18 22:04:22 EST 2025
Fri Feb 21 02:40:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Synthetic Lethality
Kras
ZZW-115
NUPR1
Stress Granules
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-7d5073c6192b3afd7644a411a63b9d3442cb98eb728442e7761cdfe2b042a17a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC10940650
ORCID 0000-0002-5876-3217
0000-0003-2506-5567
0000-0002-9409-2588
0000-0002-4933-0428
0000-0002-4964-331X
0000-0001-5463-789X
0000-0002-1230-4787
0000-0003-1822-2237
OpenAccessLink https://doaj.org/article/d6378f109e874a1da4c8222d7dc3b37c
PMID 38360999
PQID 2928247267
PQPubID 23479
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_d6378f109e874a1da4c8222d7dc3b37c
hal_primary_oai_HAL_hal_04799801v1
proquest_miscellaneous_2928247267
crossref_citationtrail_10_1038_s44321_024_00032_2
crossref_primary_10_1038_s44321_024_00032_2
springer_journals_10_1038_s44321_024_00032_2
PublicationCentury 2000
PublicationDate 2024-03-14
PublicationDateYYYYMMDD 2024-03-14
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle EMBO molecular medicine
PublicationTitleAbbrev EMBO Mol Med
PublicationYear 2024
Publisher Nature Publishing Group UK
Wiley Open Access
Springer Nature
Publisher_xml – name: Nature Publishing Group UK
– name: Wiley Open Access
– name: Springer Nature
References Hofmann, Kedersha, Anderson, Ivanov (CR13) 2021; 1868
Pylayeva-Gupta, Grabocka, Bar-Sagi (CR25) 2011; 11
Uversky (CR34) 2017; 239
Zhang, Morris, Yan, Schofield, Gurney, Simeone, Millar, Hoey, Hebrok, Pasca di Magliano (CR40) 2013; 73
Markmiller, Soltanieh, Server, Mak, Jin, Fang, Luo, Krach, Yang, Sen (CR17) 2018; 172
Santofimia-Castaño, Xia, Peng, Velázquez-Campoy, Abián, Lan, Lomberk, Urrutia, Rizzuti, Soubeyran (CR30) 2019; 8
Cano, Hamidi, Garcia, Grasso, Loncle, Garcia, Calvo, Lomberk, Dusetti, Bartholin (CR4) 2014; 63
Hamidi, Algül, Cano, Sandi, Molejon, Riemann, Calvo, Lomberk, Dagorn, Weih (CR11) 2012; 122
Siegel, Miller, Fuchs, Jemal (CR32) 2022; 72
Santofimia-Castaño, Huang, Liu, Xia, Audebert, Camoin, Peng, Lomberk, Urrutia, Soubeyran (CR27) 2022; 5
Grabocka, Bar-Sagi (CR10) 2016; 167
Pak, Kosno, Holehouse, Padrick, Mittal, Ali, Yunus, Liu, Pappu, Rosen (CR23) 2016; 63
Santofimia-Castaño, Rizzuti, Pey, Soubeyran, Vidal, Urrutia, Iovanna, Neira (CR28) 2017; 114
Gill, von Hippel (CR8) 1989; 182
Garcia-Montero, Vasseur, Mallo, Soubeyran, Dagorn, Iovanna (CR7) 2001; 80
Wheeler, Matheny, Jain, Abrisch, Parker (CR36) 2016; 5
Aguirre, Hahn (CR1) 2018; 8
Yang, Mathieu, Kolaitis, Zhang, Messing, Yurtsever, Yang, Wu, Li, Pan (CR37) 2020; 181
Marcelo, Koppenol, de Almeida, Matos, Nóbrega (CR16) 2021; 12
Oldfield, Dunker (CR21) 2014; 83
Santofimia-Castaño, Xia, Lan, Zhou, Huang, Peng, Soubeyran, Velázquez-Campoy, Abián, Rizzuti (CR29) 2019; 129
Collins, Brisset, Zhang, Bednar, Pierre, Heist, Galbán, Galbán, di Magliano (CR5) 2012; 7
McInerney, Kedersha, Kaufman, Anderson, Liljeström (CR19) 2005; 16
Wegmann, Eftekharzadeh, Tepper, Zoltowska, Bennett, Dujardin, Laskowski, MacKenzie, Kamath, Commins (CR35) 2018; 37
Shapiro, LoRusso, Kwak, Pandya, Rudin, Kurkjian, Cleary, Pilat, Jones, de Crespigny (CR31) 2020; 38
Zhao, Fu, Chen, Min, Sun, Yin, Guo, Li, Tang, Ruan (CR41) 2021; 124
Roman, Hwang, Sweet-Cordero (CR26) 2022; 14
Arimoto, Fukuda, Imajoh-Ohmi, Saito, Takekawa (CR2) 2008; 10
Zhang, Wang, Cai, Shao, Liu, Zhao (CR39) 2019; 27
Nott, Petsalaki, Farber, Jervis, Fussner, Plochowietz, Craggs, Bazett-Jones, Pawson, Forman-Kay (CR20) 2015; 57
Glauninger, Wong Hickernell, Bard, Drummond (CR9) 2022; 82
Jain, Wheeler, Walters, Agrawal, Barsic, Parker (CR14) 2016; 164
Youn, Dunham, Hong, Knight, Bashkurov, Chen, Bagci, Rathod, MacLeod, Eng (CR38) 2018; 69
Mathison, Kerketta, de Assuncao, Leverence, Zeighami, Urrutia, Stodola, di Magliano, Iovanna, Zimmermann (CR18) 2021; 22
Toll-Riera, Radó-Trilla, Martys, Albà (CR33) 2012; 29
Bonucci, Palomino-Schätzlein, Malo de Molina, Arbe, Pierattelli, Rizzuti, Iovanna, Neira (CR3) 2021; 8
Lan, Santofimia-Castaño, Swayden, Xia, Zhou, Audebert, Camoin, Huang, Peng, Jiménez-Alesanco (CR15) 2020; 5
Ferreira, Pereira, Reis, Oliveira, Sousa, Preto (CR6) 2022; 11
Omer, Barrera, Moran, Lian, Marco, Beausejour, Gallouzi (CR22) 2020; 11
Pakos-Zebrucka, Koryga, Mnich, Ljujic, Samali, Gorman (CR24) 2016; 17
Hingorani, Petricoin, Maitra, Rajapakse, King, Jacobetz, Ross, Conrads, Veenstra, Hitt (CR12) 2003; 4
P Santofimia-Castaño (32_CR28) 2017; 114
W Lan (32_CR15) 2020; 5
MA Collins (32_CR5) 2012; 7
Y Pylayeva-Gupta (32_CR25) 2011; 11
A Marcelo (32_CR16) 2021; 12
TJ Nott (32_CR20) 2015; 57
A Garcia-Montero (32_CR7) 2001; 80
CJ Oldfield (32_CR21) 2014; 83
JR Wheeler (32_CR36) 2016; 5
P Santofimia-Castaño (32_CR30) 2019; 8
AJ Aguirre (32_CR1) 2018; 8
A Ferreira (32_CR6) 2022; 11
A Bonucci (32_CR3) 2021; 8
S Wegmann (32_CR35) 2018; 37
K Arimoto (32_CR2) 2008; 10
CE Cano (32_CR4) 2014; 63
M Toll-Riera (32_CR33) 2012; 29
S Hofmann (32_CR13) 2021; 1868
S Jain (32_CR14) 2016; 164
C-H Zhang (32_CR39) 2019; 27
E Grabocka (32_CR10) 2016; 167
RL Siegel (32_CR32) 2022; 72
J-Y Youn (32_CR38) 2018; 69
P Santofimia-Castaño (32_CR27) 2022; 5
Y Zhang (32_CR40) 2013; 73
T Hamidi (32_CR11) 2012; 122
GI Shapiro (32_CR31) 2020; 38
SC Gill (32_CR8) 1989; 182
P Yang (32_CR37) 2020; 181
J Zhao (32_CR41) 2021; 124
AJ Mathison (32_CR18) 2021; 22
GM McInerney (32_CR19) 2005; 16
VN Uversky (32_CR34) 2017; 239
A Omer (32_CR22) 2020; 11
SR Hingorani (32_CR12) 2003; 4
M Roman (32_CR26) 2022; 14
K Pakos-Zebrucka (32_CR24) 2016; 17
P Santofimia-Castaño (32_CR29) 2019; 129
H Glauninger (32_CR9) 2022; 82
S Markmiller (32_CR17) 2018; 172
CW Pak (32_CR23) 2016; 63
References_xml – volume: 8
  start-page: a031518
  year: 2018
  ident: CR1
  article-title: Synthetic lethal vulnerabilities in KRAS-mutant cancers
  publication-title: Cold Spring Harb Perspect Med
– volume: 5
  start-page: 732
  year: 2022
  ident: CR27
  article-title: NUPR1 protects against hyperPARylation-dependent cell death
  publication-title: Commun Biol
– volume: 14
  start-page: 2837
  year: 2022
  ident: CR26
  article-title: Synthetic vulnerabilities in the KRAS pathway
  publication-title: Cancers
– volume: 8
  start-page: 684622
  year: 2021
  ident: CR3
  article-title: Crowding effects on the structure and dynamics of the intrinsically disordered nuclear chromatin protein NUPR1
  publication-title: Front Mol Biosci
– volume: 182
  start-page: 319
  year: 1989
  end-page: 326
  ident: CR8
  article-title: Calculation of protein extinction coefficients from amino acid sequence data
  publication-title: Anal Biochem
– volume: 29
  start-page: 883
  year: 2012
  end-page: 886
  ident: CR33
  article-title: Role of low-complexity sequences in the formation of novel protein coding sequences
  publication-title: Mol Biol Evol
– volume: 73
  start-page: 4909
  year: 2013
  end-page: 4922
  ident: CR40
  article-title: Canonical wnt signaling is required for pancreatic carcinogenesis
  publication-title: Cancer Res
– volume: 11
  start-page: 2183
  year: 2022
  ident: CR6
  article-title: Crucial role of oncogenic KRAS mutations in apoptosis and autophagy regulation: therapeutic implications
  publication-title: Cells
– volume: 4
  start-page: 437
  year: 2003
  end-page: 450
  ident: CR12
  article-title: Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
  publication-title: Cancer Cell
– volume: 114
  start-page: E6332
  year: 2017
  end-page: E6341
  ident: CR28
  article-title: Intrinsically disordered chromatin protein NUPR1 binds to the C-terminal region of Polycomb RING1B
  publication-title: Proc Natl Acad Sci USA
– volume: 38
  start-page: 419
  year: 2020
  end-page: 432
  ident: CR31
  article-title: Phase Ib study of the MEK inhibitor cobimetinib (GDC-0973) in combination with the PI3K inhibitor pictilisib (GDC-0941) in patients with advanced solid tumors
  publication-title: Invest New Drugs
– volume: 16
  start-page: 3753
  year: 2005
  end-page: 3763
  ident: CR19
  article-title: Importance of eIF2α phosphorylation and stress granule assembly in alphavirus translation regulation
  publication-title: Mol Biol Cell
– volume: 122
  start-page: 2092
  year: 2012
  end-page: 2103
  ident: CR11
  article-title: Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis
  publication-title: J Clin Invest
– volume: 22
  year: 2021
  ident: CR18
  article-title: KrasG12D induces changes in chromatin territories that differentially impact early nuclear reprogramming in pancreatic cells
  publication-title: Genome Biol
– volume: 82
  start-page: 2544
  year: 2022
  end-page: 2556
  ident: CR9
  article-title: Stressful steps: progress and challenges in understanding stress-induced mRNA condensation and accumulation in stress granules
  publication-title: Mol Cell
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  ident: CR20
  article-title: Phase transition of a disordered Nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol Cell
– volume: 129
  start-page: 2500
  year: 2019
  end-page: 2513
  ident: CR29
  article-title: Ligand-based design identifies a potent NUPR1 inhibitor exerting anticancer activity via necroptosis
  publication-title: J Clin Invest
– volume: 124
  start-page: 425
  year: 2021
  end-page: 436
  ident: CR41
  article-title: G3BP1 interacts with YWHAZ to regulate chemoresistance and predict adjuvant chemotherapy benefit in gastric cancer
  publication-title: Br J Cancer
– volume: 1868
  start-page: 118876
  year: 2021
  ident: CR13
  article-title: Molecular mechanisms of stress granule assembly and disassembly
  publication-title: Biochim Biophys Acta (BBA) Mol Cell Res
– volume: 8
  start-page: 1453
  year: 2019
  ident: CR30
  article-title: Targeting the stress-induced protein NUPR1 to treat pancreatic adenocarcinoma
  publication-title: Cells
– volume: 63
  start-page: 72
  year: 2016
  end-page: 85
  ident: CR23
  article-title: Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein
  publication-title: Mol Cell
– volume: 11
  start-page: 761
  year: 2011
  end-page: 774
  ident: CR25
  article-title: RAS oncogenes: weaving a tumorigenic web
  publication-title: Nat Rev Cancer
– volume: 10
  start-page: 1324
  year: 2008
  end-page: 1332
  ident: CR2
  article-title: Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways
  publication-title: Nat Cell Biol
– volume: 172
  start-page: 590
  year: 2018
  end-page: 604.e13
  ident: CR17
  article-title: Context-dependent and disease-specific diversity in protein interactions within stress granules
  publication-title: Cell
– volume: 72
  start-page: 7
  year: 2022
  end-page: 33
  ident: CR32
  article-title: Cancer statistics, 2022
  publication-title: Cancer J Clin
– volume: 239
  start-page: 97
  year: 2017
  end-page: 114
  ident: CR34
  article-title: Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: complex coacervates and membrane-less organelles
  publication-title: Adv Colloid Interface Sci
– volume: 27
  start-page: 300
  year: 2019
  end-page: 305
  ident: CR39
  article-title: The roles and mechanisms of G3BP1 in tumour promotion
  publication-title: J Drug Target
– volume: 7
  start-page: e49707
  year: 2012
  ident: CR5
  article-title: Metastatic pancreatic cancer is dependent on oncogenic Kras in mice
  publication-title: PLoS ONE
– volume: 80
  start-page: 720
  year: 2001
  end-page: 725
  ident: CR7
  article-title: Expression of the stress-induced p8 mRNA is transiently activated after culture medium change
  publication-title: Eur J Cell Biol
– volume: 167
  start-page: 1803
  year: 2016
  end-page: 1813.e12
  ident: CR10
  article-title: Mutant KRAS enhances tumor cell fitness by upregulating stress granules
  publication-title: Cell
– volume: 17
  start-page: 1374
  year: 2016
  end-page: 1395
  ident: CR24
  article-title: The integrated stress response
  publication-title: EMBO Rep
– volume: 164
  start-page: 487
  year: 2016
  end-page: 498
  ident: CR14
  article-title: ATPase-modulated stress granules contain a diverse proteome and substructure
  publication-title: Cell
– volume: 63
  start-page: 984
  year: 2014
  end-page: 995
  ident: CR4
  article-title: Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis
  publication-title: Gut
– volume: 69
  start-page: 517
  year: 2018
  end-page: 532.e11
  ident: CR38
  article-title: High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies
  publication-title: Mol Cell
– volume: 5
  start-page: e18413
  year: 2016
  ident: CR36
  article-title: Distinct stages in stress granule assembly and disassembly
  publication-title: Elife
– volume: 181
  start-page: 325
  year: 2020
  end-page: 345.e28
  ident: CR37
  article-title: G3BP1 is a tunable switch that triggers phase separation to assemble stress granules
  publication-title: Cell
– volume: 83
  start-page: 553
  year: 2014
  end-page: 584
  ident: CR21
  article-title: Intrinsically disordered proteins and intrinsically disordered protein regions
  publication-title: Annu Rev Biochem
– volume: 5
  start-page: e138117
  year: 2020
  ident: CR15
  article-title: ZZW-115-dependent inhibition of NUPR1 nuclear translocation sensitizes cancer cells to genotoxic agents
  publication-title: JCI Insight
– volume: 12
  start-page: 1
  year: 2021
  end-page: 17
  ident: CR16
  article-title: Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation?
  publication-title: Cell Death Dis
– volume: 11
  year: 2020
  ident: CR22
  article-title: G3BP1 controls the senescence-associated secretome and its impact on cancer progression
  publication-title: Nat Commun
– volume: 37
  start-page: e98049
  year: 2018
  ident: CR35
  article-title: Tau protein liquid–liquid phase separation can initiate tau aggregation
  publication-title: EMBO J
– volume: 7
  start-page: e49707
  year: 2012
  ident: 32_CR5
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049707
– volume: 22
  year: 2021
  ident: 32_CR18
  publication-title: Genome Biol
  doi: 10.1186/s13059-021-02498-6
– volume: 63
  start-page: 984
  year: 2014
  ident: 32_CR4
  publication-title: Gut
  doi: 10.1136/gutjnl-2013-305221
– volume: 8
  start-page: 1453
  year: 2019
  ident: 32_CR30
  publication-title: Cells
  doi: 10.3390/cells8111453
– volume: 4
  start-page: 437
  year: 2003
  ident: 32_CR12
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00309-X
– volume: 8
  start-page: a031518
  year: 2018
  ident: 32_CR1
  publication-title: Cold Spring Harb Perspect Med
  doi: 10.1101/cshperspect.a031518
– volume: 27
  start-page: 300
  year: 2019
  ident: 32_CR39
  publication-title: J Drug Target
  doi: 10.1080/1061186X.2018.1523415
– volume: 114
  start-page: E6332
  year: 2017
  ident: 32_CR28
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1619932114
– volume: 38
  start-page: 419
  year: 2020
  ident: 32_CR31
  publication-title: Invest New Drugs
  doi: 10.1007/s10637-019-00776-6
– volume: 69
  start-page: 517
  year: 2018
  ident: 32_CR38
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.12.020
– volume: 12
  start-page: 1
  year: 2021
  ident: 32_CR16
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-020-03229-8
– volume: 5
  start-page: e18413
  year: 2016
  ident: 32_CR36
  publication-title: Elife
  doi: 10.7554/eLife.18413
– volume: 72
  start-page: 7
  year: 2022
  ident: 32_CR32
  publication-title: Cancer J Clin
  doi: 10.3322/caac.21708
– volume: 164
  start-page: 487
  year: 2016
  ident: 32_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.038
– volume: 129
  start-page: 2500
  year: 2019
  ident: 32_CR29
  publication-title: J Clin Invest
  doi: 10.1172/JCI127223
– volume: 172
  start-page: 590
  year: 2018
  ident: 32_CR17
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.032
– volume: 10
  start-page: 1324
  year: 2008
  ident: 32_CR2
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1791
– volume: 14
  start-page: 2837
  year: 2022
  ident: 32_CR26
  publication-title: Cancers
  doi: 10.3390/cancers14122837
– volume: 11
  start-page: 2183
  year: 2022
  ident: 32_CR6
  publication-title: Cells
  doi: 10.3390/cells11142183
– volume: 16
  start-page: 3753
  year: 2005
  ident: 32_CR19
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e05-02-0124
– volume: 80
  start-page: 720
  year: 2001
  ident: 32_CR7
  publication-title: Eur J Cell Biol
  doi: 10.1078/0171-9335-00209
– volume: 5
  start-page: 732
  year: 2022
  ident: 32_CR27
  publication-title: Commun Biol
  doi: 10.1038/s42003-022-03705-1
– volume: 17
  start-page: 1374
  year: 2016
  ident: 32_CR24
  publication-title: EMBO Rep
  doi: 10.15252/embr.201642195
– volume: 11
  year: 2020
  ident: 32_CR22
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18734-9
– volume: 167
  start-page: 1803
  year: 2016
  ident: 32_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2016.11.035
– volume: 124
  start-page: 425
  year: 2021
  ident: 32_CR41
  publication-title: Br J Cancer
  doi: 10.1038/s41416-020-01067-1
– volume: 1868
  start-page: 118876
  year: 2021
  ident: 32_CR13
  publication-title: Biochim Biophys Acta (BBA) Mol Cell Res
  doi: 10.1016/j.bbamcr.2020.118876
– volume: 29
  start-page: 883
  year: 2012
  ident: 32_CR33
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msr263
– volume: 73
  start-page: 4909
  year: 2013
  ident: 32_CR40
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-4384
– volume: 63
  start-page: 72
  year: 2016
  ident: 32_CR23
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2016.05.042
– volume: 57
  start-page: 936
  year: 2015
  ident: 32_CR20
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 239
  start-page: 97
  year: 2017
  ident: 32_CR34
  publication-title: Adv Colloid Interface Sci
  doi: 10.1016/j.cis.2016.05.012
– volume: 82
  start-page: 2544
  year: 2022
  ident: 32_CR9
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2022.05.014
– volume: 37
  start-page: e98049
  year: 2018
  ident: 32_CR35
  publication-title: EMBO J
  doi: 10.15252/embj.201798049
– volume: 122
  start-page: 2092
  year: 2012
  ident: 32_CR11
  publication-title: J Clin Invest
  doi: 10.1172/JCI60144
– volume: 5
  start-page: e138117
  year: 2020
  ident: 32_CR15
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.138117
– volume: 83
  start-page: 553
  year: 2014
  ident: 32_CR21
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-072711-164947
– volume: 181
  start-page: 325
  year: 2020
  ident: 32_CR37
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.046
– volume: 182
  start-page: 319
  year: 1989
  ident: 32_CR8
  publication-title: Anal Biochem
  doi: 10.1016/0003-2697(89)90602-7
– volume: 11
  start-page: 761
  year: 2011
  ident: 32_CR25
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3106
– volume: 8
  start-page: 684622
  year: 2021
  ident: 32_CR3
  publication-title: Front Mol Biosci
  doi: 10.3389/fmolb.2021.684622
SSID ssj0065618
Score 2.4516616
Snippet We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid–liquid phase separation (LLPS). NUPR1-driven...
We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid-liquid phase separation (LLPS). NUPR1-driven...
Abstract We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid–liquid phase separation (LLPS)....
SourceID doaj
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 475
SubjectTerms Biomedical and Life Sciences
Biomedicine
EMBO03
EMBO12
Kras
Life Sciences
Molecular Medicine
NUPR1
Stress Granules
Synthetic Lethality
ZZW-115
Title Targeting NUPR1-dependent stress granules formation to induce synthetic lethality in KrasG12D-driven tumors
URI https://link.springer.com/article/10.1038/s44321-024-00032-2
https://www.proquest.com/docview/2928247267
https://hal.science/hal-04799801
https://doaj.org/article/d6378f109e874a1da4c8222d7dc3b37c
Volume 16
WOSCitedRecordID wos001220484700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: M7P
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: 7X7
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: BENPR
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1757-4684
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065618
  issn: 1757-4684
  databaseCode: PIMPY
  dateStart: 20090401
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagPMQFQaEiPFYGcQOr64di-9hCSxHtKqpatJwsv0IRJYuSbKX-e8ZOdtVyKBcuOTiOY3lm_M1oXgi9rW0ptBKCOMYiEYFGonT0ZBo1swJMDp9bJ3w9lLOZms91daXVV4oJG8oDDwe3HUouVU2nOiopLA1W-IRpQQbPHZc-3b6g9ayMqeEOBiWFqjFFZsrVdicEZ2A2M5GyqDkj7BoM5Wr9AC5nKRbyiqL5l280Q87-I_Rw1BXxzrDHx-hWbDbRvaF75OUmun80-sWfoJ8nOaAbVsGz0-qYklVv2x4PySD4O2DS8jx2eJ2tiPsFBoMcSIu7ywb0QPgLBiqeZc0cXuEvre0-UfaRhDbdibhf_lq03VN0ur938uGAjG0UiOda9UQG0Pm4T5aS47YOElQgKyi1JXc6cCGYd1pFJwGpBItSltSHOjIH8myptHwLbTSLJj5DmHLPPC9VlFYD8gM9nSuttZFqN9W8LhBdnarxY43x1Ori3GRfN1dmoIQBSphMCcMK9G79ze-hwsaNs3cTsdYzU3XsPAA8Y0aeMf_imQK9gbO8tsbBzqFJY6nivgbUvqAFer3iBAMil_wotomLZWeYBjsV-LiUBXq_YhEzyn53w-af_4_Nv0APWGZkTqh4iTb6dhlfobv-ov_RtRN0W85lfqoJurO7N6uOJ1k0JimqtYKx6vNR9e0PBuINeA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+NUPR1-dependent+stress+granules+formation+to+induce+synthetic+lethality+in+KrasG12D-driven+tumors&rft.jtitle=EMBO+molecular+medicine&rft.au=Santofimia-Casta%C3%B1o%2C+Patricia&rft.au=Fraunhoffer%2C+Nicolas&rft.au=Liu%2C+Xi&rft.au=Bessone%2C+Ivan+Fernandez&rft.date=2024-03-14&rft.pub=Wiley+Open+Access&rft.issn=1757-4676&rft.eissn=1757-4684&rft.volume=16&rft.issue=3&rft.spage=475&rft.epage=505&rft_id=info:doi/10.1038%2Fs44321-024-00032-2&rft_id=info%3Apmid%2F38360999&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04799801v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-4684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-4684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-4684&client=summon